Nuclear Astrophysics

Marialuisa Aliotta

School of Physics and Astronomy - University of Edinburgh, UK Scottish Universities Physics Alliance

Higgs Workshop, Royal Society Edinburgh – 14 February, 2018

M. Aliotta

How much carbon is there in the Universe? Where does it come from?

Nuclear Astrophysics

- Where do all chemical elements come from?
- How do stars and galaxies form and evolve?

Intimate connection between MICRO COSMOS and MACRO COSMOS

The Messengers of the Universe

electromagnetic emissions

radio, microwave, infrared, optical, X-ray, γ-ray

Crab Nebula SN 1054

direct messengers

neutrinos, cosmic rays, meteorites, lunar samples, ...

gravitational waves

(Solar) Abundance Distribution

Data sources:

Earth, Moon, meteorites, cosmic rays, solar & stellar spectra...

Features:

- distribution everywhere similar
- 12 orders-of-magnitude span
- H ~ 75%, He ~ 23%
- C → U ~ 2% ("metals")
- D, Li, Be, B under-abundant
- exponential decrease up to Fe
- nearly flat distribution beyond Fe

M. Aliotta

The Origin of the Elements

Burbidge, Burbidge, Fowler & Hoyle (B²FH):

Rev. Mod. Phys. 29 (1957) 547

Synthesis of the Elements in Stars*

E. MARGARET BURBIDGE, G. R. BURBIDGE, WILLIAM A. FOWLER, AND F. HOYLE

Kellogg Radiation Laboratory, California Institute of Technology, and Mount Wilson and Palomar Observatories, Carnegie Institution of Washington, California Institute of Technology, Pasadena, California

M Aliotta

birth		evolution	1	death
low-mass star 0.1 solar masses	low-mass star (0.1 solar masses)	star collapses and evolves in	to a brown dwarf	brown dwarf
sun-like stars 1 solar mass			- O	white dwarf
high-mass stars 10 solar mass	high-mass star (10 solar mass)	red giant	of planet of star explodes as a supernova	neutron star black hole

massive stars contribute to chemical evolution of the Universe later generation stars form out of enriched material: more metal rich

Direct evidence for nuclear reactions in stars?

Solar Neutrino Detection at Homestake in 1960s

1965: Ray Davis inside chlorine tank that used as for solar neutrino detection Credit: Anna Davis 1982: discovery of 1.8 MeV γ -rays associated with ²⁶Al decay (t ½ = 7x10⁵ y) direct proof of ongoing nucleosynthesis in our Galaxy

Light curves of supernovae explosion powered by radioactive decay

Dressler et al, J Phys G: Nucl Part Phys 39 (2012) 105201

Puzzling Facts and Open Questions

- Big Bang Nucleosynthesis: Li problem(s) and the D abundance
- Core metallicity of the Sun
- Fate of massive stars
- Explosive scenarios: X-ray bursts, novae, SN type la
- Pre-solar grains composition
- Origin of Heavy Elements
- Astrophysical site(s) for the r-process

Thermonuclear Reactions in Stars

CROSS SECTION

Gamow peak: energy window where information on nuclear processes is needed

kT << E_0 << E_{coul} \implies 10⁻¹⁸ barn < σ < 10⁻⁹ barn \implies Major experimental difficulties

<u>Procedure</u>: measure $\sigma(E)$ over wide energy, then <u>extrapolate</u> down to $E_0!$

S-FACTOR

σ = E⁻¹ exp(-2πη) S(E)

Reaction Yields and Cross Sections

 $Y = N_p N_t \sigma \eta$

 N_p = number of projectile ions

typically, stable beam intensities 10^{14} pps (~100 μ A)

N_t = number of target atoms typically, 10¹⁹ atoms/cm²

 σ = reaction cross section (given by nature) typically, 10⁻¹⁵ barn (1 barn = 10⁻²⁴ cm²)

η = detection efficiency
 typically, 100% for charged particles
 ~1% for gamma rays

Y = 0.3-30 counts/year

maximising the yield requires:

- improving "signal" (e.g. high beam currents, high target density, high efficiency)
- reducing "noise" (i.e. background)
- combination of both

ideal location: underground + low concentration of U and Th

Nuclei in the Cosmos I, 1990 - Baden/Vienna, Austria

"Some people are so crazy that they actually venture into deep mines to observe the stars in the sky" Naturalis Historia – Pliny, 44 A.D.

