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LHC…
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• left lots of theories constrained 
• some constrained with little comeback options 
• this talk: focus on concepts (and tensions) rather than quoting results 
• put this in context with motivations for new experiments



Before the LHC
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• EWSB in the SM minimal yet ad-hoc 
• the fact that we can understand the SM as a perturbative QFT 

allowed us to make self-consistent predictions

[Flacher et al. `08]

• however, is perturbativity really a necessary for EWSB?

V (�†�) = µ2�†� + �(�†�)2
<

0



Strong interactions
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• not at all: can interpret the electroweak scale as a radiative 
phenomenon 

• strong dynamics of QCD in chiral limit breaks global symmetries

SU(2)L x SU(2)R x U(1)B

SU(2)D x U(1)B

𝜋0 𝜋- 𝜋+ three massless NGBs with  
quantum numbers of broken 
generators
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These rules follow from the NJL approximation with the identification m0 ∼ M ∼ ΛQCD.
When we discuss TC models we will use the notation, FT , to refer to the corresponding
NGB, or technipion, decay constant.

We typically refer to the weak scale vweak = 2−3/4G−1/2
F = 175 GeV, which is related to

the usual Higgs VEV as vweak = v0/
√

2, and v0 = 246 GeV. Hence, in the spontaneously
broken phase of the Standard Model we can parameterize the Higgs field with its VEV
as:

H = exp(iπaτa/v0)

(
v0/

√
2 + h0/

√
2

0

)

. (2.31)

This gives the kinetic terms for the πa (and h0) the proper canonical normalizations in the
limit of switching off the gauge fields. ¿From the Higgs boson’s kinetic terms we extract,
where the electroweak covariant derivative Dµ is defined in eq.(A.1):

DµH
†DµH →

g2

2
v0W

+
µ ∂

µπ− +
g2

2
v0W

−
µ ∂

µπ+ + v0(
g2

2
W 0

µ +
g1

2
Bµ)∂µπ0 + ... (2.32)

Now, in QCD fπ is defined by:

< 0|ja5
µ |πb >= ifπpµδab Fπ ≈ 93 MeV (2.33)

where ja5
µ = ψγµγ5 τa

2 ψ where ψ = (u, d) in QCD (Note: another definition in common

use involves the matrix elements of the charged currents and differs by a factor of
√

2,
i.e., Fπ =

√
2fπ). When pions (Nambu-Goldstone bosons) or technipions are introduced

through chiral Lagrangians, we have typically a nonlinear-σ model field U that transforms
under GL × GR as U → LUR†, and its kinetic term is of the form:

U = exp(iπaτa/f) L =
f 2

4
Tr(∂µU †∂µU) (2.34)

Then the normalization is f = fπ = 93 MeV, which can be seen by working out the axial
current, j5

µ = δL/δ∂µπa and comparing with eq.(2.33).

We will similarly define FT as the techni-pion, π̃, to vacuum matrix element for the
corresponding techniquark axial current, involving a single doublet of techniquarks, in TC
models, i.e., j̃a5

µ = Qγµγ5 τa

2 Q where Q = (T, B) are techniquarks:

< 0|j̃a5
µ |π̃b >= iFT pµδab FT ∝ vweak (2.35)

Including electroweak gauge interactions the techniquark kinetic terms take the form:

QLiD/ QL + QRiD/ QR −→
F 2

T

4
Tr((DµU)†(DµU)) (2.36)

where Dµ is defined in eq.(A.1). We have also written the corresponding chiral Lagrangian
describing the technipions with a nonlinear-σ model, or chiral field U = exp(iπaτa/FT )
(in the chiral Lagrangian the left-handed electroweak generators act on the left side of U ,
while vectorial generators act on both left and right, and are commutators with U). We

22

These rules follow from the NJL approximation with the identification m0 ∼ M ∼ ΛQCD.
When we discuss TC models we will use the notation, FT , to refer to the corresponding
NGB, or technipion, decay constant.

We typically refer to the weak scale vweak = 2−3/4G−1/2
F = 175 GeV, which is related to

the usual Higgs VEV as vweak = v0/
√

2, and v0 = 246 GeV. Hence, in the spontaneously
broken phase of the Standard Model we can parameterize the Higgs field with its VEV
as:

H = exp(iπaτa/v0)

(
v0/

√
2 + h0/

√
2

0

)

. (2.31)

This gives the kinetic terms for the πa (and h0) the proper canonical normalizations in the
limit of switching off the gauge fields. ¿From the Higgs boson’s kinetic terms we extract,
where the electroweak covariant derivative Dµ is defined in eq.(A.1):

DµH
†DµH →

g2

2
v0W

+
µ ∂

µπ− +
g2

2
v0W

−
µ ∂

µπ+ + v0(
g2

2
W 0

µ +
g1

2
Bµ)∂µπ0 + ... (2.32)

Now, in QCD fπ is defined by:

< 0|ja5
µ |πb >= ifπpµδab Fπ ≈ 93 MeV (2.33)

where ja5
µ = ψγµγ5 τa

2 ψ where ψ = (u, d) in QCD (Note: another definition in common

use involves the matrix elements of the charged currents and differs by a factor of
√

2,
i.e., Fπ =

√
2fπ). When pions (Nambu-Goldstone bosons) or technipions are introduced

through chiral Lagrangians, we have typically a nonlinear-σ model field U that transforms
under GL × GR as U → LUR†, and its kinetic term is of the form:

U = exp(iπaτa/f) L =
f 2

4
Tr(∂µU †∂µU) (2.34)

Then the normalization is f = fπ = 93 MeV, which can be seen by working out the axial
current, j5

µ = δL/δ∂µπa and comparing with eq.(2.33).

We will similarly define FT as the techni-pion, π̃, to vacuum matrix element for the
corresponding techniquark axial current, involving a single doublet of techniquarks, in TC
models, i.e., j̃a5

µ = Qγµγ5 τa

2 Q where Q = (T, B) are techniquarks:

< 0|j̃a5
µ |π̃b >= iFT pµδab FT ∝ vweak (2.35)

Including electroweak gauge interactions the techniquark kinetic terms take the form:

QLiD/ QL + QRiD/ QR −→
F 2

T

4
Tr((DµU)†(DµU)) (2.36)

where Dµ is defined in eq.(A.1). We have also written the corresponding chiral Lagrangian
describing the technipions with a nonlinear-σ model, or chiral field U = exp(iπaτa/FT )
(in the chiral Lagrangian the left-handed electroweak generators act on the left side of U ,
while vectorial generators act on both left and right, and are commutators with U). We

22



Strong interactions
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• not at all: can interpret the electroweak scale as a radiative 
phenomenon 

• strong dynamics of QCD in chiral limit breaks global symmetries

SU(2)L x SU(2)R x U(1)B

SU(2)D x U(1)B

𝜋0 𝜋- 𝜋+ three massless NGBs with  
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generators

A UV Complete Compositeness Scenario: LHC Constraints Meet The Lattice
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2
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We investigate the allowed parameter range of a concrete UV scenario of Higgs compositeness

based on a SU(4) gauge group in the light of recent measurements at the LHC Run-1. We contrast

these findings with predictions from lattice calculations....
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FIG. 1: Representative Feynman diagram mediating the de-

cay of a neutral scalar S 2 {30,31} to vector bosons V, V 0 2
{Z, �,W±} with interaction vertices obtained in the mass-

diagonal representation of the charged and neutral top and

bottom space currents.

Appendix A: Analysis of Loop-induced decays of the

non-Higgs states

In this section we quickly review the calculation under-
pinning the loop-induced decays of the additional neutral
scalars in the model. After diagonalising the top- and

bottom mass mixing matrices with bi-unitary transfor-
mations, the scalar as well as vectorial couplings will be
in general non-diagonal in the top and bottom partner
spaces. This leads creates a multi-scale decay amplitude
that can be pictorially represented by the sum over Feyn-
man diagrams as indicated in Fig. 1.

