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T H E  C H A R G E

•“We would delighted if you would come and talk about the 
Big Data and Particle Physics at a level which would excite 
our graduate students. “ 

•Buzz words 

• Big Data 

• Data Science 

• Machine Learning & Artificial Intelligence 
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Big Data
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B I G  D ATA
•Yes, of course the LHC has “Big Data”, but not much in common with “Big 
Data” in industry: 

• our data is very clean and organized; industry data is messy (missing 
values, heterogenous formats, etc.) 

• we are usually testing specific theories; in industry, often trying to learn 
some predictive model from the data 

• our data is collected under stable conditions (i.i.d.); in industry data 
collection biases the data in unknown ways, causation vs. correlation is 
difficult 

• industry largely leap-frogged HEP Grid computing with the 
technologies like map-reduce, cloud computing, containers, etc. 

•For these reasons, HEP has not been particularly relevant to the discussions 
around “Big Data” 
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F R O M  B I G  T O  L I T T L E  D ATA
•Our “big data” processing involves “little decisions” 

• Trigger: quickly decide to keep or not an event based on a fairly simple 
criterion  

• Particle Identification: quickly decide which particle type is most consistent 
with an energy deposit in the detector 

• Reconstruction: quickly estimate the energy and momentum of that particle 

•Generally, data volume reduces as decisions become more significant 

• skim: quick selection of events of interest for an analysis based on simple 
properties like the number of electrons 

• pre-selection: gradually increasing level of sophistication in requirements 

• final event selection: highly-optimized cuts on most sophisticated variables, 
may involve machine learning techniques
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H ! ZZ ! 4l





D i s c o v e r y !
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D i s c o v e r y !
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S TAT I S T I C S

•The Big Decisions are based on statistics 

• Exclusion Limits: likelihood ratio tests 

• Discovery: hypothesis tests based on likelihood ratio 

• Measurements: maximum likelihood estimators 

•In each case, we need a statistical model for the data.
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Collaborative Statistical Modeling
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WHAT INFO AND HOW TO RETRIEVE IT
Through collaboration with theoretical community, we were able to identify a targeted 
form of data sharing that balanced generality &  

These data are directly linked to the paper in INSPIRE and have been cited:
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Abstract

We trained a large, deep convolutional neural network to classify the 1.2 million
high-resolution images in the ImageNet LSVRC-2010 contest into the 1000 dif-
ferent classes. On the test data, we achieved top-1 and top-5 error rates of 37.5%
and 17.0% which is considerably better than the previous state-of-the-art. The
neural network, which has 60 million parameters and 650,000 neurons, consists
of five convolutional layers, some of which are followed by max-pooling layers,
and three fully-connected layers with a final 1000-way softmax. To make train-
ing faster, we used non-saturating neurons and a very efficient GPU implemen-
tation of the convolution operation. To reduce overfitting in the fully-connected
layers we employed a recently-developed regularization method called “dropout”
that proved to be very effective. We also entered a variant of this model in the
ILSVRC-2012 competition and achieved a winning top-5 test error rate of 15.3%,
compared to 26.2% achieved by the second-best entry.

1 Introduction

Current approaches to object recognition make essential use of machine learning methods. To im-
prove their performance, we can collect larger datasets, learn more powerful models, and use bet-
ter techniques for preventing overfitting. Until recently, datasets of labeled images were relatively
small — on the order of tens of thousands of images (e.g., NORB [16], Caltech-101/256 [8, 9], and
CIFAR-10/100 [12]). Simple recognition tasks can be solved quite well with datasets of this size,
especially if they are augmented with label-preserving transformations. For example, the current-
best error rate on the MNIST digit-recognition task (<0.3%) approaches human performance [4].
But objects in realistic settings exhibit considerable variability, so to learn to recognize them it is
necessary to use much larger training sets. And indeed, the shortcomings of small image datasets
have been widely recognized (e.g., Pinto et al. [21]), but it has only recently become possible to col-
lect labeled datasets with millions of images. The new larger datasets include LabelMe [23], which
consists of hundreds of thousands of fully-segmented images, and ImageNet [6], which consists of
over 15 million labeled high-resolution images in over 22,000 categories.

To learn about thousands of objects from millions of images, we need a model with a large learning
capacity. However, the immense complexity of the object recognition task means that this prob-
lem cannot be specified even by a dataset as large as ImageNet, so our model should also have lots
of prior knowledge to compensate for all the data we don’t have. Convolutional neural networks
(CNNs) constitute one such class of models [16, 11, 13, 18, 15, 22, 26]. Their capacity can be con-
trolled by varying their depth and breadth, and they also make strong and mostly correct assumptions
about the nature of images (namely, stationarity of statistics and locality of pixel dependencies).
Thus, compared to standard feedforward neural networks with similarly-sized layers, CNNs have
much fewer connections and parameters and so they are easier to train, while their theoretically-best
performance is likely to be only slightly worse.