M Aliotta

Experimental Nuclear Astrophysics

M Aliotta

LUNA: Laboratory for Underground Nuclear Astrophysics

first underground accelerator in the world

1.4 km rock overburden: million-fold reduction in cosmic background

LUNA Phase I (1992-2001): 50 kV accelerator

investigate reactions in solar pp chain

duoplasmatron ion source on 50kV platform

entirely built by students!

The ³He(³He,2p)³He Reaction and the Solar Neutrino Puzzle

no extrapolation needed; no new resonance found

M. Aliotta LUNA: 400 kV accelerator

M. Aliotta

25 year of Nuclear Astrophysics at LUNA (LNGS, INFN)

• solar fusion reactions

 3 He(3 He,2p) 4 He 2 H(p, γ) 3 He 3 He(α , γ) 7 Be

- electron screening and stopping power
 ²H(³He,p)⁴He
 ³He(²H,p)⁴He
- CNO, Ne-Na and Mg-Al cycles
 ¹⁴N(p,γ)¹⁵O ¹⁵N(p,γ)¹⁶O ²²Ne(p,γ)²³Na ²²Ne(α,γ)²⁶Mg ²³Na(p,γ)²⁴Mg ²⁵Mg(p,γ)²⁶Al
- (explosive) hydrogen burning in novae and AGB stars ${}^{17}O(p,\gamma){}^{18}F {}^{17}O(p,\alpha){}^{14}N {}^{18}O(p,\gamma){}^{19}F {}^{18}O(p,\alpha){}^{15}N$
- Big Bang nucleosynthesis ${}^{2}H(\alpha,\gamma){}^{6}Li$ ${}^{2}H(p,\gamma){}^{3}He$ ${}^{6}Li(p,\gamma){}^{7}Be$
- neutron capture nucleosynthesis
 ¹³C(α,n)¹⁶O (to start soon)

some of the lowest cross sections ever measured (few counts/month)

18 reactions / 25 year ~ 20 months data taking per reaction!

Puzzling Facts and Open Questions

- Big Bang Nucleosynthesis: Li problem(s) and the D abundance
- Core metallicity of the Sun
- Fate of massive stars
- Explosive scenarios: X-ray bursts, novae, SN type la
- Pre-solar grains composition
- Origin of Heavy Elements
- Astrophysical site(s) for the r-process

Pre-Solar Grains Composition

Rocks from Space: the Importance of Meteorites

fragment of Allende Meteorite (named after nearest post office) 8 February 1969 – Mexico

 best known and most studied meteorite in history **Carbon-Aluminum inclusions**

isotopic anomalies compared to solar abundances provide evidence for processes that occurred in other stars before Solar System formed

Pre-solar grains in meteorites

- Carbon-rich (diamond, graphite, silicon carbide)
- Oxygen-rich (silicates, Al-rich oxides, ...)

Group I (about 75%): show excess in 17 O compared to solar values; origin well-understood: red giants (1-3 M_{\odot})

Group II (about 10%): excess in ¹⁷O, but depleted in ¹⁸O (up to 2 o.o.m. less than in solar system) **origin highly debated!**

¹⁷O(p, α)¹⁴N reaction

hydrogen burning in various stars + composition of pre-solar grains

PhD project Carlo Bruno

M Aliotta

The ¹⁷O(p, α)¹⁴N reaction

Buckner et al, PRC 91 (2015) 015812

Purpose-built scattering chamber to host array of 8 silicon detectors

Bruno et al EJPA 51 (2015) 94

- protective aluminized Mylar foils (2.4 μ m) before each detector
- expected alpha particle energy E \sim 200 keV (from 70 keV resonance in $^{17}O(p,\alpha)^{14}N$)

- background measurements above- and under-ground; with and w/o shielding
- detector calibration + foils thickness measurement
- detection efficiency (simulations + measurements)
- re-determination of 193keV resonance strength

Edinburgh

Gran Sasso

Eur. Phys. J. A (2015) **51**: 94 DOI 10.1140/epja/i2015-15094-y

THE EUROPEAN PHYSICAL JOURNAL A

Regular Article – Experimental Physics

Resonance strengths in the $^{17,18}{\rm O}({\rm p},\alpha)^{14,15}{\rm N}$ reactions and background suppression underground