We can write the decay amplitude as

iA =
X

i

CihÔii (A1)

with Ôi denoting the quantum operators contributing to
the decay with matrix element hÔii and associated cou-
plings Ci (which can have a non-zero mass dimension).
In our case the relevant operators are

Ô1 = ŜV̂ V̂
0

Ô2 = ŜŜV̂ V̂
0

Ô3 = ŜŜV̂ V̂
0

SU(2)L x U(1)Y
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gauge correlators receive  
QCD corrections
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• non-perturbative QCD effects break electroweak symmetry

SU(2)V ⇥ U(1)B

SU(2)L ⇥ SU(2)R ⇥ U(1)B

QCD

SU(2)L ⇥ U(1)Y

⇡

Figure 2: Cartoon of QCD with part of its chiral symmetry gauged by the weak interactions.

. . .

= +

+ +

Gµ⌫(q) =
�i

q2 � g2⇧(q2)/2
(PT )µ⌫ , (PT )µ⌫ ⌘ ⌘µ⌫ �

qµq⌫
q2

, (19)

where

i⇧µ⌫(q) = �

Z
d4x e�iq·x

h0|T
�
J+

µ (x)J�
⌫ (0)

�
|0i

⇧µ⌫(q) =

✓
⌘µ⌫ �

qµq⌫
q2

◆
⇧(q2) .

(20)

Then, a mass for the W arises if ⇧µ⌫(q2) has a pole at q2 = 0. The pole in fact exists
as a result of the symmetry breaking, due to the exchange of the pion:

h0|J+

µ |⇡�(p)i = i
f⇡
p

2
pµ (21)

=) ⇧(q2) =
f 2

⇡

2
.

This implies that the W acquires a mass

mW =
gf⇡
2

' 29 MeV .

Although this number is far from the experimental value, the above discussion shows
that QCD is, at the qualitative level, a good example of electroweak symmetry breaking
sector. This is even more true considering that the unbroken SU(2)V isospin invariance
acts as a custodial symmetry so that ⇢ = 1 at tree level in the QCD vacuum.
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• Technicolor: ”scale up” QCD by adding new confining gauge 
interactions SU(N). The electroweak scale becomes a dimensional 
transmutation effect (like the QCD scale)

The most attractive feature of Technicolor theories, and in general of theories with
strong electroweak symmetry breaking, is that the hierarchy problem of the Higgs
model is solved by dimensional transmutation: the electroweak scale v is generated
dynamically as the scale at which the Technicolor coupling gTC grows strong in the
infrared (�0 < 0):

µ
d

dµ

1

g2

TC

(µ) = �
�0

8⇡2
=) v = MP l exp

✓
�

8⇡2

g2

TC(MP l)(��0)

◆
. (30)

This is in complete analogy with the dynamical generation of the QCD scale from the
Planck scale MP l. On the other hand, the simplest Technicolor constructions, like the
naive scaled-up version of QCD, lead to predictions in conflict with the experimental
data. The two most serious problems are a parametrically too large correction to the
Peskin-Takeuchi S parameter, and too fast flavor-changing neutral-current processes.
Let us review both in turn.

The Peskin-Takeuchi S parameter is defined as [17]

S ⌘ �16⇡
@

@q2
⇧3B(q2)

��
q2=0

(31)

where the vacuum polarization of a W µ
3L and an hypercharge boson Bµ, ⇧3B(q2), is

defined according to eq.(20). The leading contribution to S from new heavy states can
be parametrized in terms of the dimension-6 operator (see Refs. [18, 19])

S

16⇡
Tr

⇥
T aLW aL

µ⌫ ⌃ Bµ⌫T 3R ⌃†⇤ (32)

where T aL = �a/2 = T aR are the generators of SU(2)L⇥SU(2)R. Since the Technicolor
sector is strongly coupled, a perturbative calculation of the S parameter is not possible.
However, one can estimate its size using Naive Dimensional Analysis (NDA) [20]: it will
arise at the 1-loop level, thus carrying a factor NTC/16⇡2, and it will be proportional
to the number of technidoublets ND:

W 3L
µ⌫ Bµ⌫

S

16⇡
⇠

NTCND

16⇡2
=) S ⇠

NTCND

⇡
. (33)

A more sophisticated calculation that makes use of QCD data rescaled up to the EW
scale gives a similar result [17]. From the estimate above one deduces that even minimal
models (with NTC and ND small) tend to predict S ⇠ 1. Such values are ruled out by
the LEP data, which bound (assuming an optimal contribution to the T parameter) [13]

S . 0.3 @ 99% CL . (34)

15



Strong interactions
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• implications: 
1. no Higgs boson 
2. additional strongly interacting bound states (rho-like etc.) 
3. trouble with EWPD:                       , but                  from LEP 
4. trouble with fermion masses: (walking) extended technicolor. 

S � NC/� S < 0.3
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• implications: 
1. no Higgs boson 
2. additional strongly interacting bound states (rho-like etc.) 
3. trouble with EWPD:                       , but                  from LEP 
4. trouble with fermion masses: (walking) extended technicolor. 

S � NC/� S < 0.3

vanilla technicolor is 
ruled out by the LHC
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• AdS/CFT dictionary [Arkani-Hamed, Porrati, Randall `00] 
[Rattazzi, Zaffaroni `01]

• Planck brane = UV cutoff of CFT 
• bulk  z = CFT energy scale, TeV brane = CFT breaks spontaneously 

due to strong interactions

z

unbroken
=

weakly gauged

broken
=

CFT dynamics 
also breaks 

gauge symmetry

gauge = global symmetry
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• AdS/CFT dictionary [Arkani-Hamed, Porrati, Randall `00] 
[Rattazzi, Zaffaroni `01]

• Planck brane = UV cutoff of CFT 
• bulk  z = CFT energy scale, TeV brane = CFT breaks spontaneously 

due to strong interactions

z

unbroken
=

weakly gauged

broken
=

CFT dynamics 
also breaks 

gauge symmetry

gauge = global symmetry

localisation = compositeness
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• back to interpreting the electroweak scale as a radiative 
phenomenon, but this time look at the pion mass splitting

[SU(2)LxSU(2)R]
/SU(2)D

A UV Complete Compositeness Scenario: LHC Constraints Meet The Lattice

Luigi Del Debbio,1 Christoph Englert,2 and Roman Zwicky1

1
SUPA, School of Physics, University of Edinburgh, Edinburgh EH9 3JZ, UK

2
SUPA, School of Physics and Astronomy,University of Glasgow, Glasgow G12 8QQ, UK

We investigate the allowed parameter range of a concrete UV scenario of Higgs compositeness

based on a SU(4) gauge group in the light of recent measurements at the LHC Run-1. We contrast

these findings with predictions from lattice calculations....
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FIG. 1: Representative Feynman diagram mediating the de-

cay of a neutral scalar S 2 {30,31} to vector bosons V, V 0 2
{Z, �,W±} with interaction vertices obtained in the mass-

diagonal representation of the charged and neutral top and

bottom space currents.

Appendix A: Analysis of Loop-induced decays of the

non-Higgs states

In this section we quickly review the calculation under-
pinning the loop-induced decays of the additional neutral
scalars in the model. After diagonalising the top- and

bottom mass mixing matrices with bi-unitary transfor-
mations, the scalar as well as vectorial couplings will be
in general non-diagonal in the top and bottom partner
spaces. This leads creates a multi-scale decay amplitude
that can be pictorially represented by the sum over Feyn-
man diagrams as indicated in Fig. 1.

We can write the decay amplitude as

iA =
X

i

CihÔii (A1)

with Ôi denoting the quantum operators contributing to
the decay with matrix element hÔii and associated cou-
plings Ci (which can have a non-zero mass dimension).
In our case the relevant operators are

Ô1 = ŜV̂ V̂
0

Ô2 = ŜŜV̂ V̂
0

Ô3 = ŜŜV̂ V̂
0

Aµ

𝜋0 𝜋- 𝜋+

Compositeness in a nutshell
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based on a SU(4) gauge group in the light of recent measurements at the LHC Run-1. We contrast

these findings with predictions from lattice calculations....
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FIG. 1: Representative Feynman diagram mediating the de-

cay of a neutral scalar S 2 {30,31} to vector bosons V, V 0 2
{Z, �,W±} with interaction vertices obtained in the mass-

diagonal representation of the charged and neutral top and

bottom space currents.

