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The LHC and its detectors

The LHC accerates and collides two high luminosity and high energy beams of protons or heavy ions.

Two general proposal high luminosity experiments:
CMS and ATLAS.

One experiment dedicated to flavour physics: LHCb.

Heavy-ion experiment: ALICE.
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The LHC environment

During most of 2012 run, LHC collided protons at 8 TeV with an average instantaneous
luminosity of 4× 1032cm−2s−1 (LHCb) and 20 MHz of bunch crossing.

Inelastic cross section ∼ 60mb
σ(pp→ bbX ) = (284± 20(stat)± 49(syst)) µb
[PLB 694, 209]

∼ 106 BB produced per second
σ(pp→ cc̄X ) is about 20 times higher.
[Nucl.Phys. B871 (2013) 1-20]

At the LHC energy, the bb pairs are produced
preferentially at forward (backward) directions.

Optimal design is a forward detector: LHCb
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The LHCb detector

LHCb experiment is designed to perform high precision flavour physics measurements at the LHC.

Single-arm design. Covering the range 2 < η < 5,
LHCb can exploit the dominant heavy flavour
production mechanism at the LHC and detects ∼ 40%
of the bb produced in forward region.

Good particle identification. Excellent muon
identification and good separation of π , K and p over
(2 - 100) GeV .

Good vertexing and tracking. Precise primary and secondary vertex reconstruction. Excellent momentum, IP and
proper time resolution.

These same features make LHCb very suitable for precision spectroscopy studies in the forward region.
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The operation of the LHCb detector
Runs I and II

40 MHz bunch crossing rate

450 kHz
h±

400 kHz
µ/µµ

150 kHz
e/γ

L0 Hardware Trigger : 1 MHz 
readout, high ET/PT signatures

Software High Level Trigger

12.5 kHz (0.6 GB/s) to storage

Partial event reconstruction, select 
displaced tracks/vertices and dimuons

Buffer events to disk, perform online 
detector calibration and alignment

Full offline-like event selection, mixture 
of inclusive and exclusive triggers

LHCb 2015 Trigger Diagram

Run I (2011 + 2012) Run II (2016)

Bunch spacing 50ns 25ns
Ecm 7TeV/ 8TeV 13TeV

Luminosity 1 + 2 fb−1
>5 fb−1

Bunches up to 1262 ∼2622
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Resonances
Generalities

The simplest definition for resonances is that they are extremely short lived particles, with lifetime
around 10−23 seconds or less. In more technical a way, resonances are poles in the unphysical
sheets of the S-matrix, which manifest themselves as structures in experimental observables.

Usually, resonances show up as peaks in cross-sections and decay density probabilities as a
function of the energy.
The width is also connected to decay channels accessible to the resonance and can also be as
small as sub MeV/c2 or as large as several hundred MeV/c2 .
Well isolated, relatively narrow and far from the threshold resonances can be described by
standard Breit-Wigner parametrization.
Overlapped or close to the threshold resonances usually require more refined treatment.

The PDG review on resonances and the references therein are good starting points on the subject.
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Dimuon invariant mass at LHC
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Resonances
Parametrization

For example, for a single resonance R in B → Rc , with R → ab , one can right

Aab = −γB(s)
gBgR

s − M̂2
R(s) + iMR(s)ΓR(s)

γR(s), s = m2
ab

gB and gR are phenomenological couplings.
γR(s) = qLR

R FLR
(qR , qR,0) . Here LR denotes the angular momentum of the decay products and FLR

is a phenomenological form factor. The common choice for FLk
are the Blatt-Weisskopf functions.

M̂R(s) = MR,0 + M(s) is the mass function. For narrow and isolated resonances: M̂R(s) = MR,0 .
ΓR(s) is the resonance’s width. For narrow and far from threshold resonances: ΓR(s) = ΓR,0

In summary, for isolated, narrow and far from threshold resonances one can use the standard
Breit-Wigner parametrization. The Breit-Wigner parameters MR and ΓR agree with the pole
parameters only if MR,0ΓR,0 �| M

2
thr . −M2

R | .
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Multi–particle final states - Isobar model

The basic idea behind the Isobar Model is that any many-body reaction can be modeled as a tree
of subsequent two-body decays. So, one can parametrize decays to multi–particle final states in
terms of successive decays of two–body resonances.

The process is dominated by two-body processes.
Different intermediate states can interfere if the internal tree configuration is not unique
given the final state.
The full amplitude is the coherent sum of all combinations, integrated over all internal
degrees of freedom.
The final probability density for the reaction is integrated over all unobservables.
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Resonances
Example of observables

Please, consider a decay chain like B → Rc where R is a resonance decaying to R → ab
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Resonances
Parametrization: more complex situations

For resonances occurring close to the threshold, one needs to use

ΓR(s) = ΓR,0

(
q

q0

)2LR+1(MR

s

)(
FLR (q, q0)

FLR (qR , q0)

)

Non-constant gB and gR couplings and different phenomenological form factors.
If there are overlapping resonances, it is generally incorrect to use a sum of Breit-Wigner functions.
K-matrix formalism can be more appropriate.
Resonances at threshold can be better treated using the Flatté parametrization.