Commissioning of a new setup for charged-particle detection at LUNA

LUNA Collaboration

C.G. Bruno¹, D.A. Scott¹, A. Formicola², M. Aliotta^{1,a}, T. Davinson¹, M. Anders³, A. Best², D. Bemmerer³,
C. Broggini⁴, A. Caciolli^{4,5}, F. Cavanna⁶, P. Corvisiero⁶, R. Depalo^{4,5}, A. Di Leva⁷, Z. Elekes⁸, Zs. Fülöp⁸,
G. Gervino⁹, C.J. Griffin¹, A. Guglielmetti¹⁰, C. Gustavino¹¹, Gy. Gyürky⁸, G. Imbriani⁷, M. Junker², R. Menegazzo⁴,
E. Napolitani⁵, P. Prati⁶, E. Somorjai⁸, O. Straniero^{2,12}, F. Strieder¹³, T. Szücs³, and D. Trezzi¹⁰

Results ${}^{17}O(p,\alpha){}^{14}N$ reaction

4000

3000

Counts/C

1000

0 100

200

300

400

use stronger 193keV resonance to identify ROI for expected alpha particles from 70keV state

M Aliotta

Improved Direct Measurement of the 64.5 keV Resonance Strength in the ${}^{17}O(p,\alpha){}^{14}N$ Reaction at LUNA

C. G. Bruno,^{1,*} D. A. Scott,¹ M. Aliotta,^{1,†} A. Formicola,² A. Best,³ A. Boeltzig,⁴ D. Bemmerer,⁵ C. Broggini,⁶ A. Caciolli,⁷ F. Cavanna,⁸ G. F. Ciani,⁴ P. Corvisiero,⁸ T. Davinson,¹ R. Depalo,⁷ A. Di Leva,³ Z. Elekes,⁹ F. Ferraro,⁸ Zs. Fülöp,⁹ G. Gervino,¹⁰ A. Guglielmetti,¹¹ C. Gustavino,¹² Gy. Gyürky,⁹ G. Imbriani,³ M. Junker,² R. Menegazzo,⁶ V. Mossa,¹³ F. R. Pantaleo,¹³ D. Piatti,⁷ P. Prati,⁸ E. Somorjai,⁹ O. Straniero,¹⁴ F. Strieder,¹⁵ T. Szücs,⁵ M. P. Takács,⁵ and D. Trezzi¹¹

15x background reduction in ROI reaction rate ~ 2-2.5x higher + improved experimental conditions than previously assumed 10^{3} 3.5 Overground natural background Underground natural background 3.0 10^{2} Reaction rate / Iliadis 2010 On-resonance (71.5 keV) 2.5 10^{1} ${}^{6}Li(p,\alpha) \stackrel{6}{_{\Lambda}}Li(p,{}^{3}He)$ Counts/h 2.0 10⁰ $B(p,\alpha)2\alpha$ 1.5 10^{-1} 1.0 10^{-2} 0.5 10⁻³-0.0 1000 10000 100 0.01 0.1 Energy [keV] Temperature [GK] 39

¹⁷O/¹⁶O composition and origin of pre-solar grains revisited

Origin of meteoritic stardust unveiled by a revised proton-capture rate of ¹⁷O

M. Lugaro^{1,2*}, A. I. Karakas²⁻⁴, C. G. Bruno⁵, M. Aliotta⁵, L. R. Nittler⁶, D. Bemmerer⁷, A. Best⁸,
A. Boeltzig⁹, C. Broggini¹⁰, A. Caciolli¹¹, F. Cavanna¹², G. F. Ciani⁹, P. Corvisiero¹², T. Davinson⁵, R. Depalo¹¹,
A. Di Leva⁸, Z. Elekes¹³, F. Ferraro¹², A. Formicola¹⁴, Zs. Fülöp¹³, G. Gervino¹⁵, A. Guglielmetti¹⁶,
C. Gustavino¹⁷, Gy. Gyürky¹³, G. Imbriani⁸, M. Junker¹⁴, R. Menegazzo¹⁰, V. Mossa¹⁸, F. R. Pantaleo¹⁸,
D. Piatti¹¹, P. Prati¹², D. A. Scott^{5,†}, O. Straniero^{14,19}, F. Strieder²⁰, T. Szücs¹³, M. P. Takács⁷ and D. Trezzi¹⁶