Appendix A: Analysis of Loop-induced decays of the

non-Higgs states

In this section we quickly review the calculation under-
pinning the loop-induced decays of the additional neutral
scalars in the model. After diagonalising the top- and

bottom mass mixing matrices with bi-unitary transfor-
mations, the scalar as well as vectorial couplings will be
in general non-diagonal in the top and bottom partner
spaces. This leads creates a multi-scale decay amplitude
that can be pictorially represented by the sum over Feyn-
man diagrams as indicated in Fig. 1.

We can write the decay amplitude as

iA =
X

i

CihÔii (A1)

with Ôi denoting the quantum operators contributing to
the decay with matrix element hÔii and associated cou-
plings Ci (which can have a non-zero mass dimension).
In our case the relevant operators are

Ô1 = ŜV̂ V̂
0

Ô2 = ŜŜV̂ V̂
0

Ô3 = ŜŜV̂ V̂
0

Aµ

1-loop diagrams associated to the Coleman-Weinberg potential are these same as those
in Fig. 7. Their resummation gives

V (⇡) =
3

16⇡2

Z 1

0

dQ2 Q2 log

✓
1 +

1

2

⇧LR(Q2)

⇧V V (Q2)

sin2(⇡/f⇡)

⇡2
(⇡+⇡�)

◆
. (76)

The convergence of the integral thus depends on the behavior of the form factors
⇧LR(Q2) and ⇧V V (Q2) at large Euclidean momenta Q2. To infer such behavior we can
use the information that comes from the OPE of the product of two vector and axial
currents, see eq.(63). The color-singlet, scalar 9 operators of dimension 6 or less are:

1 (identity operator) (d=0)

Om =  ̄mq (d=4)

OG = Ga
µ⌫G

aµ⌫ (d=4)

O� =  ̄�µ⌫tamq Ga
µ⌫ (d=6)

O� =
�
 ̄�1 

� �
 ̄�2 

�
(d=6)

Of = fabcGaµ
⌫ Gb ⌫

⇢ Gc ⇢
µ (d=6)

where a, b, c are color indices and �1,2 are matrices in flavor, color and Lorentz space.
Notice that the operators Om and O� break explicitly the chiral symmetry and must be
thus proportional to the quark mass matrix mq. As such they vanish in the chiral limit.
On the other hand O� is the only chiral-invariant operator among those listed above
whose vacuum expectation value can violate the chiral symmetry and thus distinguish
between the axial and vector currents. In other words, O� is the operator with lowest
dimension to contribute to the form factor ⇧LR:

⇧LR(Q2) = Q2 CO�(Q
2)hO�i + · · · = Q2

✓
�

Q6
+ O

✓
1

Q8

◆◆
, (77)

where � is a numerical coe�cient. 10 Since the form factor ⇧V V grows as Q2 at
large Euclidean momenta (the leading term in its expansion corresponds to the kinetic
term of the photon), we deduce that the integral in the pion potential is convergent. A
reasonable approximation to the full potential is obtained by setting ⇧V V (Q2) ' Q2/e2

and expanding the logarithm at first order:

V (⇡) '
3

8⇡2
↵em

sin2(⇡/f⇡)

⇡2
(⇡+⇡�)

Z 1

0

dQ2 ⇧LR(Q2) . (78)

9Operators of spin 1/2 and higher do not contribute to the vacuum expectation value hJµJ⌫i and
are thus irrelevant to the following argument.

10The coe�cient � can be computed perturbatively expanding in powers of ↵s and 1/Nc.
In the large Nc limit, the matrix element hO�i factorizes into (h ̄ i)2, and one finds: � =
8⇡2

�
↵s/⇡ + O(↵2

s)
�
(h ̄ i)2 [38, 39].
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[Weinberg `67] 

[Witten `83] 
…

𝜋0 𝜋- 𝜋+effective potential
[Coleman, Weinberg `73]…

Using the above expression of ⇧LR, the integral appearing in the pion potential gives
Z 1

0

dQ2 ⇧LR(Q2) = f 2

⇡

m2

⇢m
2

a1

m2
a1 � m2

⇢

log

✓
m2

a1

m2
⇢

◆
. (87)

For any value of the masses, the above expression is always positive (reflecting the
positivity of ⇧LR in eq.(86)). This means that the pion potential is minimized for

h⇡1
i = h⇡2

i = 0 . (88)

In other words, the radiative corrections align the vacuum along the U(1)-preserving
direction, and the photon remains massless. It turns out that the positivity of the
integral (87) and the above conclusion on the alignment of the vacuum are much more
general that our approximate result. Witten [41] has shown that in a generic vector-like
confining gauge theory one has

⇧LR(Q2) � 0 for 0  Q2
 1 , (89)

so that the radiative contribution from gauge fields always tends to align the vacuum
in the direction that preserves the gauge symmetry.

The e↵ect of the one-loop potential (78) is that of lifting the degeneracy of vacua
and give a (positive) mass to the charged pion, while leaving the neutral one massless.
Notice indeed that the potential vanishes in the vacuum (88), so that there is still
a flat direction along ⇡0. All the results derived above are valid in the chiral limit,
that is for vanishing quark masses. When the quark masses is turned on, both the
charged and neutral pion get a mass, as a consequence of the explicit breaking of the
chiral symmetry. The di↵erence of the charged and neutral pion mass, however, is
still dominantly accounted for by the electromagnetic correction that we have derived.
Thus, we can compare our prediction with the experimentally measured value and
check the accuracy of our approximations. From eqs.(78) and (87) one gets

m2

⇡± � m2

⇡0
'

3 ↵em

4⇡

m2

⇢m
2

a1

m2
a1 � m2

⇢

log

✓
m2

a1

m2
⇢

◆
. (90)

This result was first derived in 1967 by Das et al. using current algebra techniques [42].
Inserting the experimental values m⇢ = 770 MeV and ma1 = 1260 MeV into eq.(90) one
obtains the theoretical prediction

(m⇡± � m⇡0)|TH ' 5.8 MeV , (91)

to be compared with the experimentally measured value

(m⇡± � m⇡0)|EXP ' 4.6 MeV . (92)

Considering that corrections to the large-Nc approximation are expected to be of or-
der ⇠ 30%, we conclude that the agreement of our theoretical prediction with the
experimental value is fully satisfactory.
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still dominantly accounted for by the electromagnetic correction that we have derived.
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This result was first derived in 1967 by Das et al. using current algebra techniques [42].
Inserting the experimental values m⇢ = 770 MeV and ma1 = 1260 MeV into eq.(90) one
obtains the theoretical prediction
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(m⇡± � m⇡0)|EXP ' 4.6 MeV . (92)

Considering that corrections to the large-Nc approximation are expected to be of or-
der ⇠ 30%, we conclude that the agreement of our theoretical prediction with the
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Compositeness in a nutshell

• back to interpreting the electroweak scale as a radiative 
phenomenon, but this time look at the pion mass splitting
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• complete vacuum mis-alignement from SU(2)L x U(1)Y direction 
requires the presence of heavy fermions

gauge + 
fermions

fermions

Compositeness in a nutshell 4

Higgs Potential

As discussed above, the Higgs particle is one of the
NGBs of the UV complete theory. In the hypercolour the-
ory in isolation, no potential is generated for the NGBs;
hence the Higgs potential can only arise from interac-
tions with the SM sector. In particular there are two
contributions to the one-loop e↵ective potential: the first
one is due to the coupling to the weak gauge bosons (cf.
Eq. (II.13)) and the second one to the coupling to the top
and the composite fermions. Using the standard compos-
ite Higgs potential parametrisation

V̂ (ĥ) = ↵ cos(2ĥ) � � sin2(2ĥ) , (II.16)

the dimensionless parameters ↵ and � are given by

↵ = �ĈLR
1

2

�
3g2 + g02

�
< 0 ,

2� = �y2Ĉtop , (II.17)

where CLR = ĈLRf4 is defined in Eq. (II.14) and Ctop

is a top-baryon 4-point function of O(�2
q�

2
t ) originating

from the terms in Eq. (II.7), as discussed in detail in [31].
Note that Eq. (II.16) includes radiative corrections as dis-
cussed in [33] in a more systematic way. Up to a constant
the potential Eq. (II.16) can be written as

V̂ (ĥ) = 4�(sin2(ĥ) � ⇠)2 , (II.18)

where

⇠ ⌘
v2

f2
= sin2(hĥi) =

↵ + 2�

4�
. (II.19)

The important condition, for EWSB, reads

↵ + 2� > 0. (II.20)

Hence the sign of �, and its magnitude compared to ↵,
are the first constraints that the UV complete theory
needs to satisfy.