1
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T H E  P L AY E R S

PRED ICT ION

INFERENCE

x 
observed data 
simulated data

θ 
parameters of interest

forward modeling 
generation 
simulation

inverse problem 
measurement 

parameter estimation

p( x, z | θ, ν )

ν 
nuisance parameters

z 
latent variables 

Monte Carlo truth
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We begin with Quantum Field Theory1)

Theory gives detailed 
prediction for high-
energy collisions

2)
hierarchical: 2 → O(10) → O(100) particles

Uses of Multivariate Methods

Complex final state of VBF H → WW → llEmiss
T well-suited for multivariate methods

Used 7 variables:
∆ηll, ∆φll, Mll, ∆ηjj, ∆φjj, Mjj, MT

Compared Neural Networks, Genetic Program-
ming, and Support Vector Regression

q

q

W

W

H
W+

W−

ν

l+

l−

ν̄

Ref. Cuts low-mH Cuts NN GP SVR
120 ee 0.87 1.25 1.72 1.66 1.44
120 eµ 2.30 2.97 3.92 3.60 3.33
120 µµ 1.16 1.71 2.28 2.26 2.08
Combined 2.97 3.91 4.98 4.57 4.26
130 eµ 4.94 6.14 7.55 7.22 6.59

Table 1: Expected significance in sigma after 30 fb−1 for two cut analyses and three multivariate analyses for
different Higgs masses and final state topologies.

March 14, 2006

University of Pennsylvania Seminar

Higgs Searches at the LHC:

Challenges, Prospects, and Developments (page 25)

Kyle Cranmer

Brookhaven National Laboratory
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We begin with Quantum Field Theory1)

Theory gives detailed 
prediction for high-
energy collisions

2)

The interaction of outgoing particles 
with the detector is simulated.  

3)
e+

e-

mu-

mu+

Finally, we run particle identification and 
feature extraction algorithms on the simulated 
data as if they were from real collisions.

4)

>100 million sensors

~10-30 features describe interesting part

hierarchical: 2 → O(10) → O(100) particles



D E T E C T O R  S I M U L AT I O N

•Conceptually: Prob(detector response | particles ) 

•Implementation: Monte Carlo integration over micro-physics 

•Consequence: evaluation of the likelihood is intractable 
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D E T E C T O R  S I M U L AT I O N

•Conceptually: Prob(detector response | particles ) 

•Implementation: Monte Carlo integration over micro-physics 

•Consequence: evaluation of the likelihood is intractable 

•This motivates a new class of algorithms for what is called 
likelihood-free inference, which only require ability to 
generate samples from the simulation in the “forward mode” 
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A  C O M M O N  T H E M E
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But wait… this hasn’t stopped us so far.



1 0 ⁸  S E N S O R S   →  1  R E A L - VA L U E D  Q U A N T I T Y

•Most measurements and searches for new particles at the LHC are based on the 
distribution of a single variable or feature 

• choosing a good variable (feature engineering) is a task for a skilled physicist 
and tailored to the goal of measurement or new particle search 

• likelihood p(x|θ) approximated using histograms (univariate density estimation)

26
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•Most measurements and searches for new particles at the LHC are based on the 
distribution of a single variable or feature 

• choosing a good variable (feature engineering) is a task for a skilled physicist 
and tailored to the goal of measurement or new particle search 

• likelihood p(x|θ) approximated using histograms (univariate density estimation)
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T H E  C R U X ,  A N  I N T R A C TA B L E  I N T E G R A L
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H I G H  D I M E N S I O N A L  E X A M P L E

•When looking for deviations from the standard model Higgs, 
we would like to look at all sorts of kinematic correlations 

• thus each observation x is high-dimensional

28
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FIG. 2: Distribution of the cos θ∗ (left), Φ1 (second from the left), cos θ1 and cos θ2 (second from the right), and Φ (right)
generated for mX = 250 GeV with the program discussed in the text (unweighted events shown as points with error bars) and
projections of the ideal angular distributions given in the text (smooth lines). The four sets of plots from top to bottom show
the models discussed in Table I for spin-zero 0+ and 0− (top), spin-one 1+ and 1− (second row from top), spin-two 2+m, 2+

L
,

and 2− (third row from top), and the bottom row shows distributions in background generated with Madgraph (points with
error bars) and empirical shape (smooth lines). The J+ distributions are shown with solid red points and J− distributions are
shown with open blue points, while the 2+m and 2+