M Lugaro et al., Nature Astronomy 1 (2017) 0027

Big Bang Nucleosynthesis

BBN is only handle to probe state of universe during epoch of radiation domination

Primordial Nucleosynthesis (BBN): 3 minutes after Big Bang

NASA/WMAP Science Team

WMAP101087

stringent tests of Big Bang theory

Element Abundance graphs: Steigman, Encyclopedia of Astronomy and Astrophysics (Institute of Physics) December, 2000

Primordial Deuterium Abundance: The d(p,γ)³He Reaction

Observed abundance:

 $[D/H] = (2.53 \pm 0.04) \times 10^{-5}$

Cooke et al, APJ 781 (2014) 31

about 5% lower than

Predicted abundance:

 $[D/H] = (2.65 \pm 0.07) \times 10^{-5}$

Di Valentino et al, PRD 90 (2014) 023543

Measurements at LUNA

E_{beam} = 50 – 300 keV (full BBN range)

BGO Phase: high efficiency HPGe Phase: high precision

Courtesy: V Mossa

Lithium Problem(s)

a success story:

discrepancy revealed thanks to close interplay among

theory, observation, and experiment

first Lithium Problem

observed ⁷Li

- ~ 3x lower than predicted
- no nuclear solution
- new (astro)physics?
- physics beyond Standard Model?

second Lithium Problem

observed ⁶Li $\sim 10^2 - 10^3$ higher than predicted

poor nuclear physics inputs or challenges with observation?

The Second Lithium Problem

Production and destruction processes affecting ⁶Li abundance

⁶Li production: The d(α , γ)⁶Li Reaction

First direct measurement of $d(\alpha,\gamma)^6$ Li cross section at BBN energies

CrossMark

week ending

25 JULY 2014

Big Bang ⁶Li nucleosynthesis studied deep underground (LUNA collaboration)

D. Trezzi^a, M. Anders^{b,c,1}, M. Aliotta^d, A. Bellini^e, D. Bemmerer^b, A. Boeltzig^{f,g}, C. Broggini^h, C.G. Bruno^d, A. Caciolli^{h,j}, F. Cavanna^e, P. Corvisiero^e, H. Costantini^{e,2}, T. Davinson^d, R. Depalo^{h,j}, Z. Elekes^b, M. Erhard^h, F. Ferraro^e, A. Formicola^f, Zs. Fülop^j, G. Gervino^k, A. Guglielmetti^a, C. Gustavino^{1,*}, Gy. Gyürky^j, M. Junker^f, A. Lemut^{e,3}, M. Marta^{b,4}, C. Mazzocchi^{a,5}, R. Menegazzo^h, V. Mossa^m, F. Pantaleo^m, P. Prati^e, C. Rossi Alvarez^h, D.A. Scott^d, E. Somorjai^j, O. Straniero^{n,0}, T. Szücs^j, M. Takacs^b

PRL 113, 042501 (2014) PHYSICAL REVIEW LETTERS

First Direct Measurement of the ${}^{2}H(\alpha,\gamma){}^{6}Li$ Cross Section at Big Bang Energies and the Primordial Lithium Problem

M. Anders,^{1,2,†} D. Trezzi,³ R. Menegazzo,⁴ M. Aliotta,⁵ A. Bellini,⁶ D. Bemmerer,¹ C. Broggini,⁴ A. Caciolli,⁴
 P. Corvisiero,⁶ H. Costantini,^{6,‡} T. Davinson,⁵ Z. Elekes,¹ M. Erhard,^{4,§} A. Formicola,⁷ Zs. Fülöp,⁸ G. Gervino,⁹
 A. Guglielmetti,³ C. Gustavino,^{10,||} Gy. Gyürky,⁸ M. Junker,⁷ A. Lemut,^{6,*} M. Marta,^{1,¶} C. Mazzocchi,^{3,**} P. Prati,⁶
 C. Rossi Alvarez,⁴ D. A. Scott,⁵ E. Somorjai,⁸ O. Straniero,^{11,12} and T. Szücs⁸
 (LUNA Collaboration)

