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Gravitational Waves: the Story So Far

In General Relativity gravity is described by the curvature of space-time

Matter tells spacetime how to curve.

Spacetime tells matter how to move

Gravitational waves are ripples in spacetime propagating at
the speed of light (according to GR)

Created by acceleration of massive compact objects

Gravitational wave detectors measure changes in L"AL,
the separation between free test masses in this .
spacetime ettt ., .




Interferometers monitor the position of suspended test masses separated by a few km

A passing gravitational wave will lengthen one arm and shrink the other arm; transducer of GW strain-
intensity (108 m over 4 km)
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Limitations to sensitivity

Many sources of “noise”
* Seismic noise

e Gravitational gradient

noise

e Radiation pressure

Measure of sensitivity

* Thermal noise

* Photon shot noise
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Ground-based network of detectors: 2002-2010

LIGO 1§
Livingsten
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Gravity: Making Waves
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The LIGO Scientific Collaboration (LSC) is a dynamic
group of approximately 7€0 scientists worldwide who
have joined together in the search for gravitational waves
from the the maost violent events in the universe. Learn
more about gravitational waves and the LSC herel
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LIGO Scientific Collaboration is a group of more than " :
900 scientists worldwide who have joined together in :3"%-‘-"'- )
the search for gravitational waves. -
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GW150914 — a burst of gravitational waves...

Strain (107%%)

Frequency (Hz)

... matching a BBH inspiral and merger
waveform from General Relativity

Hanford, Washington (H1)

Livingston, Louisiana (L1)
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Abbott et al (2016): https://dcc.ligo.org/P1500218/




Gwisosia o GO RS
Observation of Gravitational Waves -
when Black Holes Collide ' 3

— Black hole separation
=== Black hole relative velocity

ORL N WA
Separation (Rg)

| . B e - 7 - Merger Ringdown
( Inspiral ARt (- : .

Livingston

Hanford



https://www.ligo.caltech.edu/video/ligo20160211v10
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Are we sure that GW150914 was real?... _*"
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Number of events

Binary coalescence search
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Does General Relativity really fit?

e GW150914 was the first observation of a binary black hole merger
o Our best test of GR in the strong field, dynamical, nonlinear regime
e Event better than the binary pulsar system PSR J0737-3039
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Abbott, et al. ,LIGO Scientific Collaboration and Virgo Collaboration, “Tests of general relativity with GW150914”,
http://arxiv.org/abs/1602.03841
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Locating GW1509
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Locating GW150914 on the sky...




Electromagnetic Follow-up
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#Gravitationalwaves

Defining oravit #GW150914
NI |
Mg g y #Einsteinwasright

The announcement confirming the discovery of gravitational waves created sensational media interest.
But educational outreach and communication must remain high on the agenda if the general public is to
understand such a landmark result.

L} L}
n 11 February 2016 the LIGO of people who do not participate in any via our website’. A key example here ; O I I l I I I I O I l I
Scientific Collaboration and particular sport. was our science summaries®, in-depth

commentary

Virgo Collaboration (LVC) The Education and Public Outreach articles written without technical language
announced the discovery of gravitational Working Group of the LVC helped to but conveying the essential scientific = =
waves and the first observation of a shape the collaboration strategy for arguments and conclusions presented
binary black hole merger!. The physics informing the world about our scientific in our detection papers. Our products I I I l r e S S I O n S
community has been working towards breakthrough. As a group of professional also included translations of the press
these discoveries since Einstein’s theory of scientists as well as educators, outreach release into 18 languages, an educator
general relativity predicted gravitational professionals, and students, we aimed to guide for teachers, new simulations and

waves and black holes 100 years ago™. It assemble a range of resources designed for ammatwns and wtorlals for using the
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“For the greatest benefit to mankind”
M

The Royal Swedish Academy of Sciences has decided to award the

2017 N OBEL PRIZ IN PHYSICS

Rainer Weiss
Barry C. Barish
Kip S. Thorne

for deczszve contributions to the LIGO detector and the observation of grawtatzonal waves”
_ — IMPORTANT FOUNDATION

@ Nobelprize.org DATES AFFILIATES

YWUMEN & KK Il.h I|l-r

BY YEAR GENETICS NEUROSCIENCE YOUNG SCIEMNTISTS AWARDS JUSTICE AND WOMEN'S RIGHTS ARCHIVE
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'Routine’ detection of space ripples

f v o

Gravitational waves have been picked up from another black hole merger.

of major international media brie which
ing seen as routine.

rded as remarkable.