L
are shown with red circles and green squares, respectively.

production angles in Fig. 3, where we plot the distributions of θ∗ and Φ1 production angles for the spin-zero particle
X . If these distributions are measured with the “ideal” (4π) detector, the results are flat. Hence, the non-trivial
shapes of these distributions shown in Fig. 3 are entirely due to an acceptance effect.
It is evident from Fig. 3 that the acceptance effects are very important in the analysis of data. They have to be

taken into account explicitly, otherwise the results of the analysis will be biased. This can be easily done in our MC
simulation program on an event-by-event basis using the acceptance function in Eq. (39), where we reject events if
at least one lepton exceeds the maximal pseudorapidity. It is also possible, but much harder, to incorporate this
acceptance function into the likelihood function that is discussed in the next section. However, as we explain now,

2

FIG. 1: Illustration of an exotic X particle production and decay in pp collision gg or qq̄ → X → ZZ → 4l±. Six angles fully
characterize orientation of the decay chain: θ∗ and Φ∗ of the first Z boson in the X rest frame, two azimuthal angles Φ and Φ1

between the three planes defined in the X rest frame, and two Z-boson helicity angles θ1 and θ2 defined in the corresponding
Z rest frames. The offset of angle Φ∗ is arbitrarily defined and therefore this angle is not shown.

discussed in Refs. [21–23] KK graviton decays into pairs of gauge bosons are enhanced relative to direct decays into
leptons. Similar situations may occur in “hidden-valley”-type models [24]. An example of a ”heavy photon” is given
in Ref. [25].
Motivated by this, we consider the production of a resonance X at the LHC in gluon-gluon and quark-antiquark

partonic collisions, with the subsequent decay of X into two Z bosons which, in turn, decay leptonically. In Fig. 1,
we show the decay chain X → ZZ → e+e−µ+µ−. However, our analysis is equally applicable to any combination of
decays Z → e+e− or µ+µ−. It may also be applicable to Z decays into τ leptons since τ ’s from Z decays will often be
highly boosted and their decay products collimated. We study how the spin and parity of X , as well as information
on its production and decay mechanisms, can be extracted from angular distributions of four leptons in the final state.
There are a few things that need to be noted. First, we obviously assume that the resonance production and

its decays into four leptons are observed. Note that, because of a relatively small branching fraction for leptonic Z
decays, this assumption implies a fairly large production cross-section for pp → X and a fairly large branching fraction
for the decay X → ZZ. As we already mentioned, there are well-motivated scenarios of BSM physics where those
requirements are satisfied.
Second, having no bias towards any particular model of BSM physics, we consider the most general couplings of the

particle X to relevant SM fields. This approach has to be contrasted with typical studies of e.g. spin-two particles
at hadron colliders where such an exotic particle is often identified with a massive graviton that couples to SM fields
through the energy-momentum tensor. We will refer to this case as the “minimal coupling” of the spin-two particle
to SM fields.
The minimal coupling scenarios are well-motivated within particular models of New Physics, but they are not

sufficiently general. For example, such a minimal coupling may restrict partial waves that contribute to the production
and decay of a spin-two particle. Removing such restriction opens an interesting possibility to understand the couplings
of a particle X to SM fields by means of partial wave analyses, and we would like to set a stage for doing that in this
paper. To pursue this idea in detail, the most general parameterization of the X coupling to SM fields is required.
Such parameterizations are known for spin-zero, spin-one, and spin-two particles interacting with the SM gauge
bosons [7, 8] and we use these parameterizations in this paper. We also note that the model recently discussed in
Refs. [21–23] requires couplings beyond the minimal case in order to produce longitudinal polarization dominance.
Third, we note that while we concentrate on the decay X → ZZ → l+1 l

−
1 l

+
2 l

−
2 , the technique discussed in this

paper is more general and can, in principle, be applied to final states with jets and/or missing energy by studying
such processes as X → ZZ → l+l−jj, X → W+W− → l+νjj, etc. In contrast with pure leptonic final states,
higher statistics, larger backgrounds, and a worse angular resolution must be expected once final states with jets and

Weak boson fusion, h → 4�
� Production vs decay

� hZZ decay vertex:
many angular structures

� Very clean

� Same operators as before:
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I N F O R M AT I O N  G E O M E T R Y

•Information geometry provides a very powerful tool for phenomenology of EFT 

• formal bounds on how well parameters can be measured 

• exploit fully differential cross-section  

• Global fit (eg. 13 parameters) & can profile/marginalize parameters you aren’t 
interested in (eg. CP violating vs. CP conserving)

