Flavour Physics Introduction

Martin Gorbahn
University of Liverpool

YETI 2018
IPPP, 8 January 2018

1/53



Flavour Physics?
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Who ordered that?

» Start 1936: Discovery of the muon
[Anderson und Neddermeyer].
(Same charge as electron, different

mass)
» End 2000: Discovery of v, by the
DONUT Collaboration
34 1. Generation v, e u d

2. Generation v, p ¢ s

: & 3. Generation v. T t b

Carl Anderson Electric charge 0 -1 £ —3
Colourcharge 1 1 3 3
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Content

v

charged currents

> Muon decay
> (Semi-)leptonic decays

v

Standard model flavour sector

v

Rare decays

v

An explicit matching calculation
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Fermi Theory

» Effective Theory for p — evv:

4G _
Leff = _7; (Vu‘YAPLH) (eYAPLVe)

(Originally without P; = (1 —vys)/2, i.e.
left-chirality projector)

» Insertion of operator yields

4Gr (_ A _

My = ——= (v Piu [i1(e)yrPro(v,)]

fi \/E[(u)v u(p)] [@(e)yaProlve)
Compare with decay rate I' respectively
lifetime T = h/T":
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2
| M|
Let us determine Gr and compute:
MG = 8GE [ (v )y P ()] [ (wy " Pru’(vy)]
[ (e)yaPLo" (ve)] [0 (Ve)yoPruc(e)]

Average over p polarisation and sum over final state
polarisations:

2
200 ) \Mﬁm

Z ;ﬂ+m Zu P — (%)ij
Z k+me Zu Ve _>(q/l)ij

Gives: [Ms* = GETrlg, v py” (1 =y ) Trlg, vv Ky~ (1 —v°)]
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Decay rate :
In p rest frame: dI" = —IMﬁI2d(D(3).
2m,,

After trace evaluation: IMﬁI2 = 64G§(pq1) (kg2)

32GE (2m)* Pk g1 g5 (4 W v
a m, (2m)? 2E; 2E; 2E, (p—k—q1 — q2)pugr kvas

ar

Integration over ¢; and g, and neglecting m, < m,, gives:

ar G2 Gam?
Y ZF P32 4 E r— —Fu
JE = To0b By —4mE) = 19273

And M = 2.99598 - 10~ *GeV ? yields:
Gr = 1.16410 °GeV 2

Adding QED and m, Corrections:
Gr = 1.16637(1)10 °GeV 2,
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Universality

Apart from elektro-weak corrections are the
charged-current interactions of leptons and quarks
similar.

E.g. for the interaction of an up-quark

4G _
Loff = — 7; (VuY*Pru) (@yaPrve)

4G -
— TZF (VeyaPLO) (dY PLu)

where d' is the weak partner of the up-quark.

which is related via the unitary CKM Matrix to the mass
eigenstates: o )
d'=dV,; +5V, + bV,
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= Ty

Adopting the Fermi theory to 7t (1" < du):

4G -
Leff = — \/EFVM (VevaPrt) (dy*Pru)
At leading order we have
4Gr
My = ——= V(€ Vel BeyaPLl] [dy*Pru] ) 2P
i \/§d< o FeyaPLl [dy*Pru] ")

Insert |0) (0] since leptons are colour singlets.

4Gy

Mﬁ: \/— ud

(" vel [VeyaPLE 0) (O] [dy*Pru] Imct )P
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Matrixelements for m" — [Tv

The Matrixelement for the leptons is:
(Cvel [VevaPLll 10) = st(ve)yaPro(e)

The hadronic (0| [dyPru] [t") most be proportional to a
Lorentz vector.
The only relevant is the T -4-momentum p%

(Of [dy*Pru] (0)|™) = =1 frphe

QCD Effects are absorbed into the decay constant f ..
fr can e.g. be calculated with Lattice QCD.
7" is pseudo-scalar we have:

(Ol [y ysu] Im") = faphr-
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Partial Decay Rate

[Mjz/*> and phase-space integration gives:
+ + G} 2.2 2, 2)\2
Mt —0tv) = 8—7tfﬂ|Vud| mymy (1 — my/m?%)
In particular we have

Mt —etv) m_2 1—m?/m% >
Mt — utv)  md

e
1 —m? /m2

After adding QED-Corrections one finds agreement with
PDG

=1.230(4) - 10*
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b — ctv Anomaly

