

The University of Manchester

LHCb: Gifts from the wise Kings

- 1. LHCb Design
- 2. LHCb Physics: Motivation & Key Results
- 3. LHCb Future: Upgrade I & Upgrade II

LHCb Design

Chris Parkes, YETI, January 2018

Collaboration

- 800 Authors
- 1500 Members
- 70 Institutes
- **16** Countries
- **11** UK Institutes (~20% Collab.)

Birmingham, Bristol, Cambridge, Edinburgh, Glasgow, Liverpool, Oxford, Imperial College, Manchester, RAL, Warwick

Aims & Critical Components

•LHCb:

- study CP violation
- rare B decays
 →New Physics

•Requirements:

- efficient trigger on leptons and hadron channels
- efficient particle ID for flavour tagging and background rejection
- good **proper time resolution** for time dependent measurements of Bs decays
- good B mass reconstruction for background rejection

Luminosity [cm⁻² s⁻¹]

6

Complementarity of LHCb

- Angular acceptance of LHCb complementary to ATLAS/CMS
- LHCb Vertex Detector & Particle ID systems
 - Will describe later
- LHCb emphasis on individual particles measurements not jets

Has Santa Claus Brought New Physics ?

This kind of approach is sensitive to particles far heavier than produced directly at a collider. It is what **flavour physics** is about it lets you see beyond the energy frontier.

LHCb: A New Era in Flavour Physics

Discovering New Physics through indirect effects: sensitive far beyond direct particle production reach

- Precision Measurements
 - Challenging forward region at hadron collider
 - Need events !
 - Need detailed understanding
 of detector & systematics
- Compelling results
- from initial operation

Key LHCb Attributes: Cross-section, Acceptance, Trigger, Vertex Resolution, Momentum Resol., Particle ID

Chris Parkes

LHCb Physics

400 Physics papers to date60 physics papers in 2017

- Direct CP Violation in $\rm B_{s}$ Decays
 - RICH detector
- Time Dependent CP Violation in $\rm B_{s}$ Decays
 - VELO detector
- Rare Decays: B→µµ
- Spectroscopy: Pentaquark Discovery
 - Greig Cowan tomorrow
- Lepton Universality violation hints
 - Simone Bifani tomorrow

CP Violation Refresher

Direct / Time-integrated CP Violation including discovery of CP Violation in B_s system

Time-integrated measurement: Direct CP Violation

Time-integrated measurement: Direct CP Violation

Direct CP violation

Time-integrated measurement: Direct CP Violation Direct CP violation

Chris Parkes

Chris Parkes

However several different two-body B decays

Separate with Particle ID and mass for B⁰/B_s

$$B^{0} \to \pi^{-}K^{+}$$
$$B_{s} \to K^{-}\pi^{+}$$

 $B^0 \to K\pi$

(also $\Lambda_{\rm b}$, 3-body backgrounds)

16

 $B \rightarrow hh$, (h=K, π)

Direct CP Violation: two-body B⁰ & B_s decays

LHCb

Preliminary

Ring Imaging Cherenkov (RICH)

- Unique at LHC: π/K/p separation
 - Measure particle velocity through Cherenkov effect
- Two RICH detectors lower / higher momentum

Gas enclosure and mirrors installed in LHCb pit

Particle Identification

RICH PID across wide momentum range

Clean reconstruction of hadronic decays critical to **many** physics results

19

Indirect / Time-dependent CP Violation Including constraining CP Violation in B_s system (ϕ_s)

Neutral B-mesons mixing

Feynman (box) diagrams for neutral B-meson mixing:

• Dominated by top quark contribution :

$$t - \overline{t} : \qquad \propto m_t^2 |V_{tb} V_{td}^*|^2 \qquad \propto m_t^2 \lambda^6$$

$$c - \overline{c} : \qquad \propto m_c^2 |V_{cb} V_{cd}^*|^2 \qquad \propto m_c^2 \lambda^6$$

$$c - \overline{t}, \overline{c} - t : \qquad \propto m_c m_t V_{tb} V_{td}^* V_{cb} V_{cd}^* \propto m_c m_t \lambda$$

(and similarly for B_s)

GIM (=V_{CKM} unitarity): if u,c,t same mass, everything cancels by construction!

