

Reinhild Yvonne Peters

The University of Manchester

European Research Council Established by the European Commission

Reinhild Yvonne Peters

The University of Manchester

European Research Council Established by the European Commission

What have they ever given us in return?

- Introduction
- Production
- Properties
- Future
- Summary

Introduction

The Top Quark

- Heaviest known elementary particle: m_t=~173GeV
- Standard Model:
 - Single or pair production
 - Electric charge +2/3 e
 - Short lifetime 0.5x10⁻²⁴s
 - Bare quark no hadronization
 - ~100% decay into Wb
 - Large coupling to SM Higgs boson → ~1

Brief History of the Top Quark

- 1976: Discovery of Upsilon at Fermilab \rightarrow b-quark
 - Structure of quark families suggested existence of a 6th quark: the top
- From here on the race to find the top began
 - Lower limits by Petra (1984), Tristan (late 80s), UA1(1988), LEP(1990), UA2

Brief History of the Top Quark

- 1976: Discovery of Upsilon at Fermilab → b-quark
 - Structure of quark families suggested existence of a 6th quark: the top
- From here on the race to find the top began
 - Lower limits by Petra (1984), Tristan (late 80s), UA1(1988), LEP(1990), UA2
- 1992: First lower limits on top from CDF (m, >91GeV)
- 1994: First lower limits on top from DØ (m, >131GeV)
- Early 1994: "Evidence" for top at CDF
- February 24th 1995: Simultaneous submission of Top Discovery papers to PRL, by CDF and DØ
 - 50pb⁻¹ at D0, 67pb⁻¹ at CDF

Discovery of lonely Tops

- 2009: Observation of top quarks in single top production
 - 5 by CDF & DØ!
- Single top: very challenging channel
 - Low signal: similar signature like W+jets!
 - Counting only: Uncertainty on background larger than expected signal single Top Quark Cross Section
 - \rightarrow use of multivariate techniques

Where are we today?

- Top Discovery with 17 (DØ) and 19 (CDF) events
- Today: LHC: top factory! Millions of events
 - Precision measurements of production cross section
 - Observation in single top in 2009
 - Precise study of top properties
 - Searches for new physics using top quarks
- From discovery to precision physics! → many results from Tevatron
 - \rightarrow many new tools
 - \rightarrow unprecedented possibilities at LHC!

Data Samples

LHC performed well

~5fb⁻¹ of 7 TeV & ~20 fb⁻¹ of 8 TeV on disk per experiment

2017: ~50fb⁻¹ of 13 TeV data

Why Top still interesting?

- With final Tevatron data set and the ever growing LHC data sample: top quark studies very interesting until today!
- What can we learn?
 - Is the top really the "SM top", or something else?
 → need to measure its production cross section and properties and compare with SM calculations
 - Top quark: only quark decaying before it hadronises

 → can study a bare quark
 For example can study spin of a quark directly (as it transfers it to the decay products before it could hadronise); or study a quark's charge
 - Top production and decay: via strong and electroweak forces
 → we can learn more about these forces
 For example: W helicity in top decays
 - Top as window to new physics (since it is the heaviest known particle)
 → searches for many new physics models in the top sector
 - Large top samples at LHC: use top events to develop new tools
 → for example tools to access the colour flow between jet pairs

Top Studies: Overview

10.01.2018

Top Studies: Overview

10.01.2018

Production

Top Quark Pair Production

10.01.2018

MANCHESTER

Yvonne Peters

Final States in tt

 $t\bar{t} \rightarrow W^+ b W^- \bar{b}$: Final states are classified according to W decay

Final States in tt

 $t\bar{t} \rightarrow W^+ b W^- \bar{b}$: Final states are classified according to W decay

 $B(t \rightarrow W^+b) = 100\%$

Top Pair Branching Fractions

pure hadronic: ≥6 jets (2 b-jets)

dilepton:2 isolated leptons;High missing E_T forneutrinos; $\tau+\tau$ 1% $\tau+\tau$ 2% $\tau+\mu$ 2%<td

Features of Top Events

- To measure top events: enrich data sample with signal events
 - Separation from background and estimation of the background
- Features in tt events helping to select them:
 - Presence of 2 b-jets! Usage of b-tagging
 - B-hadrons have lifetime of about 1.5ps
 → travel (on average) few mm before decay
 - Secondary vertex and displaced tracks can be used to identify B-hadrons in a jet → "b-tagging"
 - Tops are quite heavy: many topological variables can be used to distinguish top from background