feel now that c ‘
at is qualitz : \ ted to b
cataloguing if you like," co 0 ation member from
Glasgow University, UK.
= Gravitational waves: New toys to unwrap

= Einstein’s waves detected in star smash

= Einstein's waves win physics Nobel




Further tests of General Relativity

Parameterised test of PN expansion

Abbott, et al., LIGO Scientific Collaboration
and Virgo Collaboration, “GW170104:
Observation of a 50-solar binary black
hole coalescence at redshift 0.2”

Phys. Rev. Lett. 118, 221101 (2017)
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Population-level inferences

Probability density
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Abbott, et al., LIGO Scientific Collaboration
and Virgo Collaboration, “GW170104:
Observation of a 50-solar binary black
hole coalescence at redshift 0.2”

Phys. Rev. Lett. 118, 221101 (2017)

* Only GW151226 has Xefs
inconsistent with zero

« Future measurements
may constrain isotropy
of spin distribution

* This may constrain BH
formation mechanisms
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Virgo and LIGO make the first joint
'detection of a binary black hole merger
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LIGO, Virgo, and partners make first detection of
gravitational waves and light from colliding neutron stars

Lightcurve from Fermi:/GBM (50 — 300 keV)

Gravitational-wave time-frequency map




Masses in the Stellar Graveyard

| | in Solar Masses
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Gamma rays, 50 to 300 keV GRB 170817A
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Determining the Hubble constant
from gravitational wave observations

Bernard F. Schutz

Department of Applied Mathematies and Astronos
Uneversty College Cardifl, PO Box 75, Cardil CF1 1XL, UK

1 report here how gravitational wave observations can be used to
determine the Hubble constant, Hy. The nearly monochromatic
gravitational waves emitted by the decaying orbit of an ultra-
compact, two-neutron-star binary system just before the stars
coalesce are very likely (o be detected by the kilometre-sized
being designed'™.
The signal s easily identified and contains enough information to
determine the absolute distance to the binary, independently of
any assumptions about the masses of the stars. Ten events out to
100 Mpc may suffice to measure the Hubble constant fo 3%

accuracy.

The signal from a system of two 1M stars (where Mo is the
mass of the Sun) will sweep from 100 Hzto | kHz in ~3 5. There
might be three events per year out to 100 Mpc, and if the
detectors achieve their current dy sensitivity, such events
will be detectable with a signal-to-noise ratio of 30. To determine
the distance, the signal has to be observed by a worldwide
network of three, and preferably four, detectors. By measuring
both the response of the detectors and the delays between the
arrival times of the signal at different detectors, the network
should be able to locate the source in an error box of ~36 square
degrees. There is some chance that the coalescence event will
be optically identifiable (I.D. Novikov, personal communica-
tion); otherwise, clustering of galaxies provides a statistical
method that will still yield H, after remarkably few events. Here
1 give only a brief discussion; full details will be published
elsewhere.

Several detectors being developed in the United States and
Europe’* will take the form of interferometers with arm lengths
1-4 km, observing bandwidths 10°-10* Hz and r.m.s. noise levels
at 100 Hz of <107* strain Hz™"/>. Within 10 years we may
expect that there will be four or five such detectors in operation
in America and Europe, with typical separations of 6,500 km.
[Tt is possible that bar detectors could contribute to these
observations. However, because of (hmrnnrmw bandwidth, their
detection of binaries diffe methods,
which have not been studied. 1 shall thercfore concentrate on
interferometric detectors.]

Although there are many possible sources of gravitational
waves, the most promising for detection by these instruments
seems to be the coalescence of binary neutron stars, as will
happen to the binary pulsar PSR1913 + 16 in ~ 10" yr. The gravi-
tational waves from these sources before coalescence can be
predicted very reliably (K. S. Thorne, personal communication).
As an orbit decays through the emission of gravitational radi-
ation, its eccentricity is reduced, so we need only consider
systems with circular orbits’, Consider a binary at a distance
100,00 Mpc, with total mass my M and reduced mass uMe
emitting waves at frequency 100fj0 Hz (twice its orbital
frequency). The standard quadrupole formula’ of general rela-
tivity*” shows that the waves will have amplitude (r.m.s.
averaged over detector and source orientations)

(hy=1%10"2m¥ ufiiorid (1
and that their frequency will change on a timescale
r=f1f=18mu N s 2)

Two 1.4Mo neutron stars will coalesce' when f= 10° Hz. By
using matched filters to analyse the data’, the noise can
effectively be limited to a bandwidth of ~7 . This will enable
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the detectors to see binary neutron star sources at 100 Hz at a
distance of 100 Mpc, with a mean signal-to-noise ratio (SNR)
of =30. An observation will therefore determine 7 and h to
perhaps 3%. The key to our method is that the stars’ masses
enter equations (1) and (2) in exactly the same way, so that

rioo=7.8fic((ha)r) ! (6]

where (h,,) = (h) x 107, independently of the masses of the stars.