Neutral B-mesons mixing

□ Feynman (box) diagrams for neutral B-meson mixing:

• Dominated by top quark contribution :

(and similarly for B_s)

Chris Parkes

Neutral B-mesons mixing

□ Feynman (box) diagrams for neutral B-meson mixing:

(and similarly for B_s)

• Dominated by top quark contribution :

most important difference with B^0 : replace $V_{td} \rightarrow V_{ts}$

$$\frac{\Delta m_d}{\Delta m_s} \approx \frac{\left|V_{td}\right|^2}{\left|V_{ts}\right|^2} \approx \frac{\lambda^6}{\lambda^4} = \lambda^2 \approx 0.04 \\ \Delta m_d = 0.502 \pm 0.006 \text{ ps}^{-1} \end{cases} \Rightarrow \Delta m_s \approx 12 \text{ ps}^{-1}$$

A more complete calculation leads to the SM expectation of ~18/ps

Chris Parkes

Tagging & Decay Time

B_s Mixing Measurement

$$B^0_s
ightarrow D^-_s (K^+K^-\pi^-)\pi^+$$

CDF discovery 2006, LHCb measurement 2011

Most precise measurement of $|V_{td}/V_{ts}|$

400

$$A_{\min}(t) = \frac{N(B_s^0; q = +1)(t) - N(B_s^0; q = -1)(t)}{N(B_s^0; q = +1)(t) + N(B_s^0; q = -1)(t)}$$

Tagged mixed

Fit mixed

Tagged unmixed

Oscillations occur at 3 trillion Hz ! Observed amplitude is not 1 as smeared

- Mistag (B or B) of events
- Resolution on time

VELO Layout

- 2 retractable detector halves
- 21 stations per half with an R and ϕ sensor
- Operates in secondary vacuum
- 300 µm foil separates detector from beam vacuum
- 8 mm from LHC beam

Velo Roles

Velo Modules

- n-*on-*n & 1 n-*on-*p
- Two semi-circular designs
 - R-measuring
 - Phi-measuring
- double metal layer readout
- 2048 strips, 40-100 µm pitch
- .25 µm Analogue Readout
- TPG core Hybrid, CF paddles

LHCb: Vertex LOcator

Beauty mesons live 10⁻¹²s

Multiply by c and γ

Travel few mm

Performance: Vertex Resolution

•15µm in XY at 25 tracks

•70µm in Z

•Key Physics quantity in identifying long lived B meson decay

propertime resolution~50fs tracks

VELO Closing

- First strip only 8mm from LHC beam
- Move detector in each fill of machine
- Update alignment
 parameters

CKM metrology: β and β_s

CP violation in interference between mixing and decay

Dominant SM "tree" contribution

Higher order "penguin" contributions from non-perturbative hadronic effects NP could be difficult to distinguish from penguins...

•
$$\phi_q = \phi_M - 2\phi_D = -2\beta_q + \Delta\phi_q + \delta_q^{NP},$$

 $\beta_q = \arg\left(\frac{V_{tq}V_{tb^*}}{V_{cq}V_{cb}^*}\right)$

 ϕ_s and ϕ_d determined via global fit to experimental results ignoring contributions from penguin diagrams:

•
$$\Phi_s^{SM} \equiv -2 \arg \left(-\frac{V_{ts} V_{tb^*}}{V_{cs} V_{cb}^*} \right) = -37.6^{+0.7}_{-0.8} \text{ mrad}$$

[CKM Fitter]

•
$$\sin 2\beta^{SM} \equiv \sin 2\arg \left(-\frac{V_{cd}V_{cb^*}}{V_{td}V_{tb}^*}\right) = 0.740^{+0.020}_{-0.025}$$

[CKM Fitter]

Predictions are very precise!

F. Dordei (CERN)

LHCb: CP violation

State of art of ϕ_s

Extensively studied in LHCb, CMS, ATLAS with Run I.

Although there has been impressive progress since the initial measurements at CDF/D0, the uncertainty needs to be further reduced:

- World average consistent with SM prediction;
- Exp. uncertainty almost a factor of 30 larger than predictions.