• For example: reconstruct top mass from combinations of jets

Single top Production

- Via electroweak interaction
 - Test of EW couplings
 - Probe for new physics
- Direct probe of Wtb interaction
- Direct measurement of CKM matrix element |V_{tb}|

Challenging: background looks similar to signal

Collider	s-channel: $\sigma_{_{\rm tb}}$	t-channel: $\sigma_{_{\rm tbq}}$	Wt-channel: $\sigma_{_{\rm tW}}$
Tevatron: pp (1.96TeV)	1.04 pb	2.26 pb	0.28 pb
LHC: pp (7TeV)	4.3 pb	63.9 pb	15.7 pb
LHC: pp (8TeV)	5.2 pb	84.7 pb	22.4 pb
LHC: pp (13TeV)	10.3 pb	216.99 pb	71.7 pb

Example observable: before b-tagging

after b-tagging

Background dominates; uncertainties larger than signal!

MANCHESTER 1824 Multivariate Analysis Techniques

- Observation of single top required the usage of multivariate analyses techniques
 - Single top the first observation where these were used extensively, and thus established in particle physics
- Idea: combine many different variables, with small discrimination power, into one powerful discriminant
 10 Signal
 - Various techniques exist, for example neural networks, boosted decision trees, random forests..
- Example: decision tree
 - Idea: divide multi-dimensional event-space into cells
 - For each cell, estimate the purity
 - Chose cuts to separate high and low purity regions

Single Top

- Signal can be clearly seen!
- At LHC: t-channel much easier
 - Large cross section
 - s-channel challenging
 → so far only observed at Tevatron

MANCHESTER

Status

- Precision measurement of production cross section
 - At Tevatron and LHC
 - In single top and tt production

Experimental precision close to theory uncertainty!

- Precision measurement of production
 - At Tevatron and LHC
 - In single top and tt production

From Inclusive to Differential Cross Sections

- Differential distributions:
 - Test of higher-order QCD calculations
 - Generic test of SM \rightarrow test for new physics
- Also important to tune MC
 - Reduction of systematic uncertainties for many analyses
 - Due to large amount of data: many analyses are limited by systematic uncertainties!
- Main challenge:
 - Make distributions comparable to theory: correct detector effects
 - Distributions defined with "true" particles

- Also various differential and fiducial measurements now possible!
- General issue: parton versus particle level?

I+jets channel: selection

Exactly 1 lepton (e or μ) e: p_T>25GeV, $|\eta| < 2.47 \& !(1.37 < |\eta| < 1.52)$ μ : p_T>25GeV, $|\eta| < 2.5$

Missing p_{T} for neutrino ($\not E_{T}$): >30GeV

 \geq 4 jets with p_T>25GeV; | η |<2.5

≥2 jets b-tagged

Leptonic pseudo-top:

- construct leptonically decaying W from lepton and $E_{\!\tau}^{\rm miss}$
- b-jet with smallest ΔR to lepton

Leptonic pseudo-top:

- construct leptonically decaying W from lepton and $E_{\!\tau}^{\rm miss}$
- b-jet with smallest ΔR to lepton

Hadronic pseudo-top:

- construct W from remaining two highest- p_{τ} jets
- use remaining b-jet

- Different distributions: show sensitivity to PDF, parton shower, etc.
 - Can be used for MC tuning and comparison to pQCD

JHEP 11 (2017) 191

Yvonne Peters

Boosting algorithms

- Boosting algorithms important
 - Higher collision energy \rightarrow more events can be boosted
 - Production of heavy particles \rightarrow decay products can be boosted \rightarrow results in boosted regimes

Boosting

Still large uncertainties

 → need to reduce
 e. g. energy scale
 uncertainty for large R jets

JHEP 11 (2017) 191

Differential Distributions in single top

 Now also possible to perform differential measurements in single top!

arXiv:1712.01602

MANCHESTER

1824

Another Run I Top result!

Top observation at LHCb!
 → Run II: statistics!