B-factories & LHCb show B — D"*)tv decay rates larger
than expected

R(D¥)

e
n

T T T[T T[T T [T TTrT T

T
ar, PRL109,101802(2012) Py
elle, P! 14(2015; Ay” = 1.0 contours

RD92,072014(:

=== SM Predictions
R(D)=0300(8) HPQCD (2015)
R(D)=0.299(11) FNALMILC (2015)
R(D*)=0252(3) S. Fajfer et al. (2012)

40

HFLAV
3

PGC) = 71.6%
Il

0.6
R(D)

R(D™)) =
BR(B — D™ 1v)
BR(B — D*){v)
» 410
» SM tree-level

» Experimental
uncertainty
dominant
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Branching Fractions

Branching Fractions of Charged and Neutral Currents
have quite different sizes

» charged current

B(K" — utv) =T(K" = u™v) /Tt = 64%
» neutral current B(K; — yy) ~5-107
K —»ptp)~7-107°

» neutral current B(
» neutral current B(B; — p pu~) ~3-107°
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Why are the branching fractions so different?

Before the discovery of charm quark:
» why are the two Branching ratios

B(K, = pw'u) _ 6.84(11)-10°°
B(K. — vy) _ 547(4) 104

» K; pseudo-scalar = no 1y coupling toputu:
EV\C ’\/\/v
AVAVEY

G /\Ferl = GFO( GF(X)

so different in size?

» naively they would be off similar size
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GIMnastics

» Introduce charm quark to suppress K, — p"p~
» Charm quark and up quark cancel above E > m

w7 1 1
d v N _
@\/Z{ ¢[ — My /d — My ﬁi — Mc
s m Cutoff is then m.?
» The rate is hence o O(G#m?)
» Predict m. ~ 1.5GeV [Gaillard, Lee’74]

AIMK fK 2.2 15
~ V.V —
M S e wl'm; =7-10"

» similarly m; ~ MW from

—_— Vi Vial"Myy
M, ! Vil My S(—- ME,

2
L)=6-10""
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Effective Coefficients Highly Tuned

» In practice semi-leptonic and four-quark operators
contribute

» Their effective coefficients have to be highly tuned to
be consistent with data

m eig

» The constraints in the effective theory is a remnant of
the structure of the full theory

Amfm
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The Standard Model Lagrangian
Standard Model: SU(3) x SU(2) x U(1), one Higgs

0 ) .
b= ( (vt ho) / \/E) and 15 Fermion fields:

Qi(3,2)1/6, ui(3,1)2/3, di(3,1)_1,3, Li(1,2)_1,2, €i(1,1) 4
comprises a highly symmetric kinetic term

(L = Liin + Lyukawa + LHiggs)

— 1
Lkin — E ll)z- Dll)l + Z E F‘:WF%LW
v=Q,u,d,L,e F=B,W,G
i=123

with a U(3)° flavour symmetry. Broken by Yukawa
interactions

Ly = —Yg'éi‘bd]' = YjQibu; — YiLibe; + h.c.
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CKM Matrix

» In the quark sector Yf]@id)dj + Y};Qdmj breaks
U(3)® = U(3)g x U(3), x U(3)g — U(1)3.

» This removes 3 x U(3) —1 x U(1)p parameters, i.e.
3(3Re + 6Im) — 1Im = 9Re + 17Im parameters

» Y, &Y, give2-3 -3 - (Re +Im) — 9Re + 17Im physical
parameters: 6 masses, 3 mixing angles and 1 phase.

2
» Choosing diagonal Y" = %diag {m,, m., m;} we have
V. d V. % b my 0 0
2 u us Uu
Yd - 7\/_ (Vcd Vcs Vcb) ( 0 m 0 )

Vie Vis Vi 0 0 my
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CKM Interaction and Mass Eigenstates

Writing Q; = (Zlf) = ( L;Li] ) gives
Uhsdl®

L
Ldownmass = _d,iL Vl]md]d]R - _md,dlLdZR + h'c‘

and charged-current flavour violation
Ludwi = —iu_uyuvgdn W:__ + h.c.