The ↵-� parameter space is shown in Fig. 1 with phe-
nomenologically acceptable values of ⇠ 2 [0, 0.12] shown
in purple. The Higgs mass is related to the second deriva-
tive of the potential

m̂2
h = V̂ 00(hĥi) = 32�⇠(1 � ⇠) = 8� � 2↵2/� , (II.21)

and gives a second constraint, cf. Fig. 1, in the ↵-� plane
by combining Eqs. (II.19) and (II.21)

m2
h

v2
= 32�(1 � ⇠) = 8(2� � ↵) ' 0.258 . (II.22)

From Fig. 1, 0.012 < �↵ < 0.02 and 0.06 < � < 0.11,
are inferred whose range mainly depends on unknown
radiative corrections to the Higgs mass. The value of
↵ allows us to set a lower bound, at leading order in
the EFT, on the PNGB triplets masses. The latter are

no EWSB
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FIG. 1: Contour plot for ⇠ = (↵ + 2�)/(4�), Eq. (II.19). In
the white region no EWSB occurs and the purple level curves
are values of ⇠ ranging from 0 to 0.12 where the latter value is
a representative constraint taken from Ref. [4]. An additional
constraint comes from the Higgs mass m2

h/v
2 = 8(2� � ↵) '

0.258, Eq. (II.22), for which we have allowed generous 20%
radiative corrections. The intersection of the purple and grey
region is the physically allowed parameter space of the model
that has to be satisfied by the UV theory.

given by the contribution of the weak gauge bosons only,
Eq. (II.13), (rg ⌘ 3g2/(3g2 + g02))

m̂� =
⇣32|↵|

3

⌘ 1
2

= 4

✓
ĈLR

✓
g2 +

g02

3

◆◆ 1
2

' 0.36 ,

m̂�0 =
⇣32|↵|

3
rg
⌘ 1

2
= 4(ĈLRg

2)
1
2 ' 0.34 ,

which are identical in the limit g02 ! 0 of no hypercharge.
The mass di↵erence of the charged to neutral is positive,
m� � m�0 � 0, as for the pions in the SM [34]. Since
the hypercharge contribution is small the two masses are
very close in numerical value. From the LHC bound ⇠ =
v2/f2 < 0.12 it follows that f >

⇠ 5.7mh and thus

m�
>
⇠ m�0 > 1.97mh . (II.23)

In summary the Higgs potential is parameterised by
the two constants ↵ and �, Eq. (II.16), which are experi-
mentally constrained by mh/v, v/f and the requirement
of EWSB. On the other hand ↵ and � can be deter-
mined from well-defined correlation function of the UV
hypercolor theory, Eq. (II.17). Hence the determination
of either ↵ or � alone can exclude the model. Somewhat
more precisely, the model can be excluded/validated by
computing � ⇠ Ctop, and using the Higgs mass con-
straint. Since in practice, cf. the discussion below, com-
puting ↵ ⇠ CLR is more feasible the latter is going to be
the computation that excludes/validates the model. The
quantity CLR has been computed recently in [35] for an
SU(4) gauge theory in the quenched approximation with

in units of f



16

• complete vacuum mis-alignement from SU(2)L x U(1)Y direction 
requires the presence of heavy fermions

gauge + 
fermions

Compositeness in a nutshell

➡ tuning required to have mh � f

4

Higgs Potential

As discussed above, the Higgs particle is one of the
NGBs of the UV complete theory. In the hypercolour the-
ory in isolation, no potential is generated for the NGBs;
hence the Higgs potential can only arise from interac-
tions with the SM sector. In particular there are two
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h = V̂ 00(hĥi) = 32�⇠(1 � ⇠) = 8� � 2↵2/� , (II.21)

and gives a second constraint, cf. Fig. 1, in the ↵-� plane
by combining Eqs. (II.19) and (II.21)

m2
h

v2
= 32�(1 � ⇠) = 8(2� � ↵) ' 0.258 . (II.22)

From Fig. 1, 0.012 < �↵ < 0.02 and 0.06 < � < 0.11,
are inferred whose range mainly depends on unknown
radiative corrections to the Higgs mass. The value of
↵ allows us to set a lower bound, at leading order in
the EFT, on the PNGB triplets masses. The latter are

no EWSB

m h

v

x=
v2

f 2 = 0.12x=0

-0.04 -0.03 -0.02 -0.01 0.00
0.000

0.005

0.010

0.015

0.020

0.025

a

b

FIG. 1: Contour plot for ⇠ = (↵ + 2�)/(4�), Eq. (II.19). In
the white region no EWSB occurs and the purple level curves
are values of ⇠ ranging from 0 to 0.12 where the latter value is
a representative constraint taken from Ref. [4]. An additional
constraint comes from the Higgs mass m2

h/v
2 = 8(2� � ↵) '

0.258, Eq. (II.22), for which we have allowed generous 20%
radiative corrections. The intersection of the purple and grey
region is the physically allowed parameter space of the model
that has to be satisfied by the UV theory.
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which are identical in the limit g02 ! 0 of no hypercharge.
The mass di↵erence of the charged to neutral is positive,
m� � m�0 � 0, as for the pions in the SM [34]. Since
the hypercharge contribution is small the two masses are
very close in numerical value. From the LHC bound ⇠ =
v2/f2 < 0.12 it follows that f >

⇠ 5.7mh and thus

m�
>
⇠ m�0 > 1.97mh . (II.23)

In summary the Higgs potential is parameterised by
the two constants ↵ and �, Eq. (II.16), which are experi-
mentally constrained by mh/v, v/f and the requirement
of EWSB. On the other hand ↵ and � can be deter-
mined from well-defined correlation function of the UV
hypercolor theory, Eq. (II.17). Hence the determination
of either ↵ or � alone can exclude the model. Somewhat
more precisely, the model can be excluded/validated by
computing � ⇠ Ctop, and using the Higgs mass con-
straint. Since in practice, cf. the discussion below, com-
puting ↵ ⇠ CLR is more feasible the latter is going to be
the computation that excludes/validates the model. The
quantity CLR has been computed recently in [35] for an
SU(4) gauge theory in the quenched approximation with
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quantity CLR has been computed recently in [35] for an
SU(4) gauge theory in the quenched approximation with

4

Higgs Potential

As discussed above, the Higgs particle is one of the
NGBs of the UV complete theory. In the hypercolour the-
ory in isolation, no potential is generated for the NGBs;
hence the Higgs potential can only arise from interac-
tions with the SM sector. In particular there are two
contributions to the one-loop e↵ective potential: the first
one is due to the coupling to the weak gauge bosons (cf.
Eq. (II.13)) and the second one to the coupling to the top
and the composite fermions. Using the standard compos-
ite Higgs potential parametrisation

V̂ (ĥ) = ↵ cos(2ĥ) � � sin2(2ĥ) , (II.16)

the dimensionless parameters ↵ and � are given by

↵ = �ĈLR
1

2

�
3g2 + g02

�
< 0 ,

2� = �y2Ĉtop , (II.17)

where CLR = ĈLRf4 is defined in Eq. (II.14) and Ctop

is a top-baryon 4-point function of O(�2
q�

2
t ) originating

from the terms in Eq. (II.7), as discussed in detail in [31].
Note that Eq. (II.16) includes radiative corrections as dis-
cussed in [33] in a more systematic way. Up to a constant
the potential Eq. (II.16) can be written as

V̂ (ĥ) = 4�(sin2(ĥ) � ⇠)2 , (II.18)

where

⇠ ⌘
v2

f2
= sin2(hĥi) =

↵ + 2�

4�
. (II.19)

The important condition, for EWSB, reads

↵ + 2� > 0. (II.20)

Hence the sign of �, and its magnitude compared to ↵,
are the first constraints that the UV complete theory
needs to satisfy.