F. Dordei (CERN)

Rare Decays including discovery of B_s→µµ

Rare Decay Loops

Why are loop dominated decay processes very perceptible to 'new' particles?

• You can simply replace an 'internal quark line' (the circle) with 'new' particles without affecting the initial and final state of the decay

- Momentum flowing through loop should be integrated to "infinity"
 → Potential high masses of virtual particles don't kill their contribution...
- No tree-level diagrams: less competition/pollution from (boring) Standard Model amplitudes..

Rare B decays – All active research topics at LHCb

DECAY	TYPE	B.R. (approx.)
$B^{0} \rightarrow K^{*0} \gamma$ $B_{s} \rightarrow \phi \gamma$ $B^{0} \rightarrow \omega \gamma$	Radiative penguin	4.0 x 10 ⁻⁵ 2.1 x 10 ⁻⁵ 4.6 x 10 ⁻⁷
B⁰ → K*⁰ μ⁺ μ⁻	Electroweak penguin	1.2 x 10 ⁻⁶
$B_{s} \rightarrow \phi \phi$ $B^{0} \rightarrow \phi K_{s}$	Gluonic penguin	1.3 x 10 ⁻⁶ 1.4 x 10 ⁻⁶
$B_s \rightarrow \mu^+ \mu^-$	Rare box diagram	3.5 х 10 ⁻⁹

Chris Parkes

The $B_{(s)} \rightarrow \mu^+ \mu^-$ decay (1/2)

 Unique Experimental signature Easy to identify / trigger – good for ATLAS/CMS as well

Really really rare! But well predicted in SM

SM box

SM Penguin

First evidence of the $B_s^0 \to \mu^+ \mu^-$ decay

LHCb collaboration 2012

DESY 87-111 September 1987 BI所図書室 B MESON DECAYS INTO CHARMONIUM STATES

25 year long search

ted exclusive events the masses of the B^0 and B^+ mesons are determined to be $(5279.5 \pm 1.6 \pm 3.0) \ MeV/c^2$ and $(5278.5 \pm 1.8 \pm 3.0) \ MeV/c^2$ respectively. Branching ratios are determined from five events of the type $B^0 \rightarrow J/\psi \ K^{+0}$ and three of $B^+ \rightarrow J/\psi \ K^{+-}$. In the same data sample a search for $B^0 \rightarrow e^+e^-$, $\mu^+\mu^-$ and $\mu^\pm e^\mp$ leads to upper limits for such decays.

Now 7.8 CHCb alone

LHCb Measurement 3.0±0.6±0.3 10-9

SM theory 3.23 ± 0.27 10⁻⁹

Powerful constraint on SUSY

Lepton Flavour Universality

- We know that Lepton Flavour Number is not conserved from neutrino oscillations
- Is electon/muon/tau behaviour universal?

Lepton Flavour Univerality

See Simone Bifani's Talk tomorrow

- Individually "small" excesses
- But "coherent" set of BSM effects...generating much interest

Spectroscopy: Exotic States

Spectroscopy: Exotic States

See Greig Cowan's Talk tomorrow

Volume 8, number 3

PHYSICS LETTERS

A SCHEMATIC MODEL OF BARYONS AND MESONS "

M. GELL-MANN California Institute of Technology, Pasadena, California

Received 4 January 1964

A simpler and more elegant scheme can be constructed if we allow non-integral values for the charges. We can dispense entirely with the basic baryon b if we assign to the triplet t the following properties: spin $\frac{1}{2}$, $z = -\frac{1}{3}$, and baryon number $\frac{1}{3}$. We then refer to the members u_3^2 , $d^{-\frac{1}{3}}$, and $s^{-\frac{1}{3}}$ of the triplet as "quarks" 6) q and the members of the anti-triplet as anti-quarks \bar{q} . Baryons can now be constructed from quarks by using the combinations (q q q), $(q q q q \bar{q})$, etc. It is assuming that the lowest baryon configuration (q q q) gives just the representations 1, 8, and 10 that have been observed, while

Mesons: quark, anti-quark

Baryons: 3 quarks

50 year history of searching for 'exotic' states

For example:

Pentaquark States

$LHCb \ \Lambda_b{}^0 \rightarrow J/\psi \ p \ K^{\scriptscriptstyle -}$

Invariant mass calculation usin $\mathbf{g}^2 = p^2 + m^2$ with measured momenta known J/ Ψ , p, K masses E, **p**, conservation Clean selection – low background Λ_b quark content (udb)

LHCb-PAPER-2015-029, arXiv:1507.03414, PRL 115, 07201

Study two-body mass combinations

$$\Lambda_b \to P_c K^-, P_c \to J / \psi p$$

Quark content J/ Ψ (cc), p (uud) ⁴²

Chris Parkes

$\Lambda_b^0 \rightarrow J/\psi p K^-$: unexpected structure in $m_{J/\psi p}$

 Unexpected, narrow peak in m_{J/ψ p}

 $\frac{s}{u}K$

LHOB

Full analysis – with all known contributions to Dalitz plots included in model – shows two new states needed

indundundundundundundund

UC

(VeM 81)/strevE

Exotic pentaquark

Pentaquarks !

Lots More Areas !

LHCb designed as heavy flavour experiment but unique design leads to...

General purpose experiment for the forward region

LHCb Future

÷

Here Physics Programme Limited by Detector But NOT Limited by LHC

- Upgrade to extend Physics reach
 - Exploit advances in detector technology
 - -Fully Software Trigger, 40MHz readout
 - Better utilise LHC capabilities
- Upgrade I(a/b) Collect >50 fb⁻¹ data
 L ~ 2x10³³ cm⁻² s⁻¹
- Upgrade II Collect > 300 fb⁻¹ data
 L ~ 1-2x10³⁴ cm⁻² s⁻¹

Upgrade I •HL-LHC not needed •But compatible With HL-LHC phase

Upgrade II • Utilise HL-LHC phase luminosities

Upgrade I – Beyond the Energy Frontier

- Hardware 1st Level Trigger
 → Fully Software Trigger
- Increase Lumi to 2×10³³ cm⁻²s⁻¹ to collect 50 fb⁻¹
- General purpose detector in forward region

Eur.

. Phys.

<u>-</u>

Ω

(2013) 73:2373

Trigger Evolution – Upgrade I

Flexibility of Fully Software Trigger
 Run II

LHCb Run-II Trigger Diagram 40 MHz bunch crossing rate LO Hardware Trigger : 1 MHz readout, high E_T/P_T signatures 450 kHz 400 kHz 150 kHz h± $\mu/\mu\mu$ e/v Software High Level Trigger Partial event reconstruction, select displaced tracks/vertices and dimuons Buffer 110 kHz of events to disk Alignment and calibration Full offline-like event selection, mixture of inclusive and exclusive triggers 12.5 kHz (0.6 GB/s) to storage

Upgrade I

LHCb Upgrade I for LS2 (2021) 25ns readout, software only triggering

Major UK construction project

 B'ham, Bristol, Cambridge, Edinburgh, Glasgow, ICL, Liverpool, Manchester, Oxford, RAL, Warwick

Collect 50 fb⁻¹ during 2020s (Run 3 and 4)

LHCb Upgrade I: Vertex Locator

LHCb Upgrade I : RICH 1&2

- π/K separation critical to physics
- Most MaPMTs received and qualified

Rings in testbeam

LHC Schedule & LHCb

LHCb Statistics- Timeline

LHCb Statistics- Timeline

Adjustment for 7/813/14 TeV cross-sections

LHCb Statistics- Timeline

• Assumptions made on relative trigger efficiencies have significant uncertainty

Summary

- Unique Design at LHC
 - Acceptance, Vertex Detector, RICH
 - Originally for CPV and rare decays
 - ...but physics in many other areas also
- Major "textbook" Physics Results
 - Searches for New Physics in CPV
 - Rare decay observations
 - Spectroscopy results (7 new particles in 2017)
- Future Plans
 - 2018 is final year of current experiment
 - Upgrade I: Under construction, operate 2020s
 - Upgrade II: early studies, operate 2030s

3rd annual workshop on LHCb Future in Annecy 21-23 March. Theory & experiment. Open to all.