V2

and no neutral-current flavour violation.
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Neutral & Charged Current Interactions

Mass = flavour eigenstates

» Only charged currents change flavour (o< V)

» Neutral currents are flavour diagonal (i = j) at tree
level

20/53



Unitarity Triangle
» 3 CKM angles |Vub|, [Vcb| & [Vus| from (semi)leptonic

B & K decays
» CP violation in the standard model area of unitarity
triangle
" VisVud  + VaVea + VipVid =0
Unitarity of V =
AN (p+in) — AN 4+ ANl -p—in) = 0
Graphically, ~ X B
(P, 1) 5 d
’/ [ t I W
/o requires top loop ¢
b—»ulv(_ WVl / { [Vidl d 5
b=u aq m/ )\I/:fb ub - “V“f,‘f’ "
(tree-level / d uoct
Weak int.) /f Vig = |Vigle
/A 3

(0,0) 1 (1,0)




Wolfenstein

» CKM parameters from rop
observables that are less osf-
new physics sensitive. =

» Can be used to make
predictions for new

physics sensitive
observables.

Vud
Vcd
Via

Vus Vub

Vts th

Vcs Vcb -

2
1—3A
—A

AN(1—p—in)

A
1— 1N
—AN?

AN} (p —im)
AN?
1
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CKM Factors in Rare decays

Semi-leptonic decays (Vus): A = O0(0.2)

1 A A
Vi=0 A 1 A
AN 1

2, Y, 8
FCNCs which are dominated by top-quark loops:
b—s: b—d: s —d:
VigVil A2 [V Vil A Vi Vgl o AS
Kaon Physics has
background from ReV* Vg = —ReViV.g = O(A)

light states:



CKM Factors in Kaon physics

Kaon observables « Vi Vg —
suppressed in SM
sensitive to flavour violating NP

Using the GIM mechanism,
we can eliminate either V. V4 Or
Vus* Vud — - Vcs* Vcd - Vts* th

Z-Penguin and Boxes (high virtuality):

power expansion in: Ac- Ay « 0 + O(m2/Mw?)

v/ g-Penguin (momentum expansion + e.o.m.):
power expansion in: Ac- Ay « O(Log(mc?/ my?2))

2



Rare Kaon Decays

Kp — ptu | SD

K—mTvv SD

K —»nl*1- | sD

zW\CP v1olatmg most NNLO
QCD known

3

SD +€K LD Xe LD

xPI, Large \T [1603.09721 + Ref]

Now: Accessible to Lattice

Talk by Portelli



Lot
u,c,t m2
u,c,ty YE U, T — L
A M%/v
WS 5
Z ldF Xl V‘Eksvtd(]: Xt — F{Xu CSs c) — F(Xu))
Top (SD),
Charm (Renormalisation
Group Improved) &
A\ Adcp
(Non-Perturbative) My

Qv = (styupdo)(viy™vi)

Matrix element from Kiz decays (Isospin symmetry: KT—m0 e* v)
[Mescia, Smith]
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Rare b Decays

B decays do not show the CKM suppression of K decays
2 photon pollution is much smaller in b — s 1*1- decays

We can test helicity suppressed modes and more operators

Q7 = (brouysy)F*Y, Qv = (bryust)(lyul), Qa = (bryust)(ly,ysl)
=10 =(9

E.g.Bgy—1"1,B—=KO1*I,B— X, ..
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Bs — u* p in the Standard Model

Bsis (pseudo)scalar — no photon penguin

Qa = (bryust)(ly,ysl)

Dominant operator in the SM

2
helicity suppression (O< %)

+ Box diagrams

x [VipVisl = [1 =A% (5 —in —p)| Veo

Effective Lagrangian in the SM:
Lot = GEM3y Vip Vis (CAQAa + CsQs + CpQp) + h.c.

Scalar operators: Qs = (BRqL)(ﬁ) Qp = (quL)(h/5l)
Standard Model: Cs & Cp are highly suppressed
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Theory Prediction Bs—u*u-

We find for the time integrated BR @ NNLO & EW

[Bobeth MG, Hermann, Misiak, Steinhauser, Stamou “13] Bl‘ the — (365 + 023) 10-9

OI')_' 0_8 | L l | L } | L I i | | L ] | LD B | 1 | L [ |
O N ATLAS Preliminary |
§ il {s=7TeV,4.9f" -
N B fs=8TeV,20fb" -
=, — _
T 04l -

o —
Q _
(a8 _

0.2 ]
0 [ T N N N N O

Contours for -2 Aln(L) = 2.3, :

-0.2 6.2, 11.8 from maximum of L  __|

R B .1 B T \1 [ \. [ .