The ↵-� parameter space is shown in Fig. 1 with phe-
nomenologically acceptable values of ⇠ 2 [0, 0.12] shown
in purple. The Higgs mass is related to the second deriva-
tive of the potential

m̂2
h = V̂ 00(hĥi) = 32�⇠(1 � ⇠) = 8� � 2↵2/� , (II.21)

and gives a second constraint, cf. Fig. 1, in the ↵-� plane
by combining Eqs. (II.19) and (II.21)

m2
h

v2
= 32�(1 � ⇠) = 8(2� � ↵) ' 0.258 . (II.22)

From Fig. 1, 0.012 < �↵ < 0.02 and 0.06 < � < 0.11,
are inferred whose range mainly depends on unknown
radiative corrections to the Higgs mass. The value of
↵ allows us to set a lower bound, at leading order in
the EFT, on the PNGB triplets masses. The latter are

no EWSB

m h
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FIG. 1: Contour plot for ⇠ = (↵ + 2�)/(4�), Eq. (II.19). In
the white region no EWSB occurs and the purple level curves
are values of ⇠ ranging from 0 to 0.12 where the latter value is
a representative constraint taken from Ref. [4]. An additional
constraint comes from the Higgs mass m2

h/v
2 = 8(2� � ↵) '

0.258, Eq. (II.22), for which we have allowed generous 20%
radiative corrections. The intersection of the purple and grey
region is the physically allowed parameter space of the model
that has to be satisfied by the UV theory.

given by the contribution of the weak gauge bosons only,
Eq. (II.13), (rg ⌘ 3g2/(3g2 + g02))

m̂� =
⇣32|↵|

3

⌘ 1
2

= 4

✓
ĈLR

✓
g2 +

g02

3

◆◆ 1
2

' 0.36 ,

m̂�0 =
⇣32|↵|

3
rg
⌘ 1

2
= 4(ĈLRg

2)
1
2 ' 0.34 ,

which are identical in the limit g02 ! 0 of no hypercharge.
The mass di↵erence of the charged to neutral is positive,
m� � m�0 � 0, as for the pions in the SM [34]. Since
the hypercharge contribution is small the two masses are
very close in numerical value. From the LHC bound ⇠ =
v2/f2 < 0.12 it follows that f >

⇠ 5.7mh and thus

m�
>
⇠ m�0 > 1.97mh . (II.23)

In summary the Higgs potential is parameterised by
the two constants ↵ and �, Eq. (II.16), which are experi-
mentally constrained by mh/v, v/f and the requirement
of EWSB. On the other hand ↵ and � can be deter-
mined from well-defined correlation function of the UV
hypercolor theory, Eq. (II.17). Hence the determination
of either ↵ or � alone can exclude the model. Somewhat
more precisely, the model can be excluded/validated by
computing � ⇠ Ctop, and using the Higgs mass con-
straint. Since in practice, cf. the discussion below, com-
puting ↵ ⇠ CLR is more feasible the latter is going to be
the computation that excludes/validates the model. The
quantity CLR has been computed recently in [35] for an
SU(4) gauge theory in the quenched approximation with

➡ tuning not visible in couplings � � 0gV V h =
�

1 � � gSM
V V h

e.g.
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Compositeness scale excluded 
below ~ 1 TeV

this corresponds to roughly > 
20% tuning
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Talking about naturalness….

• no degeneracy is observed 
so SUSY must be softly 
broken 

• expressions for the CP-
even Higgs mass

tree-level:
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mf̃R
and the trilinear couplings Af . In the case of the third generation scalar fermions

[throughout this review, we will assume that the masses of the first and second generation

fermions are zero, as far as the SUSY sector is concerned] the mixing between left– and

right–handed sfermions, which is proportional to the mass of the partner fermion, must be

included [62]. The sfermion mass matrices read

M2
f̃

=

(
m2

f + m2
LL mf Xf

mf Xf m2
f + m2

RR

)

(1.32)

with the various entries given by

m2
LL = m2

f̃L
+ (I3L

f − Qfs2
W ) M2

Z c2β

m2
RR = m2

f̃R
+ Qfs2

W M2
Z c2β

Xf = Af − µ(tanβ)−2I3L
f

(1.33)

They are diagonalized by 2 × 2 rotation matrices of angle θf , which turn the current eigen-

states f̃L and f̃R into the mass eigenstates f̃1 and f̃2

Rf̃ =

(
cθf

sθf

−sθf
cθf

)

, cθf
≡ cos θf̃ and sθf

≡ sin θf̃ (1.34)

The mixing angle and sfermion masses are then given by

s2θf
=

2mfXf

m2
f̃1
− m2

f̃2

, c2θf
=

m2
LL − m2

RR

m2
f̃1
− m2

f̃2

(1.35)

m2
f̃1,2

= m2
f +

1

2

[
m2

LL + m2
RR ∓

√
(m2

LL − m2
RR)2 + 4m2

fX
2
f

]
(1.36)

The mixing is very strong in the stop sector for large values of the parameter Xt = At−µ cotβ

and generates a mass splitting between the two mass eigenstates which makes the state t̃1
much lighter than the other squarks and possibly even lighter than the top quark itself. For

large values of tanβ and |µ|, the mixing in the sbottom and stau sectors can also be very

strong, Xb,τ = Ab,τ − µ tanβ, leading to lighter b̃1 and τ̃1 states.

Note that in the case of degenerate sfermion soft SUSY–breaking masses, mLL ∼ mRR,

that we will often consider in this review, in most of the MSSM parameter space the sfermion

mixing angle is either close to zero [no mixing] or to −π
4 [maximal mixing] for respectively,

small and large values of the off–diagonal entry mfXf of the sfermion mass matrix. One

then has s2θf
∼ 0 and |s2θf

| ∼ 1 for the no mixing and maximal mixing cases, respectively.

In constrained models such as mSUGRA for instance, assuming universal scalar masses

m0 and gaugino masses m1/2 at the GUT scale, one obtains relatively simple expressions

for the left– and right–handed soft masses when performing the RGE evolution to the weak

24
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a light Higgs favours
a light stop
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vanilla SUSY



What are the options?
• any deviation of the SM coupling pattern induces perturbative 

unitarity violation 

• Composite scenarios have extra stuff that compensate this

gV V h =
�

1 � � gSM
V V h

7

Sample lepton cuts WBF cuts mT,3l

WZ+jets 2.20 0.61 0.47

tt̄+jets 0.013 0 0

mW 0,Z0 = 700 GeV, ↵ = 0.9 2.58 0.75 0.59

mW 0,Z0 = 1000 GeV, ↵ = 0.9 2.32 0.67 0.51

mW 0,Z0 = 1500 GeV, ↵ = 0.9 2.22 0.63 0.48

mW 0,Z0 = 2000 GeV, ↵ = 0.9 2.23 0.63 0.48

mW 0,Z0 = 700 GeV, ↵ = 0.5 4.01 1.22 1.06

mW 0,Z0 = 1000 GeV, ↵ = 0.5 2.82 0.84 0.68

mW 0,Z0 = 1500 GeV, ↵ = 0.5 2.40 0.69 0.54

mW 0,Z0 = 2000 GeV, ↵ = 0.5 2.31 0.66 0.50

TABLE III: Results for 3 lepton search. The cross sections are
given in femtobarn, corresponding to proton-proton collisions
at

p
s = 14 TeV. Further details on the cuts can be found in

the text.
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FIG. 6: Projections of the 3l + /ET + jj 95% confidence
level contours for 100/fb (green), 500/fb (orange) and 3000/fb
(red). The Higgs coupling deviation is ↵2 = 0.95.

The signal extraction is performed over a mass window of
0.3⇥mW 0 in the transverse mass Eq. (7). The calculated
significance follows from:

S =
N(BSM)�N(WBF,SM)p

N(bkg,non-WBF) +N(WBF,SM)
, (8)

where the individual Ns refer to the signal counts at a
given luminosity. Using this measure we can isolate a
statistically significant deviation from the SM WBF dis-
tribution outside the Higgs signal region, taking into ac-
count the irreducible background in the WZ channel.