29

6

C. CP violation in the Higgs-gauge sector

Typical tests of C, P , or T symmetries of the Higgs sector do not probe the symmetry nature of
the actual Higgs field, but rather the transformation properties of the action through its influence
on S-matrix elements. We focus on the transformation properties of observables and explore how
they reflect the symmetry structure of the Higgs Lagrangian. To this end, we evaluate the e↵ect
of CP -violating as opposed to CP -conserving Higgs couplings to weak bosons or heavy fermions.
For an e↵ective Higgs-gauge Lagrangian truncated at mass dimension six,

L = LSM +
fi
⇤2

Oi (9)

our CP -even reference scenario consists of the renormalizable Standard Model Lagrangian com-
bined with the five CP -even dimension-six operators in the HISZ basis [6, 7, 35],

OB = i
g

2
(Dµ�†)(D⌫�)Bµ⌫ OW = i

g

2
(Dµ�)†�k(D⌫�)W k

µ⌫

OBB = �
g02

4
(�†�)Bµ⌫ Bµ⌫

OWW = �
g2

4
(�†�)W k

µ⌫ Wµ⌫ k

O�,2 =
1

2
@µ(�†�) @µ(�

†�) . (10)

At the same mass dimension, CP -odd couplings are described by operators

O
BB̃

= �
g02

4
(�†�) eBµ⌫ Bµ⌫

⌘ �
g02

4
(�†�) ✏µ⌫⇢�B⇢� Bµ⌫

O
WfW = �

g2

4
(�†�)fW k

µ⌫ Wµ⌫ k
⌘ �

g2

4
(�†�) ✏µ⌫⇢�W ⇢� k Wµ⌫ k . (11)

With the Levi-Civita tensor, these operators break down as C-conserving and P -violating.

While the e↵ective Lagrangians in Eqs. (10) and (11) demand real coe�cients fWW and f
WfW , it

is also interesting to observe what happens when they are taken to be complex. Strictly speaking,
this does not occur in an EFT from integrating out massive degrees of freedom in a well-defined
UV theory. However, absorptive complex phases can appear through light degrees of freedom.
Such cases are not technically described by a local EFT and could lead to di↵erent momentum
dependences, so we leave a more refined treatment of this case for future work. Instead, we
consider coe�cients such as fWW and f

WfW to be complex to illustrate how such cases complicate
the determination of the CP nature of the Higgs interactions. Such complex phases already occur
in the Standard Model, for instance from electroweak corrections or in Higgs production with a
hard jet [36]. Such loop-induced contributions to the expectation value of CP -odd observables
must be taken into account in precision measurements.

Combining the di↵erent pieces, we arrive at thirteen model parameters of interest,

g =
v2

⇤2

�
f�,2 fW fB fWW fBB f

WfW f
BB̃

Im fW Im fB Im fWW Im fBB Im f
WfW Im f

BB̃

�
T

,

(12)

where the factor v2 ensures that the model parameters are dimensionless. The first seven entries
represent the usual Wilson coe�cients in the EFT. The last six entries allow for absorptive con-
tributions. We will use this full vector of model parameters to analyze the sensitivity of di↵erent
processes to the CP properties of the Higgs-gauge sector.

11

multiplying the rates with the branching ratio for the semi-leptonic di-tau mode, and assuming
the di-tau system to be reconstructed with a realistic resolution for m⌧⌧ . This means that as the
leading detector e↵ect the m⌧⌧ distribution is smeared by a Gaussian [32, 38, 39] (with width
17 GeV) for Higgs production and a double Gaussian (where the dominant component has a width
of 13 GeV) for Z production, as estimated from Fig. 1a of Ref. [44]. The double Gaussian ensures
an accurate description of the high-mass tail of the Z peak around m⌧⌧ = mH [45].

Event selection proceeds first with loose cuts

pT,j > 20 GeV |⌘j | < 5.0 �⌘jj > 2.0

pT,⌧ > 10 GeV |⌘⌧ | < 2.5 (27)

to retain as much phase space information as possible. One can improve discrimination of the
WBF signal from the electroweak and QCD background processes based on their di↵erent radi-
ation patterns [41]. These selections are simulated by applying central jet veto (CJV) survival
probabilities [37],

"CJV
WBF H = 0.71 "CJV

EW Z = 0.48 "CJV
QCD Z = 0.14 "CJV

GF H = 0.14 . (28)

Provided the hard phase space does not include any jets beyond the two tagging jets, the results are
not expected to first approximation to be sensitive to details of the central jet veto. For simplicity,
we assume the reconstruction and identification of the leptonic ⌧ to be fully e�cient and assume
a constant overall e�ciency of 0.6 for the hadronic tau. These e�ciencies do not a↵ect the signal-
to-background ratio. As a second way to suppress backgrounds, we apply a likelihood-based event
selection [29]

��SM WBF(x)

��backgrounds(x)
> 1 , (29)

retaining only phase-space points x with an expected signal-to-background ratio of at least unity.
For an integrated luminosity of L = 100 fb�1, after all e�ciencies and the event selection of

Eqs. (27) and (29), we expect a WBF Higgs signal of 1349 events in the Standard Model, together
with a total expected background of 388 events. It is worth noting that these numbers are optimistic
and do not include the full suite of detector e↵ects, fake backgrounds, etc.