0 1 2 3 4 5 6 7



Bs — u* u and New Physics
Contribution of Qs and Qp are not helicity suppressed

Potentially large coetficients Csand Cpin 2ZHDM

Yet, only if contribution to AM; is suppressed,
i.e. type 2 Higgs potential, As « 1 and type 3 Yukawas

which is the MSSM at tan 3 » 1, with the Branching Ratio
BR « (tan 3)° Ma™
Non-zero Al's allows for another untagged observable

beyond the BR via an effective lifetime measurement.
Bruyn, Fleischer, Knegjens et.al. “12]
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Status of Zeggtor b — s 171

SM Wilson coefficients: Matchmg at u = Mw

2 B )S
B
/.\ > " (C10,9) / /

Known at two-loops in QCD for NNLL [Bobeth, Misiak, Urban, “99]

Renormalisation Group Equation — p = Mw
p

Legt @ NNLL in QCD and NLL EW for all but Cg & Ci90 EW matching
[Gambino Haisch'01; Haisch “05, Bobeth, Gambino, MG, Haisch “04, MG, Haisch "05, Huber

et. al. "05]
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B — KM [ K] + £+

Many angular observables
for

B — K[ Kn] + ¢1¢

327 d+r
9 dg? dcosB; dcosOk dd

+]5sin?0k sin®0; cos 2 + J4 sin 20 sin 20, cosd + J5 sin 20k sinB¢ cos¢

= J1s sin®Ox + Jic cos?0k + (Jas sin?Ok + Jac cos?Ox ) cos 20,

+(Jgs sSin?Ox + Jge cos?0x ) cosB¢ + |- sin 20k sind sind

+Jg sin 20k sin 20, sing + Jg sin“0Ok sin?0y sin 2¢

From these one can construct
observables as e.g. forward backward asymmetry



Exclusive B — KU I+ I- decays

Systematic heavy-quark high-q?

expansion in Agcp/mb S
~
(SCET) for 2 <<mX(J/¢) &
|[Benke, Feldmann, Seidel "01] Art: Haisch
OPE for g2 >> m2(J /)
[Grinstein et.al. ; Beylich et. al. *11] Am; q

Non-perturbative input: Form factors from sum-rules
(small g?) and Lattice QCD (large g?)

See talk by Straub & Jager



Anomalies

Various Anomalies, in low
Branching ratios in angular
observables such as P’s.

Plenty of discussion of
SM uncertainty, which
determines the significance.

Yet theory uncertainty small ir

Rk = Tuey/Tery = 1.00(1)
Bordone et.al. [1605.07633]

1.00]
0.95}
0.90f
£ 0.85]
0.80] _

e T T e Y LR e L L L LR LR LR LR L L L Ll
C L

0.70~—

LHCb 2014




Anomalies

Observable

Anomaly o

BR(B,/s — (K™ /@)up)
PL{(B — (K"))utp™)

BR(B — D™ tv)

BR(B — D! *)ﬂv)
BR(B — K®putu)
BR(B — K(*)e+e—)

%, direct K — 7t CP violation
(g —2) i

Below @ small g  1-2?
Below @ some q°  2-3?

Enhanced w.r.t SM 4.1

Below SM 3.7
Below SM 29
Below SM 3.9
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Higher Order Corrections

» In effective theory calculations we can systematically
add higher corrections.

» These will involve extra light particles such as
Gluons and light quarks.