Already for a target luminosity of run 2 of 100/fb, a
large parameter region can be explored in the 3l+ /ET+jj

channel. A crucial parameter in this analysis is the width
of the additional resonance, which we take as a free pa-
rameter in our analysis. With an increasing width the

signal decouples quickly, but stringent constraints can
still be formulated at a high-luminosity LHC, especially
if new physics gives rise to only a percent-level defor-
mation of the SM Higgs interactions, see Fig. 6. Note
that the signal decouples very quickly with an increased
value of the width. Hence, if there in scenarios where
the extra vector bosons have a large coupling to the top
as expected in some composite models, the sensitivity
in the WBF search might not be su�cient to constrain
the presence of such states. It is worthwhile to stress
the complementarity of the WBF searches as outlined
in the previous sections to the aforementioned Drell-Yan
like production in this regard. Both ATLAS and CMS
have published limits of searches for W

0 and Z
0 reso-

nances in third quark generation final states [39–42]. If
the states we investigate in this paper have a sizeable
coupling to massive fermions, these searches will even-
tually facilitate a discovery. In this case, however, the
search for WBF resonances still provides complementary
information about the nature of electroweak symmetry
breaking. In particular WBF production will act as a
consistency check of the excesses around 2 TeV seen by
CMS and ATLAS [20, 21].

In Fig. 7 we show the cross section for a 2 TeV reso-
nance in WBF correlated with the Higgs boson on-shell
signal strengths for the scenario where the extra reso-
nances width solely arises from the partial width to SM
gauge bosons. This is optimistic in the sense that the ex-
pected signal rate is maximised; the Higgs phenomenol-
ogy is only modified via the interactions with the gauge
bosons (see above). As can be seen from the inclusive
cross section in Fig. 7 the expected cross section before
reconstruction is far to small to account for a ⇠ 1 fb
signal cross section required to explain the ATLAS and
CMS anomalies. If these excesses become statistically
significant, this means that the observed particle(s) do
not stand in relation relation to longitudinal gauge boson
unitarization. Alternative scenarios are discussed in [43].
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FIG. 7: Cross section of 2 TeV diboson resonance in WBF
for single lepton inclusive cuts at 8 TeV center of mass energy.
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☛ fermiophobic = WBF 

☛ fermiophilic = Drell-Yan 

☛ LHC run 2 will  zero in 
on those states 

☛ realistic spectra require 
lattice input

• Stops and other exotica searches scale with kinematic endpoints: 
33 TeV / 100 TeV machines?



What are the options?
• enhance sensitivity to couplings that might be beyond the reach of 

the LHC

�S = 0.00 �S = 0.01 �S = 0.015 �S = 0.02 �S = 0.025

rB = 0.5 2.7% 3.4% 4.1% 4.9% 5.8%

rB = 1.0 3.4% 3.9% 4.6% 5.3% 6.1%

rB = 1.5 3.9% 4.4% 5.0% 5.7% 6.4%

rB = 2.0 4.4% 4.8% 5.4% 6.0% 6.8%

rB = 3.0 5.2% 5.6% 6.0% 6.6% 7.3%

Table 30: Impact of the systematic uncertainties on the precision on the trilinear Higgs coupling. The precision on
�3 is shown for different values of the systematic uncertainty on the signal, �S , and of the rescaling factor for the
total background rate rB . The “Medium” detector performance scenario and an integrated luminosity of 30 ab�1

have been assumed.

main limitation in the extraction of �3. At present, as already discussed, the computation of the signal
has a ⇠ 10% uncertainty due to the use of the infinite top mass approximation. It is highly probable that
finite-mass computations will become available in the near future. The remaining uncertainty from scale
variation at NNLL order is still ⇠ 5%, while the pdf error is ⇠ 3%. Without further improvements on
these two issues, the systematic uncertainty will be the main limiting factor in the determination of �3

and the maximal precision would be limited to ��3/�3 ⇠ 10%.

5.2.3 The HH ! bb̄bb̄ channel
In the analysis of the bb̄�� final state presented in the previous subsection, a large fraction of the double
Higgs production cross section was sacrificed in order to select a clean final state, for which the back-
ground levels can be easily kept under control. In this subsection a different strategy is considered which
makes use of the final state with the largest branching ratio, namely bb̄bb̄. The total cross section for
this final state is 580 fb at a hadronic 100 TeV collider, which is two order of magnitude larger than
the bb̄�� one. The level of backgrounds one needs to cope with, however, is much larger thus severely
complicating the signal extraction.

One of the possible advantages of the bb̄bb̄ final state is the fact that it provides a reasonable
number of events in the tail at large invariant masses of the Higgs pair. This, in principle, allows one to
analyse the high-energy kinematic regime much better than other final states with smaller cross sections.
As we discussed before, the tail of the mhh distribution is not particularly sensitive to the change of the
trilinear Higgs coupling, which mostly affects the kinematic distribution at threshold. However it can be
more sensitive to other new-physics effects, such as deviations induced by dimension-6 and dimension-8
effective operators that induce a contact interaction between the Higgs and the gluons (see for instance
the discussion in Ref. [189]). The analysis of these effects, although interesting and worth studying
further, goes beyond the scope of the present report. In the following we will concentrate only on the
SM case and on the extraction of the Higgs trilinear coupling and we will discuss an analysis based on a
recent feasibility study at the 14 TeV LHC [218],9 with suitable modifications for the 100 TeV case.

5.2.3.1 Monte Carlo samples generation
Higgs pair production in the gluon-fusion channel is simulated at LO thorugh MadGraph5_aMC@NLO [134,
211] by using the recently developed functionalities for loop-induced processes [221]. The calculation
is performed in the nf = 4 scheme and the renormalization and factorization scales are taken to be
µF = µR = HT /2. The NNPDF 3.0 nf = 4 LO set [111] is adopted with ↵s(m2

Z) = 0.118, interfaced
via LHAPDF6 [124]. To achieve the correct higher-order value of the integrated cross-section, the LO
signal sample is rescaled to match the NNLO+NNLL inclusive calculation [202, 207]. Parton level

9Other studies of Higgs pair production in the same final state at the LHC can be found in Refs. [219, 220].
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pair production modes at the LHC; special care is devoted to the dominant gluon fusion
production mode in Sec. 2.1. Sec. 3 contains representative distributions to NLO for
the SM gluon fusion pair production channel. Sec. 4 discusses benchmarks of motivated
BSM scenarios. The BSM phenomenology of multi-Higgs final states can be divided
into resonant and non-resonant extensions of the SM. The latter is discussed in Sec. 4.1
using the language of E↵ective Field Theory. Benchmarks for resonant di-Higgs final
state searches are discussed using the singlet-extended SM in Sec. 4.2, which provides
a theoretically clean and minimal avenue to introduce new resonant physics into Higgs
pair production.

2 Total rates in the SM

2.1 Gluon fusion

The NLO [6] and NNLO [7] fixed order corrections to gg ! hh are known in the large
top mass limit. The QCD corrections are large, typically doubling the cross section from
LO to NLO, with another ⇠ 20% increase going from NLO to NNLO. The threshold
resummation corrections for Higgs pair production at NNLL [5] further increase the
rate. The fixed order NNLO cross sections are combined consistently with the NNLL
threshold resummed results in Tab. 1, with the rate being weighted by the exact LO
result. The scale choice µ0 = Mhh/2 is shown, with the scale variation taken to be
µ0/2 < µ < 2µ0. The e↵ect of choosing the central scale to be µ0 = Mhh is shown
in Tab. 2. The numerical importance of the threshold resummation is minimized for
µ0 = Mhh/2, and so we recommend this as our preferred choice. The scale uncertainties
are ⇠ 5 � 6% and the PDF uncertainties are ⇠ 3 � 4%.

