

Fabrizio Caola, IPPP Durham

Higgs Maxwell Workshop — ``Higgs and Einstein" Edinburgh, 14 February 2018

Particle physics circa 2018

- With the discovery of the Higgs, for the first time we have a ``complete'' theory of fundamental interactions
- If we lived inside a collider: found the ``ultimate'' theory?
- The world beyond colliders: strong strong indications of BSM (dark matter/energy, baryon asymmetry...)
- At least some of these new physics phenomena have a simple particle explanation → look for them!
- Searching for new physics (at colliders): Higgs plays a central role

Particle physics circa 2018

WHY THE HIGGS?

the

role

- •New kid on the block → you want to know it better
- Crucial connection to unitarization of the SM
- •Crucial connection to the EW scale and nature of the EW vacuum (EW phase transition...)
- • $\Gamma_{\rm H}$ difficult to measure \rightarrow decay to new particles
- *H*⁺*H* only relevant gauge singlet operator → natural portal to new sectors

The NEW INFORMATION: $m_H = 125 \text{ GeV}$.

The NATURALNESS PROBLEM: ``In any [reasonable] theory we know where the Higgs mass is computable, a low mass Higgs implies NP at low scales" [~N. Arkani-Hamed]

NP at low scales... not quite

ATLAS SUSY Searches* - 95% CL Lower Limits

Only a selection of available mass limits. Probe *up to* the quoted mass limit for m ≈0 GeV unless stated otherwise

Mass Scale [GeV]

*Observed limits at 95% C.L. - theory uncertainties not included

For many `standard' searches, the LHC is already reaching its asymptotic potential (energy reach)

NP and where to find it

The traditional way: **BUMP HUNTING**. Little to no theoretical input needed. So far: only Higgs. Already running out of steam at the LHC...

- •In the SM, structure of Higgs interactions completely fixed if we know m_H
- •NP would modify this
- Careful scrutiny of Higgs interaction may eviscerate deviations from SM predictions, pointing towards NP
- LOOK FOR (SMALL) DEVIATIONS FROM
 SM BEHAVIOR → good control on theory predictions!

phenomena

 $d\sigma = \int dx_1 dx_2 f(x_1) f(x_2) d\sigma_{\text{part}}(x_1, x_2) F_J(1 + \mathcal{O}(\Lambda_{\text{QCD}}/Q))$

The path to precision: theory $\mathrm{d}\sigma = \int \mathrm{d}x_1 \mathrm{d}x_2 f(x_1) f(x_2) \mathrm{d}\sigma_{\mathrm{part}}(x_1, x_2) F_J(1 + \mathcal{O}(\Lambda_{\mathrm{QCD}}/Q))$ Input parameters (α_s , PDFs...): ~few percent. Remarkable NP effects: No good control/ control, in principle improvable understanding of them. Fortunately, *≤* percent HARD SCATTERING MATRIX ELEMENT

•large $Q \rightarrow most$ ``fundamental'' part

• $\alpha_{s} \sim 0.1 \rightarrow$ For TYPICAL PROCESSES, we need NLO for ~ 10% and NNLO for ~ 1 % accuracy. Processes with large color charges (Higgs): $\alpha_{s} C_{A} \sim 0.3 \rightarrow N^{3}LO$

The noth to provision theory

HIGHLY NON-TRIVIAL QCD/QFT PROBLEM! Higgs key motivation in pushing forward collider pheno

slide from S.

Forte, Blois 2017

Since January: at least 5 state of the art QCD papers involving the Higgs

[Lindert et al.: NLO Higgs at large p_t; Bonetti et al: mixed QCD-EW; Mistlberger: analytic ggF@N³LO; Cruz-Martinez et al: differential VBF@NNLO; Jones et al: NLO ggF with full m_t dependence

Higgs production at the LHC: overview

CAREFUL: $\Delta_{TH} \rightarrow QCD$ uncertainty on the TOTAL (=unobservable) cross-section

Higgs production at the LHC: overview

• Although actual error (much) larger than for the (unobservable) σ_{TOT} , situation under good control

``gluon fusion"

- Higgs production in association with many jets is known to (at least) NLO QCD as well → probe interesting dynamics
- •By and large, currently theory error are not the main showstopper for LHC analysis
- In many cases, backgrounds or poorly understood QCD effects are the most problematic part (ttH, VBF...)
- Experimentally: at least evidence for all the main channels!
- First results for differential distributions!

CAREFUL: $\Delta_{TH} \rightarrow QCD$ uncertainty on the TOTAL (=unobservable) cross-section

Gluon Fusion

The need for higher orders

The need for higher orders: Higgs

Similar picture at the differential level: $O(\alpha_s^5)$ [NNLO] needed to match exp. systematics

Gluon fusion: the fine prints

At this level of precision, basically everything becomes relevant

0000

[Bonetti, Melnikov, Tancredi (2018)]

A step back: how we do computations...

- At LO, gg → H mediated by virtual heavy quark loop → already at NLO, complicated 2-loop amplitudes. At NNLO: prohibitively complicated!
- HOWEVER: m_H ~ 125 GeV ≪ m_t ~ 173 GeV → Higgs wavelength not enough to resolve the structure of the loop → effective ggH description, much simpler!

• All higher order computations use this trick.