1
» But how can we expand (e in external

momenta k if the masses are light or even zero?
» This will generate infrared divergences?
The power of effective theories is that IR divergences

cancel out in
Agr = Aefr

24/53



Matching of the Weak Hamiltonian
We will match bd — cii using the standard model
qull = LSM(GEL/ u, di 5,C, b/ t WI Z)

and the Effective Lagrangian

2
4
[Jeff = L(G’L/ u, d/ s,C, b) - %GFVCbV:;d z CiQi
i=1

Q1 = (cT*y,PLb)(dT*y"Pru)
Q = (Cy Pub)(dy"Pru),

T" are the SU(3) colour matrices and P; = (1 —s5)/2.
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Diagram
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Tree Level Calculation

In the calculation of the truncated bd — cii Green’s
function, the following structures will appear:

S1 = (eTyubr)(dT*y"uy)
Sy = (Cyubr)(dy"ur)

In the full theory we find at tree (Gr = V262 (8M2,5%))):

cil —62 VCbV —4
Ay = 5 3 g% = YV
Ao = _EGFVcbV::d > CilQi)o = GF A Z CiS;
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Tree Level Matching

The tree-level matching equation

bd—cii __ gbd—cii
A =A

full,0 eff 0
results in
2
—e? V4V, —4
S GrVa V), C151+ G5
2SWM2 M 2= \/EFcb ud;(lrF 25,)

which implies for the leading order coefficients:

=0 and C =1
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One-Loop Matching

We will now perform the one-loop matching assuming a
common mass m for all light quarks (u,d,s,c,b). This mass
will regularise the IR divergences.

b ¢ b 9 c
b ¢ [+
W
b c
d u w g
w

u

d g u d u d N
b c b [

b b c c b

d d u d d u d u u
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Full Theory: Diagram 1 + 2

Defining N = GF &V, diagram 1 and 2 give

4 \/_

2

2 m
Afbﬁl_ﬂlz = NCr (Esz — 5,(3+2log E) + ZSy)

where Cr = (N% —1)/(2N¢) and

Sy = (€T yuby) (AT v ug) + RL

» The light quark mass m regularises the IR
divergences.

» There is still a divergent result. What is missing?
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Full Theory: Counterterm

The W-quark interaction receives a counterterm
contribution from Z, =1+ o/ (47‘[)Z$ ) where

Zy,' =—(Cr/e)

2
At = 27 INS, = ~NC;2S,

so that

2

m
AR | AR NG (—Sz(3+210gﬁ)+25y)

is finite, but still dependent on the light quark mass m.
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Effective Theory: Diagram 1 + 2

The effective Theory results in the same expression:

- 1 m?
AMSE(CY Qy) = CVNCr (gzsz ~ S8+ 2log - 5) + ZSY)
The field renormalisation of the four quark fields in Q,
gives the same counterterm as before.

A (0 Qy) + 22 A Qy)

2
= CVNC; (—52(3 +2log %) + zsy)

which equals our full theory result for Céo) =1

» These diagrams do not contribute in the matching
calculation.
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Full Theory: Diagram 3 — 6

The contribution of the remaining diagrams are all finite

mz
AfiriTs =N ((53 —1051) (1 +1In W) - Sx)

» In this calculation we pick up the effects from the
heavy W Boson via the In M.

» The Inm? term regularises the infrared divergences.

Here we have defined the following structures:

S3 = (ET"Vyuyvyabl)(dT"y YVY?\”L)

Sy = (Eyuyvyabu)(@dy*y*y uy)

Sx = [Ty y+vbr)@T*y*yYur) — LR — RL + RR]
—8 [(eT"b,)(dT"ug) + RL]
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Effective Theory: Diagram 3 -6

The effective field diagrams are divergent
i 1
A= (CyQ0) = Ngc;m (10S; — S3)
(0) 1 W
+ NCZ —Sl — —53 - SX + (1051 — 53) In{ —
2 m?

But we have to expand our bare Wilson Coefficient

CQu = Lz Q)

(4 )
bd—>cuZZ NC ZZ

This would mvolve new operators that have tree-level
contribution to 53 Assuming they exist,

AU (CY Q) + AL ZZ 'Q;) would be finite.
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Matching Equation Ap = Agp
Adding the NLO Wilson coefficients

bd—>cu Z C Qz NZ Ci(l)s
to the matching equation
(S5 — 105y) (14—an> sX_Zc

1
clV (—51 — 55— Sx+ (1051 - S3)In (%))

we see that the IR divergence cancel with C, ESE

3
555 — 981 + (S5 — 1081 ln— Zc
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IR Dimensional Regularisation

The calculation simplifies if we use dimensional
regularisation for the infrared divergences.

» Set the light quark masses to zero and expand in
external momenta.

» Massless diagrams vanish

» Only operator renormalisation contributes from
effective theory.