This result is not quite so strong as it seems, as equation (1)
gives the r.m.s. value of h averaged over orientations, whereas
the value of h inferred from the network's observations will
depend on the binary system’s orientation and position relative
to the detectors as well as its distance. However, these can be
determined from the observati as | show below, provided
that three or more detectors register the same event, they can
determine the location on the sky and the degree of elliptical
polarization of the wave. (In general relativity, gravitational
waves are transverse and have only two independent polariza-
tions®".) Now, the radiation emitted by the binary along its
angular momentum axis is circularly polarized, whereas that in
the equmml plane is lincarly pclznud The degree of cliptical

refor he of the orbit to
the line of slghl. which enables us to solve for ry in terms of
the observed h. Equation (3) also depends on being able to
model the system as two newtonian point masses. As we shall
see below, tidal and relativistic corrections are negligible in the
range of orbital parameters we require.

Being able to determine r directly from the observations is
remarkable in itself, but it is only really useful if the source of
the cvent can be identificd. For this an accurate position is
required. Because this accuracy is crucial for the determination
of the Hubble constant, I will discuss it in some detail.

Each detector has quadrupolar linear polarization, so it is not
highly directional; however, the differences in arrival time of a
wave at different detectors can be used to triangulate the posi-
tion. Between any two detectors with separation d, a wave
travelling at an angle # to the line joining the detectors will
arrive at the second detector with a delay A1 = d cos 8/ ¢ relative
to the first, where c is the speed of light. For d =6.5x 10° km,
we have [At|<22ms. As the two detectors will generally not
have the same polarization, there will be a further effective time
delay due to the wave's elliptical polarization. Such a polariza-
tion can be regarded as a superposition of the two independent
linear polarizations defined by the detectors, with a phase shift
between them. This sphase shift means that differently polarized
detectors record the wave train with extra time delays of up to
one period (+10ms for & 100-Hz signal). The two independent
time delays measured among three detectors and the three
measured amplitudes are sufficient to determine the waves' five
unknowns: arrival directions (two), amptitudes of the different
polarizations (two), and phase lag of the polarizations (one).

The precision with which the source’s position and polariza-
tion can be measured depends on the two sorts of errors: the
accuracy with which the arrival time of the wave at a detector
(and hence the time delays) can be determined, and the accuracy
with which the amplitude of the detector's response can be
measured. In what follows, I will assume that m3’ u =1 (for
example, two stars of ~1.1M5) to illustrate the smmion, We
shall see that the timing accuracy is typically 1% of the maximum
timing range (from ~22 to +22 ms), and the amplitude error is
~3%. When only three detectors sce an event, there are actually
two error boxes of size —10°x 10°, which may be too large for
our purposes. I will therefore consider events detected in four

The seven data the five unkn
and this redundancy offers us the opportunity to reduce the
cffective amplitude noise (it also allows a test of Einstein’s
polarization predictions). In this way, three timing measure-
ments at =1% and onc amplitude measurement with effective
error 3% can be used to locate the source. This suggests that
a positional error of =3° is not unreasonable, gi

©1985 Nature Publishing Group
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o @ o @ NGC 4993 : SSS17a

Observables: o
April 28, 2017 Hubble Space Telescope J August 17, 2017 Swope Telescope .

. = GW170817 distance

XGW Assuming optical counterpartin NGC 4993,
* V, = recession velocity and at true sky location of BNS...
. _ : ~ N

(v,) = mean pec. velocity . +2.9

p d=43.8":5 Mpc

V, = 3,327+ 72km s_lj

P

Recessional velocity of CoM of galaxy group

Abbott et al. Nature, 551, 85 (2017)
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GRAVITATIONAL WAVES AND GAMMA-RAYS FROM A BINARY
NEUTRON STAR MERGER: GW170817 AND GRB 170817A

The gravitational-wave signal GW170817 was detected on August 17, 2017 by the Advanced LIGO and Virgo observatories. This
is the first signal thought to be due to the merger of two neutron stars. Only 1.7 seconds after the gravitational-wave signal
was detected, the Fermi Gamma-ray Burst Monitor (GBM) and the Anticoincidence Shield for the SPectrometer for the
INTErnational Gamma-Ray Astrophysics Laboratory (INTEGRAL SPI-ACS) detected a short gamma-ray burst GRB 170817A. For
decades astronomers suspected that short gamma-ray bursts were produced by the merger of two neutron stars or a neutron
star and a black hole. The combination of GW170817 and GRB 170817A provides the first direct evidence that colliding neutron
stars can indeed produce short gamma-ray bursts.
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GW170817: Observation of Gravitational Waves from a Binary Neutron Star Inspiral

