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CMS Exorea Physics Group Summary - ICHER, 2016
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* some constrained with little comeback options

* this talk: focus on concepts (and tensions) rather than quoting results

CMS long-lived particle searches, Iif

* put this in context with motivations for new experiments
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BefQore the LHC

i
» EWSB in the SM minimal yetad-hoc V(®T®) = ;207D + A\(PTD)?

* the fact that we can understand the SM as a perturbative QFT
allowed us to make self-consistent predictions

...............................................
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[Flacher et al. " 08]
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Theory uncertainty

lIllllIllllllllllllllllllllllllllllllllll

L
~
3
Q
c
Q.
5
@
~
5
®
0
<
®
q
o
q
w

---- Fit excluding theory errors -
2407 i — 1o

* however, is perturbativity really a necessary for EWSB?
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Strong interactions

* notatall: can interpret the electroweak scale as a radiative
phenomenon

* strong dynamics of (QCD in chiral limit breaks global symmetries

SU(Z)L X SU(Z)R X U(l)B

three massless NGBs with

quantum numbers of broken
generators




Strong interactions

* notatall: can interpret the electroweak scale as a radiative
phenomenon

* strong dynamics of (QCD in chiral limit breaks global symmetries

SU(2)L X SU(Z)R X U(l)B

three massless NGBs with

quantum numbers of broken
il =i nia generators

J% = Py’ 5o where ¢ = (u,d)
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Strong interactions

* notatall: can interpret the electroweak scale as a radiative
phenomenon

* strong dynamics of (QCD in chiral limit breaks global symmetries
SUR2)x U(1)y

SU(2)L X SU(Z)R X U(l )B
* gauge correlatorsreceive

CD ti
SU2)p x U1 )s Q correctaons

st
------
"""""

three massless NGBs with

quantum numbers of broken
il =i nia generators

J% = Py’ 5o where ¢ = (u,d)
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Strong interactions

* non-perturbative QCD effects break electroweak symmetry

ANANE - == O~ i
W= p° —gfz/4
_ 9«

* Technicolor: “scale up” QCD by adding new confining gauge
interactions SU(N). The electroweak scale becomes a dimensional
transmutation effect (like the QCD scale)

d 1 60 ( 87'('2 )
= = 0= Mgy &0 -



Strong interactions
* implications:
1. no Higgs boson

2. additonal strongly interacting bound states (rho-like etc.)
3. trouble with EWPD: S ~ N¢ /7 but S < 0.3from LEP
4

. trouble with fermion masses: (walking) extended technicolor.



Strong interactions

implications:

1. no Higgs boson

Iy
3. trouble with EWPD: S ~ N¢ /7 but S < 0.3from LEP
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additional strongly interacting bound states (rho-like etc.)

trouble with fermion masses: (walking) extended technicolor.

- CMS Preliminary ~&— 5/B Weighted Data S : .
- aTTevlasimt SR vanilla technicolor 1s
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» AdS/CFT dictionary

Dualiues

[Arkani-Hamed, Porrati, Randall * 00]
[Rattazzi, Zaffaroni * 01]

Planck

SU(2)Rx U(l), = U(l),

gauge = global symmetry

broken
unbroken SU(2)Lx SU2)xU(), , —
= CFT dynamics
weakly gauged AdS also breaks

5

> TeV

gauge symmetry

SU(2)'x SU(Z)E- SU(Z%

* Planck brane = UV cutoft of CET

* bulk z=CFT energy scale, TeV brane = CF'T breaks spontaneously

due to strong interactions
10



» AdS/CFT dictionary

Bringing the Higgs back

[Arkani-Hamed, Porrati, Randall * 00]
[Rattazzi, Zaffaroni * 01]

Planck

gauge = global symmetry

broken
unbroken SU(2)Lx SU2)xU(), , —
= CFT dynamics
weakly gauged AdS also breaks

5

localisation = compositenes
>

> TeV

gauge symmetry

%

SU(2)Rx U(l), = U(l),

SU(2)'x SU(2);- SU(ZZ)

* Planck brane = UV cutoft of CET

* bulk z=CFT energy scale, TeV brane = CF'T breaks spontaneously

due to strong interactions
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Compositeness in a nutshell

back to interpreting the electroweak scale as a radiative
phenomenon, but this ime look at the pion mass splitting

[ISU(2 ) xSU(2 )R]
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Compositeness in a nutshell

* back to interpreting the electroweak scale as a radiative
phenomenon, but this time look at the pion mass splitting