» Wave function renormalisation drops out.
Full theory calculation (by hand) gives:
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Wilson Coefficients

» Structures S; = _(ET“yuyvyy\bL)(HT“y”yVy)‘uL) and
Sy = (cT"y,br)(dT"y"uy) are not independent for d=4.
Define <E1>(0) = S3 — 1651 = SE1
Show that (E;) ) = 0in d = 4 by using the relation
YO = Yy YOy ROy — e TPy oy
We can then rewrite the matching equations:

v

v

v

35,98, + (S5 — 108 )1nL2—
2 3 1 3 1 M%v_
2

3
(681 + Se1) In A%%v 158, + 5501 = Z chs,

2
Hence C; =0 + ﬁ(15—|—61nL2) and C, =1+ «s - 0.
47 My,

v
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Operator Counterterms

In the basis {Q1, Q,, E1, E»} the renormalisation matrix
reads:
-2 4/3 5/12 2/9
Z(11) _ 6 0 1 0
i ~—f1o0o 0 -7 -4/3
0 0 -6 0

From Z Zg'l) <Qj>(0) = 651 + Sg; = —10S; + S; this gives
j

the contribution that results in a finite matching
correction.
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Counting Dimensions

The action is dimensionless. Consider e.g. the effective
interaction

Jd4xﬁeﬁ = —% ((0h)* — Mih*)—1/4G] G +cohGl, G

where G, = 9,G%, — 3,G!, + if""¢G.G,.

Object (0 h)2 0 h (G‘I’tw)2 Gu h(G‘IiW)2 Cg
Dimension D 4 1 1 4 1 5 -1

We see that only the effective operator has mass
dimension D > 4.
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Power Counting

» The Dimension D>4 plays an important role if we
count the superficial degree of divergence

» Superficial: Divergence after subdivergencies are
subtracted
» In ascalar ¢" theory the degree of divergence is
Div=(n—4)V+4—N,
» For n=5 we would have a D=5>4 operator ¢’
> One ¢ insertion: Diagrams with N, = 5 external legs
become divergent. Renormalise with D=5 operator.
» Two ¢’ insertions: Diagrams with N, = 6 divergent.
Renormalise with D=6 operator.

» Dimensional regularisation: Operators with
dimension D mix only into dimension D operators.
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Renormalisation Group Equations

» Higher dimensional operators are generated via
matching.

» In the effective theory these operators have to be
renormalised.

» This leads to renormalisation group running and
large logarithms.

» We can resum these logarithms using
Renormalisation Group Equations (RGE).
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Dimensional Regularization

Let us consider only the Lagrangian of colour charged
fermion:

Locp = i (aéij + gT?j(/ﬁ”) V; — map; — 1/4G!, G

In Dimensional Regularisation we work in d space-time
dimensions. E.g. we have redg,,g"" =d.

The dimensionless of the action Jdde ocp implies:

Object o U Gy g
DimensionD 1 (d-1)/2 (d-2)/2 e

where ¢ = (4 —d)/2 such that D[ gb&"p ] = d. Le.
(4—d)/2+(d—1)+(d—1)/2 =d.
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Renormalisation

The regularisation renders the divergences finite but

regulator dependent. Le. they will appear as % poles. We

absorb these in the so-called bare parameters in the
renormalisation procedure and write

ngimwn o <a51] + gole(E()) Woj — moPoiPoi
in terms of the bare parameters.
1
bo = Z4 0, o = Zym,
1
Go=2¢,G 80 = K28
Here the scale p appears so that g is dimensionless.
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Bare Parameters

» The bare parameters are scheme and scale
independent: They do not depend on the choice of 1
and the Z’s.

» Yet the relation between bare and renormalised
parameters depends on p and the choice of Z.

Hence we write gg = n°Zg¢(u) and expand !