If none of these alternatives are enough to get a good description of the data, custom formalisms
needs to be developed starting from the general features of the Scattering Theory.
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Angular analysis

As with everything else resonances carry quantum numbers and are, of course, also subject to
conservation laws. The study of the angular distributions and correlations is mandatory to
determine the quantum numbers of the resonances. There are different spin formalisms, but all of
them are developed studying the representations of the Poincaré group:

Non-relativistic tensor formalism (Zemach).
Spin-projection formalisms.
Relativistic tensor Formalisms (Rarita-Schwinger).
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Zemach formalism

This formalism uses pure spin tensors to avoid the explicit construction of spin wave functions
and evaluates the amplitudes always in the rest frame of the decaying particle, avoiding the
complications arising from the use of the four-momentum indices.

It is non-relativistic and gives corrects results only for decays of spinless into spinless final
states.
The angular distributions are proportional to Legendre polynomials on the cosine of the
helicity angle, multiplied by powers of pq :

ZL(θ) ∝ (−2qp)LPL(cos(θ))

Fast computation and simple for small orbital angular momentum and spin values
Very popular among the Dalitz’s plot analysts.
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Spin-projection formalisms

Basically, one starts with the particle states at rest, then develops the corresponding standard
representation of angular momentum and finally applies rotations and “boosts” to obtain states
for relativistic particles with arbitrary momentum. In summary, the formalisms developed in this
way differ in the choice of the quantization axis.

Helicity Formalism. Quantization axis parallel to the direction of motion. Particle are described at
rest by eigenstates of helicity and momentum then ones applies a rotation to direct the quantization
axis to the direction of movement followed by a boost in that direction to get the particle with ~p

|~p, λ〉 = B(0, 0, p)R(φ, θ,−φ)|λ〉

Canonical Formalism. The quantization axis is diagonal to the direction of motion. The spin
z-component is defined only in the particle’s rest frame. A boost is applied to obtain the particle
with ~p :

|~p, sz〉 = B(~p)|sz〉

Tranversality Formalism. Similar to helicity formalism, but the quantization axis is chosen to be
normal to the direction of motion.
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Steps to build a spin formalism

Chosen the formalism, from the starting points discussed in the previous slides, one needs:

1 Define the single particle states with given momentum and spin component in the chosen
base.

2 Define the two-particle states in the center-of-mass system and the corresponding amplitudes.
3 Define the transformation formulas to states and amplitudes of given total angular

momentum.
4 Apply the symmetry restrictions on the amplitude: parity, time-reversal.
5 Derive formulae for observable quantities, distributions etc.
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Examples of angular distributions

Below an example of three resonances defined by the same line-shape, but with different spins.1

L=0 (S-wave) L=1 (P-wave) L=2 (D-wave)

1Thanks to A. Poluektov for the figures.
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Examples of interference between resonances

Below an example of three spin-0 resonances defined by the same line-shape, but with different
phases between them.2

δ = 0◦ δ = 90◦ δ = 180◦

2Thanks to A. Poluektov for the figures.
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How to measure the quantum numbers of a resonance?

Be sure the bump you are observing is signal. Efficiency correction, background subtraction,
resolution effects...
Identify the possible quantum number assignments (respect the conservation laws ).
Write down an amplitude and a fit model corresponding to each possible resonance quantum
number.
Go ahead, fit the models and perform hypothesis tests to identify which is the model
prefered by data.
Each model corresponds to a set of quantum numbers for the resonance.

Easier said than done!
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Z (4430)−

“Charged” charmonium like state decaying into ψ(2S)π− first reported by Belle in
B0 → ψ(2S)K+π− decays [Phys.Rev.D88:074026]

Searched and not confirmed or excluded by BaBar [Phys.Rev.D79:112001]

Can not be explained as conventional meson.
Minimum quark content: cc̄ud
No corresponding structure observed in B0 → J/ψK+π−

Z(4430)
− at Belle. K∗0 and K∗

2 (1432) vetoed.

With Z(4430)
− and No Z(4430)

− Z(4430)
− at BaBar. Legendre polynomials approach.
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Confirmation of Z (4430)− at LHCb
Phys.Rev.Lett.112, 222002 (2014)

Sample with >25.000 B0 → K+
π
−
ψ(2S) signal candidates,

Analysis performed using two different approaches:
Model dependent. Four-dimensional amplitude fit (invariant masses, helicity and decay planes angles).
Model independent. An analysis based on the Legendre polynomial moments extracted from the Kπ system

Background from sidebands. Estimated 4% of combinatorial background in the signal region.

Four-dimensional efficiency calculated using complete simulation of the detector
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Z (4430)−

Amplitude fit

Two possible decay chains: B0 → K ∗0ψ(2S) and B0 → K+Z (4430)− where
K ∗0 → K+

π
− , Z (4430)− → ψ(2S)π− and ψ(2S)→ µ

+
µ
−

The decay is described by four independent observables: invariant masses (1), helicity angles
(2) and angle between the decay planes (1).
The angular distributions are calculated using the helicity formalism and resonances are
described by Breit-Wigner line-shapes.