• EXCELLENT APPROXIMATION, but there are cases when it is inadequate

1) *b*-quark effects at low p_T

- Point-like approximation clearly not valid for bottom quark
- $\bullet Although \ y_b \ll y_t, \ top/bottom \ interferences \ non-negligible$
- In particular: in the Higgs transverse momentum distribution, Sudakov-like double logarithmic enhancement. Very interesting theoretically: emission from *virtual SOFT QUARKS*, related to angular momentum conservation ``helicity flip'' on the quark line

1) *b*-quark effects at low p_T

Logarithmic enhancement delicate → important to consider *impact of (large) QCD corrections*

 $pp \rightarrow H+j @ 13 \text{ TeV}$ 0.04 0.02 0.00 -0.02 -0.02 -0.04 -0.04 -0.06 -0.08 -0.06 -0.08 -0.10 $-1.0_{\text{tb}} / \text{LO}_{\text{tt}}$ -0.10 -0.10

100

120

140

40

20

60

80

 p_{\perp} [GeV]

Requires understanding of highly non-trivial multi-loop amplitudes involving *virtual massive particles*

RECENTLY COMPUTED! [Lindert, Melnikov, Tancredi, Wever (2017)]

> Despite (large) corrections, the interference shape stable under QCD corrections → solid observable

2-) the boosted region

- If the Higgs recoils against a high transverse momentum jet \rightarrow high Q process, can resolve the top loop
- Crucial process to disentangle anomalous ggH and ttH couplings!

2-) the boosted region

• As for the *b* case, QCD corrections are expected to be large and require very complicated loop amplitudes → until recently only LO

 10^{0}

• This year: TWO CALCULATIONS

As in the *b* case: very large corrections, but structure of QCD corrections largely insensitive to quark mass \rightarrow solid distribution

VBF: inclusive corrections

• To a very good approximation: corrections to the two legs can be treated independently (*cross-talk starts at NNLO*, *and it is color and kinematic suppressed*)

 This observation makes the calculation much simpler → 3rd order QCD correction (N³LO) known [Karlberg, Dreyer (2016)]

The perturbative expansion:

 $\sigma^{13 \text{ TeV}}[\text{pb}] = 4.099 - 0.129 - 0.038 - 0.004$

Already NLO ~ 3%. Why compute higher orders?

VBF: differential results

The total cross section is not measurable! In particular for VBF,

VBF and large corrections: jet dynamics

With experimental cuts: realistic requirement on hadronic activity \rightarrow non trivial jet dynamics

Can explain at least partially why corrections larger than at the inclusive level

 $VH, H \rightarrow bb$

The H→bb decay

- H→bb decay extremely hard to observe, very large background. E.g.: tt → Wb Wb → bb l v + unobserved, and $E_b \sim 65 \text{ GeV} \sim m_H/2...$
- Still, it was possible to find significative evidence using VH production mode (tagging V)
- Analysis relies on the different features of signal and background \rightarrow good control on predictions is important 0.100 $\frac{H \to W \ (LO \ dashed, \ NLO \ solid)}{\mu_{F} > 120 \ GeV}$ MCFM: $(F \to W)$
- In particular, b quarks can radiate gluons
 → shape distortions due to corrections in the decay
- Until recently: NNLO_{prod} x NLO_{dec}
- What happens at higher orders?

VH, H→bb decay@NNLO

- NNLO corrections for decay recently computed, neglecting the bquark mass, i.e. $y_b \neq 0$ with $m_b = 0$ [Ferrera, Somogyi, Tramontano (2017)]
- Large deviations found, 5% corrections to the fiducial cross sections w.r.t. NLO

IN PRINCIPLE, PROBLEMATIC!

VH, H→bb decay@NNLO

 However: large corrections driven by extra parton emission → approximated in exp. simulations using parton shower. Could account for some of the correction...

• Indeed: PS simulations capture the bulk of the NNLO correction [FC, Melnikov, Roentsch (2017)]

H->bb decay@NNLO: a theoretical issue

- To facilitate computations, decay computed with massless *b*-quarks: $m_b \ll m_{\rm H}$
- Comparison with exp. [realistic final state]: use particular way of constructing *b*-jets, which uses from the fact that soft quarks don't lead to any singularity
- This procedure is fine at LO/NLO, but problems arise at NNLO
- The problem: top/bottom interference

[Roentsch, talk at HXSWG VH meeting]

H->bb decay@NNLO: a theoretical issue

- In the SM, "standard" y_b^2 and interference non separable!
- •Why is this a problem? We require helicity flip → after factoring out one power of m_b, amplitude acquires sub-leading power divergences when *the b quarks are collinear OR soft, regularization procedure of before does not work*
- In other words: amplitude develops logarithmic dependence $ln(m_b)$, cannot set $m_b \rightarrow 0$

CAREFUL: $\Delta_{TH} \rightarrow QCD$ uncertainty on the TOTAL (=unobservable) cross-section

Conclusions

- No obvious sign of NP at the LHC → crucial to perform detailed theory / experimental comparisons, to look for deviations from SM. Higgs is an obvious place to look...
- These studies are forcing us to keep improving our understanding of collider phenomenology → very good description of Higgs productions/decays
- The main goal are Higgs studies. However, in the process we keep learning important new information on a *real world quantum field theory*. Another (important) legacy of the LHC
- The progress is huge and it is happening very fast, could not make justice to it in half an hour. Apologies if your favorite topic was missing.
- Despite the progress, we are still very far from exploring the full potential of the (HL-)LHC (and future colliders). *A lot of interesting non trivial work still to be done*

Thank you very much

for your attention