 ${}^{6}\text{Li}/{}^{7}\text{Li} = (1.6 \pm 0.3) \times 10^{-5}$ ${}^{6}\text{Li}/\text{H} = (0.8 \pm 0.18) \times 10^{-14}$ (27% lower than previous BBN values)

No nuclear physics solution to second Lithium problem

⁶Li destruction: The ⁶Li(p, γ)⁷Be and ⁶Li(p, α)³He Reactions

Thomas Chillery's PhD project

- $E_{cm} = 30 340 \text{ keV}$
- evaporated ⁶Li solid targets (95% enrichment)
- ⁶Li₂O, ⁶Li₂WO₄ and ⁶LiCl
- HPGe in close geometry
- silicon detector for ⁶Li(p, α)³He

Fate of Massive Stars

Supernovae or White Dwarfs?

M Aliotta

Late Evolution of Massive Stars

limiting mass determined by Carbon-12 Carbon-12 Magnesium-24 still highly uncertain

fusion reactions become endothermic gravitational collapse

catastrophic supernova explosion

Carbon Burning

- Determines final evolution of massive stars (8-10 solar masses): CO WD or ccSN
- Dictates ignition conditions for thermonuclear explosions

 $^{12}C + ^{12}C \rightarrow ^{24}Mg^*$

- \rightarrow ²⁰Ne + α + 4.62 MeV
- → ²³Na + p + 2.24 MeV

The 12C+12C reactions

main experimental challenges:

- complex and not well understood 'resonance-like' structures
- beam induced background at low energies (mostly on H and D contaminants)

THE LUNA Collaboration

Gran

Sasso

400

Gran Sasso

Laboratory

National

- LUNA 50 kV (1992-2001) Solar Phase
- LUNA 400 kV (2000-2018) CNO, Mg-Al and Ne-Na cycles, BBN
- **LUNA-MV** (from 2019) Helium burning, Carbon burning

- ${}^{12}C({}^{12}C,p){}^{23}Na \text{ and } {}^{12}C({}^{12}C,\alpha){}^{20}Ne$
- ¹³C(α,n)¹⁶O
- ²²Ne(α,n)²⁵Mg
- ¹²C(α,γ)¹⁶O

Jinping Underground lab for Nuclear Astrophysics 锦屏深地核天体物理实验室

2,400 meters deep in a mountain in Sichuan Province

China Institute of Atomic Energy

Compact Accelerator Systems for Performing Astrophysical Research

Collaboration between:

- University of Notre Dame
- Colorado School of Mines

South Dakota School of Mines and Technology

SURF: Sanford Underground Laboratory at Homestake (4300 m.w.e.)

How were Elements from Iron to Uranium made?

from: National Academy of Science Report, 2002

the Origin of Heavy Elements

M Aliotta

heavy element abundances in metal poor stars show remarkable similarities and excellent agreement with solar values (not a metal poor star!)

Nucleosynthesis in the r-process

large neutron fluxes required! (~10²⁸ n/cm³)

what astrophysical sites for r-process:

core collapse supernovae

merging neutron stars

- neutrino driven wind of proto-neutron star
- He shell of exploding massive star
- others?...

M. Aliotta

17 August 2017

130 million light years from Earth

LIGO and VIRGO: first observation of gravitational waves from merging neutron stars

event observed by 70 ground- and space-based observatories

including in visible light 11h after GW detection

neutron star mergers could well be the main source for r-process elements

A new era in Astronomy has just begun...

many reactions involve <u>UNSTABLE</u> species, hence need for <u>Radioactive lon Beams</u>

M Aliotta

Upcoming Radioactive Beam Facilities

FRIB @ MSU

a superposition of nucleosynthesis events that occurred in the past

Nuclear Astrophysics 60 years on:

A truly remarkable achievement

Plasma Physics

degenerate matter electron screening equation of state

Astrophysics

Stellar evolutionary codes nucleosynthesis calculations astronomical observations

Nuclear Physics

experimental and theoretical Inputs stable and exotic nuclei

Atomic Physics

radiation-matter interaction energy losses, stopping powers spectral lines materials and detectors

experiments 100 Density Functional Theory A>100 Coupled Cluster, Shell Model A<100 Exact methods A≤12 10 Low-mom. GFMC, NCSM **Proton Number** interactions Lattice QCD the human factor QCD Vacuum training and retention of young researchers the true experts in the field

theory