Properties

Overview

- Many important properties measured → comparison to calculation: test for BSM!
- From top mass to W helicity, spin correlations, charge, couplings...
 - \rightarrow the top has been tested extensively
 - \rightarrow nonetheless: still room to test more!
 - More precision
 - More properties
 - More "resolution"
 - New processes becoming measurable
 - e.g. tZ

Top Quark Mass

- Free parameter of the SM
- Together with W mass: puts constraint on Higgs mass → selfconsistency check

- Measurement done with several methods: Template method, ideogram, matrix element, etc.
 - Methods also used for other analyses, e. g. W helicity & spin correlations

Top Mass

- Precision results of top quark mass
 - With many different methods
 → developed since top discovery
- Results: limited by systematic uncertainties!

Top Quark Mass and Issues

- Constantly discussed: what is it that we measure?
 - All direct mass measurements rely on MC for calibration
 - No clean definition of the top mass
 - e.g. contributions like this missing:

- Task mainly for theorists
- Experimentally: explore alternative methods

Top Quark Mass: Be aware

- Alternative method: Extract m_t from cross section measurement
 - Assuming pole or MS mass
- Unambiguous extraction of top quark mass!
 - Contra: uncertainty quite large compared to direct methods

Mass from tt+jets

- Extract mass from distribution in tt+jets events
 - Gluon radiation depends on mass of quark
 - Compare unfolded distribution to calculation → allows to uniquely define mass scheme

$$\mathcal{R}(m_{t}^{\text{pole}},\rho_{s}) = \frac{1}{\sigma_{t\bar{t}+1-jet}} \frac{d\sigma_{t\bar{t}+1-jet}}{d\rho_{s}} (m_{t}^{\text{pole}},\rho_{s}),$$

$$\rho_{s} = \frac{2m_{0}}{\sqrt{s_{t\bar{t}j}}},$$

$$m_{t}^{\text{pole}} = 173.7 \pm 1.5 (stat) \pm 1.4 (syst)^{+1.0}_{-0.5} (theo) GeV$$

$$I0.01.2018 \qquad \text{Yvone Peters} \qquad 42$$

- Aim at improved precision!
 - Fate of the universe!
 - \rightarrow top-Higgs coupling important
 - $\rightarrow t\bar{t}H!$

Spin Structure

- Top decays before hadronisation
 → allows spin structure of a quark to be measured directly
- Problem: production of $t\bar{t}$ at hadron colliders is unpolarised \rightarrow all spin states randomly possible
- Feature that allows notheless to access spin information: spin between top and antitop are correlated!

Dominant at Tevatron:

Dominant at LHC:

MANCHESTER Measurement of Spin Correlations

- Spin correlations allows not only to access if there is new physics in production, but also decay!
- Short lifetime of top quarks (~0.5*10⁻²⁵s)
 - \rightarrow Top quarks decay before fragmentation

MANCHESTER Measurement of Spin Correlations

- Measurement by looking at angular distributions between the down-type fermions from the W⁺ and W⁻ decays from tt decays
 - Any deviation from SM expectation would hint at new physics in production or decay!
- Different sensitive variables at Tevatron and LHC

Spin Correlations

- All measurements in good agreement with SM
- But need more data to become more sensitive
 - Can be used for new physics searches: for example stop

Future

The Top Future

- Despite the large progress: much to do → many BSM models: top plays a special role
- Production: precision differential distributions allow precision tests of QCD/EW interaction
 - Properties:
 - test of BSM admixtures/influence
 - Top mass: free parameter → influence o many BSM predictions
- Direct searches: many BSM models to look for in the top sector
 - Example: $t\bar{t}t\bar{t}$ getting interesting \rightarrow test for extended Higgs sectors

Summary

- What have hadron colliders done for us? \rightarrow they brought us
 - Top discovery
 - Precise understanding of the top quarks
 - A window to new physics

Even 20 years after its discovery: tops are cool hot topic!

Backup

- Define "pseudo-tops" on particle level
 - In fiducial region
 - Easy to reproduce for theorists!
- Pseudo-top:
 - Use particles with mean lifetime > 3*10⁻¹¹s

- Leptons: use "dressed lepton": leptons are used together with photons in their vicinity
- Jets: anti-kT with R=0.4 applied on stable particles (not leptons or neutrinos)
 - Presence of b-hadron with p_{τ} >5GeV: jet is taken as a b-jet