Z,=1+ g 12(1,1J+Z(1,0) 4
¢ (4m)2 \ e

4
8 1 (2,2) 1 2,1) (2,0)
7 (gz + 2P0+ 70 )+

lwe assume the MS choice for p here
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Beta Function
To derive the renormalisation group equations for g we
use the scheme invariance of go = 1 gZ,:

d c e, d e d
0= M8 = €H 8§Zs+ 1 (u@g)zg +p guﬁzg
Solving for u% g gives

d d
B(g €)= Han8 =<8 —ng‘lu%Zg = —eg+ B(g)

where we have

4 d 4, dg d
_ oyl — 71 _
Bl&) = =8Z g Ze = =8Zg Wy 30%s
d 0o 2¢° 4¢°
_ 1 e (11) 8 7(21)
=8Z, (B(g) eg)ngg A% + (4ﬁ)4zg +...
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Renormalisation of Composite Operators

Consider the effective Lagrangian that comprises a
dimensiond < 4 term £* andd =6 operators Q; and a
new physics scale A:
Ly =LW+AY CQ:
i

If we only consider one insertion of Q; we renormalise

C,‘ — C()i = C]‘Z]‘i = (ZTé)l

2 1 4 1
Zij = i+ ( Zgl'l)+zfjl'°))+g—< Z(2'2)+...)+-..

(4m)2 \ e (4r)% \ €270

plus the fields and couplings in Q; — Qoi = Zgy Q;.
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RGE for Wilson Coefficients

Using similar steps as before one finds

i d .
u@C =91C, where = [S(g)Z@Z_1
and
NURPy SRS
Y 400 _pzANZ0 |z 10z | gp H(10)

> In the MS-scheme only UV divergences are
subtracted.

> 7110 only present when generated by UV 1/e times €
from gamma algebra.
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Leading Order Solution

Writing Cw) =U(y, uo)é(po) we have to show
d ~ .
uﬁu(u, o) =y U(p, o) at LO, where

U (w, 1) = V diag (o () ) diag (o (po)™) V™
and
(Vflf/(O)Tv> =2
ij
Exercise: Show using

os(p)? d
4t do(p)

d
u@diag(fxs(u)_”") = —2p diag(o(p) ")+ ..
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Resummation of Logarithms
Deﬁning n==&s ( “0)/0(5 ( FL)

U0, wo) = Vdiagm®) V-1

we can expand the leading order expression using

o2 (o) noood(uo)
2o In(2)

(470)2

o5 (1) = os(o) — +

4p2In(2.
Ho

Example: One Operator where ¥y = vo:

2
ocs(uo)YOlnngocs(uo)

U (1) =1
(K to) =1+ = o A

(v2/2—2Bgyo) In? i+. .

This is a sum of infinite terms
o0

U (1, 10) = ) a0 I/ )"
n=0
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RG Improved Perturbation Theory

The evolution term U (1, 1g) resums the large logs:
» E.g. In(My/Anp) in case of SM effective
» or In(m;,/My) for B meson decays.
Consider B decays where Clwy) = Uy, uw)Cluw):
» Expand U (W, ww) around U (w,, M)
> Uy, ) = T (py, M) T (M, py) =
0 (11, My )1+ 3596 In(Mi/ 1)

» The %iﬁ/gln(Mw/uw) is a small log.

» The In(py) will cancel in U(p,, Hw)é (1w) through
higher order corrections to C (1w).

» This will be o; x small log correction to é(uw).
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Evanescent Operators

» We had to introduce additional operators to perform
the calculation in d dimensions.

» Yet there should be only be two physical operators —
Q1 and Q, — for our process.

» But we have to introduce additional evanescent
operators for each loop order.

» The evanescent operators should not contribute to
physical processes.

» But if we consider the one loop matrix element
(En)y = Xa(Qu) o) + X2{Q2)0) + - -
» The X; are finite that origin from UV divergences.
» The gamma algebra gives € if we project onto Q;
and Q; since E; = 0 if d = 4 and is multiplied with
1/€ from loop Integral.
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Evanescent Renormalisation
Renormalising the evanescent operators we have

(Eva) +ch)21<Ql>(0) +Z§232<Qz>(m =
(X1 + Zg5 () o) + (X2 + ZEp HQ2) (o) + - .- -

by choosing Z 1(51()2, = —Xj. = Matrix elements of

evanescent are not contributing to physical operators.
While the ADM reads

~ (Yoo Vo
Y (0 m)

via the cancellation (locality) at NLO and beyond:



Only brief introduction

» Many important discoveries have been made with
the help of flavour physics

» Several suppression mechanism give unique
sensitivities to physics beyond the standard model

» The flavour sector might still provide us with new
exciting results

» Calculations provide conceptually interesting aspects
of QFT
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