B. P. Abbott ez al.”
(LIGO Scientific Collaboration and Virgo Collaboration)

(Received 26 September 2017; revised manuscript received 2 October 2017; published 16 October 2017)
On August 17, 2017 at 12:41:04 UTC the Advanced LIGO and Advanced Virgo gravitational-wave
detectors made their first observation of a binary neutron star inspiral. The signal, GW170817, was detected
with a combined signal-to-noise ratio of 32.4 and a false-alarm-rate estimate of less than one per
8.0 x 10° years. We infer the component masses of the binary to be between 0.86 and 2.26 My, in
agreement with masses of known neutron stars. Restricting the component spins to the range inferred in
binary neutron stars, we find the component masses to be in the range 1.17-1.60 M, with the total mass of
the system 2.74 00! M,. The source was localized within a sky region of 28 deg? (90% probability) and
had a luminosity distance of 40}, Mpc, the closest and most precisely localized gravitational-wave signal
yet. The association with the y-ray burst GRB 170817A, detected by Fermi-GBM 1.7 s after the
coalescence, corroborates the hypothesis of a neutron star merger and provides the first direct evidence of a
link between these mergers and short y-ray bursts. Subsequent identification of transient counterparts
s the electromagnetic spectrum in the same location further supports the interpretation of this event as
a neuftron star merger. This unprecedented joint gravitational and electromagnetic observation provides

insight into astrophysics, dense matter, gravitation, and cosmology.

DOL 10.1103/PhysRevLett. 119.16110

L INTRODUCTION will observe between one BNS merger every few years to
Oy hundreds per year [14-21]. This detector network currently
On August 17, 2017, the LIGO-Virgo detector network . per year | N I . . 4
o . I includes three Fabry-Perot-Michelson interferometers that

observed a gravitational-wave signal from the inspiral of o T . -
= . = . : measure spacetime strain induced by passing gravitational

two low-mass compact objects consistent with a binary . . = = .
. P waves as a varying phase difference between laser light

neutron star (BNS) merger. This discovery comes four

. : e o ) ropagating in perpendicular arms: the two Advanced
decades after Hulse and Taylor discovered the first neutron P - . ..
star binary, PSR BI“)IZ%-;IG [1]. Observations of PSR LIGO detectors (Hanford, WA and Livingston, LA) [22]

B1913+16 found that its orbit was losing energy due to mliﬂiiign‘]ﬂ]tle(‘{;(;{fg;rgfli;ll;:re:\‘tiﬂbvm;:;lm(d(}JiJIJf!-‘om
the emission of gravitational waves, providing the first . - - N - o -
L . = P . September 12, 2015, to January 19, 2016, obtained
indirect evidence of their existence [2]. As the orbit of a p . LT
s - L ) .. 49 days of simultaneous observation time in two detectors.
BNS system shrinks, the gravitational-wave luminosity While two confirmed binary black hole (BBH) mergers
increases, accelerating the inspiral. This process has long were discovered [24-26] ho detections or Hi"’lllﬁi"’ln‘l
been predicted to produce a gravitational-wave signal e . ) S
observable by eround-based detectors (3-6] in the final candidates had component masses lower than 5M ., placing
mi;lule: before the &nrs(énllids 7] o : a 90% credible upper limit of 12 600 Gpc= yr~! on the rate
Since the Hulse-Taylor discovery, radio pulsar surveys of BNS mergers [27] (credible intervals throughout this
have found several m:)rr: BNS »\-»(enls in our ealaxy IRJI Letter contain 90% of the posterior probability unless noted
2 E 2 S systems galax . P - S
Understanding the orbital dvnimlics of these w:;lems otherwise). This measurement did not impinge on the range
sta g al dynamics se syslems ) e : . i
inspired detailed theoretical predictions for gravitational- of aMrOph)““ﬁ pre‘duuon:.. which allow rates as high as
¢ pred g N R S .
wave signals from compact binaries [9-13]. Models of the I':]1000 (’p'rj gr ,\ I_)I' 02) of Advanced LIGO. f
population of compact binaries, informed by the known N e }_:O?O ‘10”]‘2‘["'?““ (l;ij ‘:',0”‘21";6 ed I’IT dmm
i ; / 2 gust 25,2017, collec \]
binary pulsars, predicted that the network of advanced fmlem] T 2U, K“ d“k“" b : o ‘EL © d a*‘]
gravitational-wave detectors operating at design sensitivity 0_ Mmf' ‘mneous LI_E )-detector of Mm,ing time. A \‘ame S —
Virgo joined the O2 run on August 1. 2017. At the time of T
R this publication, two BBH detections have been announced
“Full author list given at the end of the Lef [28,29] from the O2 run, and analysis is still in progress. 1 25 1 50 1 75 2 UO 2 25 2 50
Toward the end of the O2 run a BNS signal, GW 170817, * * * * * *