For convenience, we define 2 K factors for the total cross sections, where �NNLL is
the fixed order NNLO rate matched to the NNLL rate,

K ⌘
�NNLL

�NLO

K 0
⌘

�NNLL

�LO
. (2.1)

The K factors for the scale choices, µ0 = Mhh and µ0 = Mhh/2 are shown in Tabs. 3
and 4, respectively. The K factors are computed in the mt ! 1 limit.
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FIG. 1: Sample Feynman graphs contributing to pp � hh + X. Graphs of type (a) yield vanishing contributions due to color
conservation.

cal configuration†, which is characterized by a large di-
higgs invariant mass, but with a potentially smaller Higgs
s-channel suppression than encountered in the back-to-
back configuration of gg ! hh.

The goal of this paper is to provide a comparative
study of the prospects of the measurement of the trilinear
Higgs coupling applying contemporary simulation and
analysis techniques. In the light of recent LHC measure-
ments, we focus our eventual analyses on mh = 125 GeV.
However, we also put this particular mass into the con-
text of a complete discussion of the sensitivity towards
the trilinear Higgs coupling over the entire Higgs mass
range mh

<
⇠ 1 TeV. As we will see, mh � 125 GeV is a

rather special case. Since Higgs self-coupling measure-
ments involve end-of-lifetime luminosities we base our
analyses on a center-of-mass energy of 14 TeV.

We begin with a discussion of some general aspects
of double Higgs production, before we review inclusive
searches for mh = 125 GeV in the pp ! hh + X channel
in Sec. II C. We discuss boosted Higgs final states in pp !

hh+X in Sec. II D before we discuss pp ! hh+j+X with
the Higgses recoiling against a hard jet in Sec. III. Doing
so we investigate the potential sensitivity at the parton-
and signal-level to define an analysis strategy before we
apply it to the fully showered and hadronized final state.
We give our conclusions in Sec. IV.

II. HIGGS PAIR PRODUCTION AT THE LHC

A. General Remarks

Inclusive Higgs pair production has already been stud-
ied in Refs. [14–17] so we limit ourselves to the details
that are relevant for our analysis.

Higgs pairs are produced at hadron colliders such as
the LHC via a range of partonic subprocesses, the most
dominant of which are depicted in Fig. 1. An approxima-
tion which is often employed in phenomenological studies
is the heavy top quark limit, which gives rise to e�ective

†The phenomenology of such configurations can also be treated sep-
arately from radiative correction contributions to pp � hh + X.

ggh and gghh interactions [20]

Le� =
1

4

�s

3�
Ga

µ�Ga µ� log(1 + h/v) , (2)

which upon expansion leads to

L � +
1

4

�s

3�v
Ga

µ�Ga µ�h �
1

4

�s

6�v2
Ga

µ�Ga µ�h2 . (3)

Studying these operators in the hh+X final state should
in principle allow the Higgs self-coupling to be con-
strained via the relative contribution of trilinear and
quartic interactions to the integrated cross section. Note
that the operators in Eq. (3) have di�erent signs which
indicates important interference between the (nested)
three- and four point contributions to pp ! hh + X al-
ready at the e�ective theory level.

On the other hand, it is known that the e�ective theory
of Eq. (3) insu�ciently reproduces all kinematical prop-
erties of the full theory if the interactions are probed
at momentum transfers Q2 >

⇠ m2
t [11] and the massive

quark loops are resolved. Since our analysis partly re-
lies on boosted final states, we need to take into account
the full one-loop contribution to dihiggs production to
realistically model the phenomenology.

B. Parton-level considerations

In order to properly take into account the full dynam-
ics of Higgs pair production in the SM we have imple-
mented the matrix element that follows from Fig. 1 in
the Vbfnlo framework [21] with the help of the Fey-
nArts/FormCalc/LoopTools packages [22], with
modifications such to include a non-SM trilinear Higgs
coupling‡. Our setup allows us to obtain event files ac-
cording to the Les Houches standard [23], which can be
straightforwardly interfaced to parton showers. Decay
correlations are trivially incorporated due to the spin-0
nature of the SM Higgs boson.

‡The signal Monte Carlo code underlying this study is planned to
become part of the next update of Vbfnlo and is available upon
request until then.

Figure 1: Feynman diagrams contributing to Higgs pair production via gluon fusion at
leading order.
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Any new scalar fields that perturbatively solve the hierarchy problem by stabilizing the Higgs
mass also generate new contributions to the Higgs field-strength renormalization, irrespective of their
gauge representation. These new contributions are physical and their magnitude can be inferred from
the requirement of quadratic divergence cancellation, hence they are directly related to the resolution
of the hierarchy problem. Upon canonically normalizing the Higgs field these new contributions lead
to modifications of Higgs couplings which are typically great enough that the hierarchy problem and
the concept of electroweak naturalness can be probed thoroughly within a precision Higgs program.
Specifically, at a Linear Collider this can be achieved through precision measurements of the Higgs
associated production cross-section. This would lead to indirect constraints on perturbative solutions
to the hierarchy problem in the broadest sense, even if the relevant new fields are gauge singlets.

I. INTRODUCTION

The discovery of the Higgs at the LHC [1, 2] and
lack of evidence for physics beyond the Standard Model
have heightened the urgency of the electroweak hierarchy
problem. This motivates focusing experimental searches
towards testing “naturalness from the bottom up” as
broadly as possible. In practice this means generalizing
beyond the specifics of particular UV-complete models
and instead constraining the additional degrees of free-
dom whose couplings to the Higgs are responsible for
canceling the most pressing quadratically divergent Stan-
dard Model contributions to the Higgs mass. While these
couplings may appear tuned from the perspective of the
low-energy e↵ective theory, we may assume they are dic-
tated by symmetries of the full theory. To a certain ex-
tent, this strategy is already being pursued in searches
for stops in SUSY and t

0 fermions, however the Stan-
dard Model gauge representations of top partners are
not necessarily fixed by the cancellation of quadratic di-
vergences. For example, in twin Higgs models [3] the
degrees of freedom protecting the Higgs mass are com-
pletely neutral under the Standard Model, while in folded
supersymmetry [4] the scalar top partners are neutral un-
der QCD and only carry electroweak quantum numbers.
Such models provide proof of principle that the Higgs
mass may be protected by degrees of freedom that carry
a variety of Standard Model gauge charges, and there are
likely to be broad classes of theories with similar proper-
ties.

As we will discuss further in Sec. II, direct searches for
these additional degrees of freedom can be particularly

⇤
Electronic address: ncraig@ias.edu

†
Electronic address: christoph.englert@durham.ac.uk

‡
Electronic address: mccull@mit.edu

challenging depending on the gauge charges. Therefore
in this work we will advocate an additional and comple-
mentary approach, concerned with exploring naturalness
indirectly. In certain cases this may be the most promis-
ing avenue for constraining additional degrees of freedom
associated with the naturalness of the Higgs potential.1

Specifically, we establish for the first time a quanti-
tative connection between quadratically divergent Higgs
mass corrections and new contributions to the Higgs
wave-function renormalization in natural theories. The
latter are physical and modify Higgs couplings.

To illustrate the possible indirect e↵ects of natural
new physics, consider a scenario where the Higgs is cou-
pled to some new top-partner fields that cancel the one-
loop quadratic divergences arising from top-quark loops.
Eq. (1) schematically indicates that, as well as the usual
Higgs mass corrections, one will also in general have cor-
rections to the Higgs wave-function renormalization2

�Zh, �m
2
h

⇠

(a)

e�

e+

h

ZG0

(b)

e�

e+

h

ZZ

h h
. (1)

At the Higgs mass-scale we may write the full one-loop
e↵ective Lagrangian as

L = LSM +
1

2
�Zh(@µh)2 + ... (2)

where �Zh is directly related to the new quadratic Higgs
mass corrections, LSM is the full SM Lagrangian at one
loop, and the ellipsis denote corrections to the Higgs
mass, cubic and quartic couplings coming from the new

1
For recent work probing naturalness indirectly when new fields

are charged under QCD and contribute directly to Higgs digluon

and Higgs diphoton couplings at one loop, see e.g. [5–7].
2
There are also typically corrections to the cubic and quartic cou-

plings as well, which we do not show in this diagram.
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FIG. 1: Sample counterterm diagrams that depend on the
Higgs self-energy.