We analyze how well WBF production can extract information about CP violation in the
dimension-six EFT defined in Eqs. (10) and (11). The model parameters of interest are given in
Eq. (12). For these directions in the EFT parameter space we use the the MadFisher tools [29]
to find the Fisher information evaluated at the Standard Model after L = 100 fb�1 to be

Iij =

f�,2 fW fB fWW fBB fW fW fBB̃ Im fW Im fB Im fWW Im fBB Im fW fW Im fBB̃0

BBBBBBBBBBBBBBBBBBBBB@

1

CCCCCCCCCCCCCCCCCCCCCA

4942 �968 �50 54 2 �7 0 �1 0 2 0 36 0 f�,2

�968 715 35 �191 �3 1 0 0 0 0 0 �55 �1 fW

�50 35 6 �9 0 0 0 0 0 0 0 �2 0 fB

54 �191 �9 321 3 �1 0 0 0 1 0 72 1 fWW

2 �3 0 3 0 0 0 0 0 0 0 1 0 fBB

�7 1 0 �1 0 359 4 41 1 �81 �1 �1 0 fW fW
0 0 0 0 0 4 0 0 0 �1 0 0 0 fBB̃

�1 0 0 0 0 41 0 6 0 �12 0 0 0 Im fW

0 0 0 0 0 1 0 0 0 0 0 0 0 Im fB

2 0 0 1 0 �81 �1 �12 0 23 0 0 0 Im fWW

0 0 0 0 0 �1 0 0 0 0 0 0 0 Im fBB

36 �55 �2 72 1 �1 0 0 0 0 0 21 0 Im fW fW
0 �1 0 1 0 0 0 0 0 0 0 0 0 Im fBB̃

,

(30)

Brehmer, Kling, Plehn, Cranmer [arXiv:1612.05261] 
Brehmer, Kling, Plehn, Tait [arXiv: 1712.02350]
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•Compared to just using standard 
kinematic variables, the fully differential 
cross-section has the potential to 
dramatically improve sensitivity
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Weak boson fusion, h → ττ
� Well-known probe of Higgs-gauge structure

� Interesting kinematics of tagging jets
[D. Rainwater, D. Zeppenfeld, K. Hagiwara hep-ph/�������;
T. Plehn, D. Rainwater, D. Zeppenfeld hep-ph/�������;
C. Englert, D. Gonçalves-Netto, K.Mawatari, T. Plehn ����.����; . . . ]

� Theory language: dimension-� operators of SM EFT, L ⊃ ∑i
f i
Λ2Oi

[W. Buchmuller, D. Wyler ��; K. Hagiwara, S. Ishihara, S. R. Szalapski, D. Zeppenfeld ��;
B. Grzadkowski, M. Iskrzynski, M. Misiak, J. Rosiek ����.����; . . . ]

� Total rate: O� ,2 =
1
2
∂µ(�†�) ∂µ(�†�)

� New kinematic structures:

OB = i
g
2
(Dµ�†

)(Dν�)Bµν OW = i
g
2
(Dµ�)†σ k

(Dν�)W k
µν

OBB = −
g′2
4
(�†�)Bµν Bµν

OWW = −
g2

4
(�†�)W k

µν W µν k

� CP violation: OWW̃ = −
g2

4
(�†�)W k

µν W̃ µν k

� Others strongly constrained by EWPD or redundant

W , Z h

q

q

q′
τ−
τ+

q′

�/��
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Equivalent to 3x more data!

“Better Higgs Measurements Through Information Geometry”  
[arXiv:1612.05261] 



There is a lot to gain by exploiting differential 
information 

How do we do it when there is a detector in the way?