Pub(’i.ﬁu‘d by I’EVL’ American Physical Society under the terms of was identified by matched filtering [7,30-33] the data
the Creative Commons Attribution 4.0 Intemational license. =
@

Further distribution of this work must maintain attribution to against .p(‘mlth‘wlOmﬂn waveform models [34-37]. _I s m 1 N[@
the author(s) and the published article’s title, journal citation, gravitational-wave signal is the loudest yet observed, with a

and DOL. combined signal-to-noise ratio (SNR) of 32.4 [38]. After

0031-9007/17/119(16)/161101(18) 161101-1 Published by the American Physical Society
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With a global network of interferometers we

can triangulate the sky position of a
gravitational wave source even better.

Source

/ location
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From Aasi et al.
arXiv:1304.0670

e The sky localisation depends on
o the individual detector beam patterns
o time delay between well separated sites

e vastly improved with more detectors:

LIGO and Virgo only
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Coming attractions...

Measurement error in H0
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MEASUREMENT ERRORS IN Hy FOR A SAMPLE OF GW-EM EVENTS. RESULTS ARE PRESENTED FOR UNBEAMED AND BEAMED
SOURCES. FOR BOTH NS-NS AND NS-BH MERGERS, AND FOR A RANGE OF DETECTOR NETWORKS. THE % VALUES ARE THE
68% C.L. FRACTIONAL ERRORS, AND THE NUMBER OF BINARIES DETECTED BY EACH NETWORK IS GIVEN IN PARENTHESES.

Network LIGO+Virgo (LLV)  LLV+LIGO India  LLV+KAGRA  LIV+LICGO India+KAGRA
NS-NS Isotropic 5.0% (15) 3.3% (20) 3.2% (20) 2.1% (30)
NS-NS Beamed 1.1% (19) 1.0% (26) 1.0% (25) 0.9% (30)
NS-BH Isotropic 4.9% (16) 3.5% (21) 3.6% (19) 2.0% (30)
NS-BH Beamed 1.2% (18) 1.0% (25) 1.1% (24) 0.9% (30)

Nissanke et al, arxiv:1307.2638



Finding the E-M counterpart... T S T

Jet—ISM Shock (Afterglow)
Optical (hours—days)
Radio (weeks—years)

Ejecta—ISM Shock
Radio (vears)
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Cosmological constraints from

3G detectors

Zhao et al. (2011)

[See also Zhao & Wen in prep.]
~10% NS-NS mergers observed by ET.

Different models for spatial distribution,
source evolution; more general DE models

[W(z):wo+wa—

1+7z

Z

J

GW constraints similar to those from BAO, SNIle.
Results only weakly affected by source evolution.

BUT assumes z known for ~1000 sources

[Significant ‘multi-messenger’ challenge]
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The Gravitational Wave Spectrum

BH and NS Blnarles
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“Tadpole” Galaxies in the Hubble Ultra Deep Field
Hubble Space Telescope = ACS/WFC

NASA, ESA, A. Straughn, S. Cohen and R. Windhorst (Arizona State University), and the HUDF team (STScl) STScl-PRC06-04



See e.g. Colpi & Sesana — arxiv: 1610.05309; Sesana, PRL, 116, 231102 (2016)

10-15

— 1 IIIIIIII 1 IIIIIIII 1 IIIIIIII 1 IIIIIIII 1 IIIIIIII 1 IIIIIIII Ij
— bt . —
[ £, ar - = =
| = ey ¢ © - | -
B e = = . | |
S 10-19 T T T/ |
5 1071° = E
- — -
— — -
E" L -
(Le] 10-20 i =
o = =
-
- — .
A B |
St B d
-Eh} 10-=1 ,-f'_=
Q
E o -
fiv] \ i
= L _
o -22 |
107== & aLIGO
- DA
1 IIIIIIII 1 L1 LLL IIIIIII 1 IIIIIIII 1 IIIIIIII il

0.001 0.01 0.1 1 10 100 1000
frequency [Hz]