O(0.5%) uncertainty [15]. Thus Higgs boson coupling
measurements can constrain natural new physics for
generic top partners even when they are neutral under
the SM gauge group. To see the relevant e↵ects clearly,
consider the theory of Eq. (3) when all scalar top part-
ners, �i, are gauge singlets. In the limit m� � v, we may
integrate out the �i and express their e↵ects in terms
of an e↵ective Lagrangian below the scale m� involv-
ing only Standard Model fields with appropriate higher-
dimensional operators. At one loop, integrating out the
�i leads to shifts in the wave-function renormalization
and potential of the Higgs doublet H as well as opera-
tors of dimension six and higher. Most of these shifts
and operators are irrelevant from the perspective of low-
energy physics, except for one dimension-six operator in
the e↵ective Lagrangian:

Leff = LSM +
cH

m
2
�

✓
1

2
@µ|H|

2
@
µ
|H|

2

◆
+ . . . (10)

where the ellipses include additional higher-dimensional
operators that are irrelevant for our purposes. Match-
ing to the full theory at the scale m�, we find cH(m�) =
n�|��|

2
/96⇡2. Although this operator may be exchanged

for a linear combination of other higher-dimensional op-
erators using field redefinitions or classical equations of
motion, the physical e↵ects are unaltered. Below the
scale of electroweak symmetry breaking, Eq. (10) leads
to a shift in the wave-function renormalization of the
physical scalar h as in Eq. (2), with �Zh = 2cHv

2
/m

2
�
.

Canonically normalizing h alters its coupling to vectors
and fermions, leading to a measurable correction to, e.g.,
the hZ associated production cross-section

��Zh = �2cH
v
2

m
2
�

= �
n�|��|

2

48⇡2

v
2

m
2
�

. (11)

where we have defined ��Zh as the fractional change in
the associated production cross section relative to the SM
prediction, which by design vanishes for the SM alone.
Since n�|��|

2 is required to be large in order to cancel the
top quadratic divergence, this e↵ect may be observable
in precision measurements of �Zh despite arising at one
loop.

While this e↵ective Lagrangian approach makes the
physical e↵ect transparent, naturalness dictates that
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FIG. 2: Scalar top-partner corrections to the Higgs associ-
ated production cross-section at a 250 GeV linear collider as
a function of the top-partner mass m� in the e↵ective the-
ory of naturalness of Eq. (3). Corrections are shown for
n� = 1, .., 6 top partners. Estimates for the measurement
precision of 2.5% [22, 23] and 0.5% [29] are also shown. It
is remarkable that with current precision estimates a large
portion of model-independent parameter space for Higgs nat-
uralness can be probed. In particular, if one compares with
the tuning estimates of Eq. (9), this broadly corresponds to
probing 10% tuned regions for a single scalar top partner and
close to 25% tuned regions for n� = 6 scalar top partners as
in SUSY. Optimistically, if the precision could be improved to
��Zh ⇠ 0.1%, then virtually all parameter space for generic
natural scalar theories with up to ⇠ 10% tunings could be
probed.

m� ⇠ v, and threshold corrections to Eq. (10) may be
large and a complete calculation is required. In the on-
shell renormalization scheme, the Higgs self-energy en-
ters through the counter-term part of the renormalized
e
+
e
�

! hZ amplitude via the diagrams depicted in
Fig. 1. Thus the hG

0
Z and hZZ vertices receive correc-

tions from the Higgs wave-function renormalization.10

For scalar top partners the Higgs wave-function renor-
malization arises at one loop through scalar trilinear cou-
plings, which gauge invariance relates to the quartic ver-
tices, which are in turn directly relevant for the cancel-
lation of the quadratic divergences in �m

2
h
.

At one loop the e↵ective theory of naturalness defined
in Eq. (3) leads to a correction to the associated produc-
tion cross-section of the form [15]

��Zh = n�

|��|
2
v
2

8⇡2m2
h

(1 + F (⌧�)) (12)

=
9�2

t
m

2
t

2⇡2n�m
2
h

(1 + F (⌧�)) (13)

10
See e.g. Ref. [31] for a complete list of SM Feynman rules.
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Any new scalar fields that perturbatively solve the hierarchy problem by stabilizing the Higgs
mass also generate new contributions to the Higgs field-strength renormalization, irrespective of their
gauge representation. These new contributions are physical and their magnitude can be inferred from
the requirement of quadratic divergence cancellation, hence they are directly related to the resolution
of the hierarchy problem. Upon canonically normalizing the Higgs field these new contributions lead
to modifications of Higgs couplings which are typically great enough that the hierarchy problem and
the concept of electroweak naturalness can be probed thoroughly within a precision Higgs program.
Specifically, at a Linear Collider this can be achieved through precision measurements of the Higgs
associated production cross-section. This would lead to indirect constraints on perturbative solutions
to the hierarchy problem in the broadest sense, even if the relevant new fields are gauge singlets.

I. INTRODUCTION

The discovery of the Higgs at the LHC [1, 2] and
lack of evidence for physics beyond the Standard Model
have heightened the urgency of the electroweak hierarchy
problem. This motivates focusing experimental searches
towards testing “naturalness from the bottom up” as
broadly as possible. In practice this means generalizing
beyond the specifics of particular UV-complete models
and instead constraining the additional degrees of free-
dom whose couplings to the Higgs are responsible for
canceling the most pressing quadratically divergent Stan-
dard Model contributions to the Higgs mass. While these
couplings may appear tuned from the perspective of the
low-energy e↵ective theory, we may assume they are dic-
tated by symmetries of the full theory. To a certain ex-
tent, this strategy is already being pursued in searches
for stops in SUSY and t

0 fermions, however the Stan-
dard Model gauge representations of top partners are
not necessarily fixed by the cancellation of quadratic di-
vergences. For example, in twin Higgs models [3] the
degrees of freedom protecting the Higgs mass are com-
pletely neutral under the Standard Model, while in folded
supersymmetry [4] the scalar top partners are neutral un-
der QCD and only carry electroweak quantum numbers.
Such models provide proof of principle that the Higgs
mass may be protected by degrees of freedom that carry
a variety of Standard Model gauge charges, and there are
likely to be broad classes of theories with similar proper-
ties.

As we will discuss further in Sec. II, direct searches for
these additional degrees of freedom can be particularly
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challenging depending on the gauge charges. Therefore
in this work we will advocate an additional and comple-
mentary approach, concerned with exploring naturalness
indirectly. In certain cases this may be the most promis-
ing avenue for constraining additional degrees of freedom
associated with the naturalness of the Higgs potential.1

Specifically, we establish for the first time a quanti-
tative connection between quadratically divergent Higgs
mass corrections and new contributions to the Higgs
wave-function renormalization in natural theories. The
latter are physical and modify Higgs couplings.

To illustrate the possible indirect e↵ects of natural
new physics, consider a scenario where the Higgs is cou-
pled to some new top-partner fields that cancel the one-
loop quadratic divergences arising from top-quark loops.
Eq. (1) schematically indicates that, as well as the usual
Higgs mass corrections, one will also in general have cor-
rections to the Higgs wave-function renormalization2
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At the Higgs mass-scale we may write the full one-loop
e↵ective Lagrangian as

L = LSM +
1

2
�Zh(@µh)2 + ... (2)

where �Zh is directly related to the new quadratic Higgs
mass corrections, LSM is the full SM Lagrangian at one
loop, and the ellipsis denote corrections to the Higgs
mass, cubic and quartic couplings coming from the new

1
For recent work probing naturalness indirectly when new fields

are charged under QCD and contribute directly to Higgs digluon

and Higgs diphoton couplings at one loop, see e.g. [5–7].
2
There are also typically corrections to the cubic and quartic cou-

plings as well, which we do not show in this diagram.
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Summary

☛ We  have the Higgs and it looks perturbative so far. 

☛ We have nothing else as data keeps pouring in.

☛ LHC: naturalness might not be such a 
great guiding principle after all ? 

☛ future colliders: precision vs. energy ?

Any BSM model gets 
pushed towards their 
decoupling limit or 

excluded