T W O  A P P R O A C H E S  T O  S I M U L AT I O N - B A S E D  I N F E R E N C E

• Approximate Bayesian 
Computation (ABC) 

• Probabilistic Programming 

• Adversarial Variational 
Optimization (AVO)

32

Use simulator  
(much more efficiently)

Learn simulator  
(with deep learning)

• Generative Adversarial Networks (GANs), 
Variational Auto-Encoders (VAE) 

• Likelihood ratio from classifiers (CARL) 

• Autogregressive models,  
Normalizing Flows

[image credit: A.P. Goucher]

https://cp4space.wordpress.com/2016/02/06/deep-learning-with-the-analytical-engine/


Hypothesis Testing  
&  

Classification



H Y P O T H E S I S  T E S T I N G

•Classical hypothesis testing typically framed in terms of 
true/false : positive/negative 

34

power

actually guilty ↔ new physics 

       verdict guilty ↔ claim discovery



6 Glen Cowan Multivariate Statistical Methods in Particle Physics

Finding an optimal decision boundary
Maybe select events with “cuts”:

xi < ci
xj  < cj

Or maybe use some other type of decision boundary:

Goal of multivariate analysis is to do this in an “optimal” way.

H0 H0

H0

H1

H1H1
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H Y P O T H E S I S  T E S T I N G

•If the data are high-dimensional, it’s not obvious how to draw 
the boundary between accept/reject the null hypothesis
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THE NEYMAN-PEARSON LEMMA

36

The Neyman & Pearson’s Theory

In 1928-1938 Neyman & Pearson developed a theory in which one
must consider competing Hypotheses:

- the Null Hypothesis H0 (background only)

- the Alternate Hypothesis H1 (signal-plus-background)

Given some probability that we wrongly reject the Null Hypothesis

α = P (x /∈ W |H0)

Find the region W such that we minimize the probability of wrongly
accepting the H0 (when H1 is true)

β = P (x ∈ W |H1)

April 11, 2005

EFI High Energy Physics Seminar

Modern Data Analysis Techniques

for High Energy Physics (page 6)

Kyle Cranmer

Brookhaven National Laboratory

(Convention: if data falls in W then we accept H0)



The region W that minimizes the probability of wrongly accepting H0     
is just a contour of the Likelihood Ratio

Any other region of the same size will have less power

THE NEYMAN-PEARSON LEMMA

37

P (x|H1)
P (x|H0)

> k�

W WC



A SHORT PROOF OF NEYMAN-PEARSON
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The new region region has less power.

P (x|H1)
P (x|H0)

< k�
P (x|H1)
P (x|H0)

> k�

P ( |H0) = P ( |H0)

P ( |H1) < P ( |H1)

P ( |H1) < P ( |H0) P ( |H1) > P ( |H0)k� k�



PROBLEM WITH NEYMAN-PEARSON

But, if I don’t know P(x|H1) and P(x|H0)  
I can’t evaluate this likelihood ratio! 

39

P (x|H1)
P (x|H0)

> k�

W WC



Machine Learning = Applied Calculus of Variations



M A C H I N E  L E A R N I N G :  C L A S S I F I E R S

•Common to use machine learning 
classifiers to separate signal (H1) vs. 
background (H0) 

• want a function s: X→ Y that 
maps signal to y=1 and 
background to y=0  

• calculus of variations: find 
function s(x) that minimizes loss:

41

L[s] =

Z
p(x|H0) (0� s(x))2 dx

+

Z
p(x|H1) (1� s(x))2dx

⇡
X

i

(yi � s(xi))
2
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Figure 4: Example plots for classifier output distributions for signal and background events from the academic
test sample. Shown are likelihood (upper left), PDE range search (upper right), Multilayer perceptron (MLP
– lower left) and boosted decision trees.

• TMVA tutorial: https://twiki.cern.ch/twiki/bin/view/TMVA.

• An up-to-date reference of all configuration options for the TMVA Factory, the fitters, and all
the MVA methods: http://tmva.sourceforge.net/optionRef.html.

• On request, the TMVA methods provide a help message with a brief description of the method,
and hints for improving the performance by tuning the available configuration options. The
message is printed when the option ”H” is added to the configuration string while booking
the method (switch o↵ by setting ”!H”). The very same help messages are also obtained by
clicking the “info” button on the top of the reference tables on the options reference web page:
http://tmva.sourceforge.net/optionRef.html.

• The web address of this Users Guide: http://tmva.sourceforge.net/docu/TMVAUsersGuide.pdf.

• The TMVA talk collection: http://tmva.sourceforge.net/talks.shtml.
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Figure 5: Example for the background rejection versus signal e�ciency (“ROC curve”) obtained by cutting
on the classifier outputs for the events of the test sample.

• TMVA versions in ROOT releases: http://tmva.sourceforge.net/versionRef.html.

• Direct code views via ViewVC: http://tmva.svn.sourceforge.net/viewvc/tmva/trunk/TMVA.