The free parameters are the resonance masses, widths and the complex coefficients of the
amplitude sum.
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Z (4430)−

Amplitude fit

Fitted parameters:

M
Z(4430)− = 4475± 7+15

−25 MeV/c2, Γ
Z(4430)− = 172± 13+37

−34 MeV/c2, f
Z(4430)− = (5.9± 0.9+1.5

−3.3)%

.
Significance: ∆(−2lnL) > 13.9σ
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Z (4430)−

Resonance character and spin determination
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Z (4430)− : model independent analysis
Phys. Rev. D 92, 112009 (2015)

The main goal is to check if the structures in the mψ(2S)π spectrum can be explained as
reflections of the resonance activity in the Kπ system.

No assumptions on the shape and coupling of the K∗ resonances.
Only its maximum J is restricted.
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Z (4430)− : model independent analysis
Kπ system

Very active Kπ system.

mKπ taken directly from data, as it is.

Angular structure of the Kπ system acquired via Legendre
polynomials.

dN
d cos θ

K
∗0

=
∑lmax

j=0 〈P
U
j 〉Pj (cos θK∗0 )

〈PU
j 〉 =

∑Nreco
i=1

W
i
signal

ε
i Pj (cos θ

i

K
∗0 )

]2 [MeV/cπKm
800 1000 1200 1400

)2
Y

ie
ld

 / 
(2

0 
M

eV
/c

0

10000

20000

30000

40000

50000

60000 LHCb

*0K
θcos 

1− 0.5− 0 0.5 1
Y

ie
ld

 / 
0.

08
0 

0

2000

4000

6000

8000

10000

12000

14000

16000

18000

20000
LHCb

A. A. Alves Jr (UC) Resonances January 9, 2018 26 / 32



Z (4430)− : model independent analysis
Legendre polynomial moments

The rich angular structure of the Kπ system is shown by the very featured Legendre polynomial moments.
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Z (4430)− : model independent analysis
mψ(2S)π spectrum

The moments are normalized and used to predict, through a MC simulation, the expected mψ(2S)π spectrum.
The order of the Legendre polynomial expansion depends on the locally dominant Kπ resonances

lmax(mKπ) =


2 mKπ < 836MeV/c2

3 836MeV/c2
< mKπ < 1000MeV/c2

4 mKπ > 1000MeV/c2
.
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Z (4430)− : model independent analysis
Slices of mKπ

Toy Monte Carlo prediction in slices of mKπ .
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Clear disagreement between data and MC on the slice 1.0 < mKπ < 1.39GeV/c2
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Z (4430)− : model independent analysis
Hypothesis test

Performed using a series of pseudo-experiments produced according with
lmax (mKπ ).

Hypothesis test based on likelihood ratio between lmax (mKπ ) and lmax
=30.

Efficiency effects and background subtraction taken into account in the
pseudo-experiment generation.
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The hypotesis that the
structure of the mψ(2S)π

spectrum can be described as a
reflection of the activity of the
resonances in the Kπ system
is ruled out with high
significance.
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Other multidimensional analysis at LHCb

The techniques used in the Z (4430)− have also been used in a number of other spectroscopy
analysis involving the research for new resonances. See Greig’s talk after the coffee break:

Evidence for Exotic Hadron Contributions to Λ
0
b → J/ψpπ− Decays [Phys. Rev. Lett. 117, 082003].

Observation of J/ψφ structures consistent with exotic states from amplitude analysis of B+ → φK+ decays [Phys.
Rev. Lett. 118, 022003 (2017)].

Amplitude analysis of B+ → φK+ decays [Phys. Rev. D 95, 012002 (2017)].

Model-independent evidence for J/ψp contributions to Λ
0
b → J/ψpK− decays [Phys. Rev. Lett. 117, 082002 (2016)].

Observation of J/ψp resonances consistent with pentaquark states in Λ
0
b → J/ψpK− decays [ Phys. Rev. Lett. 115,

072001 (2015)].

X(3872) quantum numbers determination [Phys. Rev. Lett. 110, 222001 (2013)].

Evidence of X(3872)→ ψ(2S)γ [Nuclear Physics B 886 (2014) 665-680].

Quantum numbers of the X(3872) state and orbital angular momentum in its ρ0
J/ψ decays [Phys. Rev. D 92 (2015)

011102].

The concepts connected with resonances are relevant also in other areas: Dalitz plots and
CP-violation, New Physics searches etc.
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Summary

Resonance phenomena are very rich. The properties of a resonance are the properties of its
complex pole.
There are many standard parametrizations to describe the line-shape, but unitarity and
analyticity should be always kept.
It is incorrect to use a sum of Breit-Wigner functions: it may violate unitarity constraints.
Not only about peaks: resonances can create structures in angular distributions and other
observables.
Analysis of angular distributions and correlations is crucial to measure the resonance
quantum numbers.

Thank you!
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