[SU@2)1 xSU(2)g] A
/SUR)p 2

effective potential

[Coleman, Weinberg ™ 73]...
supcr-convergent

[Weinberg " 67]
/ [Witten * 83]

(s — M)l = 58MeV v (1inx — ity xp = 46 MeV
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Compositeness in a nutshell

* notstraightforward to this adapt to the Higgs case c.g. [Contino " 10]

trigoer .
ELW symmetry respect global LEP precision

breaking not just symmetries in the measurements
CW masses Higes sector

14



Compositeness in a nutshell

* notstraightforward to this adapt to the Higgs case c.g. [Contino * 10}

trigoer .
ELW symmetry respect global LEP precision

breaking not just symmetries in the measurements
CW masses Higes sector

* complete vacuum mis-alignement from SU(2); x U(1)y direction
requires the presence of heavy fermions

V(ﬁ) : Q COS(QiL) =4 B Sin2 (2 iL)
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Compositeness in a nutshell

* complete vacuum mis-alignement from SU(2);.x U(1)y direction
requires the presence of heavy fermions

}

e (J 3 5=
J".' S it
r

MIONS

V(h) = acos(2h) — Bsin?(2h)

Higgs mass 2 = V" ((h)) = 32B8£(1 — €) = 88 — 202/

= tuning required to have mp, < f

2 A
Higgs coupling modifier £ = F — sin2((h)) = = I;B ,

A= e g = tuning notvisible in couplings £ ~ 0
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Generic hints of compositeness

!u_ 1.8__I LA B B R B B B

~ ATLAS :
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Talking about naturalness....
* then SUSY i1s not far (super well-motivated, but no clue of its scale)

[Veltman " 81]

dm3; ~ UV cutoff /threshold(s)

A2
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Talking about naturalness....
* then SUSY i1s not far (super well-motivated, but no clue of its scale)

[Veltman " 81]

dm3; ~ UV cutoff /threshold(s)

~ (m%{ —I—Qm%[/ +mZZ —4m?) X




Talking about naturalness....
* then SUSY i1s not far (super well-motivated, but no clue of its scale)

[Veltman " 81]

dm3; ~ UV cutoff /threshold(s)

~ (m%{ —I—Qm%[/ +mQZ —4m%) X




* no degeneracy is observed
so SUSY must be softly
broken

* expressions for the CP-
even Higgs mass

Ctree—level: mp < My

Talking about naturalness....
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corrections: m; < m?,

\_

&

2
s

2
my

>

e ) DEoRNE
me s

Xy =A; —pcot B governs stop mixing and mg is average stop squared-mass
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* no degeneracy is observed
so SUSY must be softly
broken

* expressions for the CP-
even Higgs mass

(tree—level: mp < My

Talking about naturalness....
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no degeneracy is observed
so SUSY must be softly
broken

expressions for the GP-
even Higgs mass

(tree—level: mp < My

Talking about naturalness..

a light Higgs favours
a light stop

/
corrections:

o

12m%>_

Xy =A; —pcot B governs stop mixing and mg is average stop squared-mass
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What are the options?

» any deviation of the SM coupling pattern induces perturbative
unitarity violation gvvs = /1 — &gy

» Composite scenarios have extra stufl that compensate this

fermiophobic = WBF i

50}

40t

fermiophilic = Drell-Yan

>
[}
S
= 30
S
=

LHC run 2 will zero in
on those states

ol
1000 1200 1400 1600 1800 200

realistic spectra require mass [GeV)
lattice iﬂpﬂ[ [CE, Harris, Spannowsky, Takeuchi * 15]

» Stops and other exotica searches scale with kinematic endpoints:

33TeV /100 TeV machines?
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Relative Uncertainty on Fitted Signal Yield [%

What are the options?

» enhance sensitivity to couplings that might be beyond the reach of
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- signal systematics
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[Mangano et al. , Physics ata 100 TeV collider * 16]



What are the options?

* informed prediction about precision (model-dependent!)

1
L= Lsa+ 50Zn(9uh)” + . ‘0

[Craig, CE, McCullough " 13]
[Goncalves, Han, Mukhopadhyay " 17]

h h

Cancellations can’t always hide at precision
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Summary

= We have the Higgs and itlooks perturbative so far.

= We have nothing else as data keeps pouringin.

m LHC: naturalness might notbe such a Any BSM model oot

great guiding principle after all ? pushed towards their
decoupling limit or
excluded
m future colliders: precision vs. energy ?