• Class index of TMVA in ROOT: http://root.cern.ch/root/htmldoc/TMVA Index.html.

• Please send questions and/or report problems to the tmva-users mailing list:
http://sourceforge.net/mailarchive/forum.php?forum name=tmva-users (posting messages requires
prior subscription: https://lists.sourceforge.net/lists/listinfo/tmva-users).

3 Using TMVA

A typical TMVA classification or regression analysis consists of two independent phases: the training
phase, where the multivariate methods are trained, tested and evaluated, and an application phase,
where the chosen methods are applied to the concrete classification or regression problem they have
been trained for. An overview of the code flow for these two phases as implemented in the examples
TMVAClassification.C and TMVAClassificationApplication.C (for classification – see Sec. 2.5),
and TMVARegression.C and TMVARegressionApplication.C (for regression) are sketched in Fig. 7.
Multiclass classification does not di↵er much from two class classification from a technical point of
view and di↵erences will only be highlighted where neccessary.

In the training phase, the communication of the user with the data sets and the MVA methods
is performed via a Factory object, created at the beginning of the program. The TMVA Factory
provides member functions to specify the training and test data sets, to register the discriminating

Figure 1: Left: an example of the distributions f0(s|✓) and f1(s|✓) when the classifier s is
a boosted-decision tree (BDT). Right: the corresponding ROC curve (right) for this and
other classifiers. Figures taken from TMVA manual.

These steps lead to a subsequent statistical analysis where one observes in data {xe},
where e is an event index running from 1 to n. For each event, the classifier is evaluated and
one performs inference on a parameter µ related to the presence of the signal contribution.
In particular, one forms the statistical model

p({xe} |µ, ✓) =
nY

e=1

[µf1(s(xe) | ✓) + (1 � µ) f0(s(xe) | ✓) ] , (1)

where µ = 0 is the null (background-only) hypothesis and µ > 0 is the alternate (signal-
plus-background) hypothesis.1 Typically, we are interested in inference on µ and ✓ are
nuisance parameters; though, sometimes ✓ may include some components that we are also
wish to infer (like the mass of a new particle that a↵ects the distribution x for the signal
events).

1.2 Comments on typical usage of machine learning in HEP

Nuisance parameters are an after thought in the typical usage of machine learning in HEP.
In fact, most machine learning discussions would only consider f0(x) and f1(x). However,
as experimentalists we know that we must account for various forms of systematic uncer-
tainty, parametrized by ✓. In practice, we take the classifier as fixed and then propagate
uncertainty through the classifier as in Eq. 1. Building the distribution f(s(x)|✓) for values
of ✓ other than the nominal ✓0 used to train the classifier can be thought of as a calibration

1Sometimes there is an additional Poisson term when expected number of signal and background events
is known.

2

s        



• applied calculus of variations: 
find function s(x) that minimizes 
loss: 

• i.e. approximate the optimal 
classifier 

• which is 1-to-1 with the 
likelihood ratio

M A C H I N E  L E A R N I N G :  C L A S S I F I E R S
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p(x|H1)

p(x|H0)

s(x) =
p(x|H1)

p(x|H0) + p(x|H1)

L[s] =

Z
p(x|H0) (0� s(x))2 dx

+

Z
p(x|H1) (1� s(x))2dx

⇡
X

i

(yi � s(xi))
2
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Figure 4: Example plots for classifier output distributions for signal and background events from the academic
test sample. Shown are likelihood (upper left), PDE range search (upper right), Multilayer perceptron (MLP
– lower left) and boosted decision trees.

• TMVA tutorial: https://twiki.cern.ch/twiki/bin/view/TMVA.

• An up-to-date reference of all configuration options for the TMVA Factory, the fitters, and all
the MVA methods: http://tmva.sourceforge.net/optionRef.html.

• On request, the TMVA methods provide a help message with a brief description of the method,
and hints for improving the performance by tuning the available configuration options. The
message is printed when the option ”H” is added to the configuration string while booking
the method (switch o↵ by setting ”!H”). The very same help messages are also obtained by
clicking the “info” button on the top of the reference tables on the options reference web page:
http://tmva.sourceforge.net/optionRef.html.

• The web address of this Users Guide: http://tmva.sourceforge.net/docu/TMVAUsersGuide.pdf.

• The TMVA talk collection: http://tmva.sourceforge.net/talks.shtml.
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Figure 5: Example for the background rejection versus signal e�ciency (“ROC curve”) obtained by cutting
on the classifier outputs for the events of the test sample.

• TMVA versions in ROOT releases: http://tmva.sourceforge.net/versionRef.html.

• Direct code views via ViewVC: http://tmva.svn.sourceforge.net/viewvc/tmva/trunk/TMVA.

• Class index of TMVA in ROOT: http://root.cern.ch/root/htmldoc/TMVA Index.html.

• Please send questions and/or report problems to the tmva-users mailing list:
http://sourceforge.net/mailarchive/forum.php?forum name=tmva-users (posting messages requires
prior subscription: https://lists.sourceforge.net/lists/listinfo/tmva-users).

3 Using TMVA

A typical TMVA classification or regression analysis consists of two independent phases: the training
phase, where the multivariate methods are trained, tested and evaluated, and an application phase,
where the chosen methods are applied to the concrete classification or regression problem they have
been trained for. An overview of the code flow for these two phases as implemented in the examples
TMVAClassification.C and TMVAClassificationApplication.C (for classification – see Sec. 2.5),
and TMVARegression.C and TMVARegressionApplication.C (for regression) are sketched in Fig. 7.
Multiclass classification does not di↵er much from two class classification from a technical point of
view and di↵erences will only be highlighted where neccessary.

In the training phase, the communication of the user with the data sets and the MVA methods
is performed via a Factory object, created at the beginning of the program. The TMVA Factory
provides member functions to specify the training and test data sets, to register the discriminating

Figure 1: Left: an example of the distributions f0(s|✓) and f1(s|✓) when the classifier s is
a boosted-decision tree (BDT). Right: the corresponding ROC curve (right) for this and
other classifiers. Figures taken from TMVA manual.

These steps lead to a subsequent statistical analysis where one observes in data {xe},
where e is an event index running from 1 to n. For each event, the classifier is evaluated and
one performs inference on a parameter µ related to the presence of the signal contribution.
In particular, one forms the statistical model

p({xe} |µ, ✓) =
nY

e=1

[µf1(s(xe) | ✓) + (1 � µ) f0(s(xe) | ✓) ] , (1)

where µ = 0 is the null (background-only) hypothesis and µ > 0 is the alternate (signal-
plus-background) hypothesis.1 Typically, we are interested in inference on µ and ✓ are
nuisance parameters; though, sometimes ✓ may include some components that we are also
wish to infer (like the mass of a new particle that a↵ects the distribution x for the signal
events).

1.2 Comments on typical usage of machine learning in HEP

Nuisance parameters are an after thought in the typical usage of machine learning in HEP.
In fact, most machine learning discussions would only consider f0(x) and f1(x). However,
as experimentalists we know that we must account for various forms of systematic uncer-
tainty, parametrized by ✓. In practice, we take the classifier as fixed and then propagate
uncertainty through the classifier as in Eq. 1. Building the distribution f(s(x)|✓) for values
of ✓ other than the nominal ✓0 used to train the classifier can be thought of as a calibration

1Sometimes there is an additional Poisson term when expected number of signal and background events
is known.
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• applied calculus of variations: 
find function s(x) that minimizes 
loss: 

• i.e. approximate the optimal 
classifier 

• which is 1-to-1 with the 
likelihood ratio
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p(x|H1)

p(x|H0)

s(x) =
p(x|H1)

p(x|H0) + p(x|H1)

L[s] =

Z
p(x|H0) (0� s(x))2 dx

+

Z
p(x|H1) (1� s(x))2dx

⇡
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Figure 4: Example plots for classifier output distributions for signal and background events from the academic
test sample. Shown are likelihood (upper left), PDE range search (upper right), Multilayer perceptron (MLP
– lower left) and boosted decision trees.

• TMVA tutorial: https://twiki.cern.ch/twiki/bin/view/TMVA.

• An up-to-date reference of all configuration options for the TMVA Factory, the fitters, and all
the MVA methods: http://tmva.sourceforge.net/optionRef.html.

• On request, the TMVA methods provide a help message with a brief description of the method,
and hints for improving the performance by tuning the available configuration options. The
message is printed when the option ”H” is added to the configuration string while booking
the method (switch o↵ by setting ”!H”). The very same help messages are also obtained by
clicking the “info” button on the top of the reference tables on the options reference web page:
http://tmva.sourceforge.net/optionRef.html.

• The web address of this Users Guide: http://tmva.sourceforge.net/docu/TMVAUsersGuide.pdf.

• The TMVA talk collection: http://tmva.sourceforge.net/talks.shtml.
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Figure 5: Example for the background rejection versus signal e�ciency (“ROC curve”) obtained by cutting
on the classifier outputs for the events of the test sample.

• TMVA versions in ROOT releases: http://tmva.sourceforge.net/versionRef.html.

• Direct code views via ViewVC: http://tmva.svn.sourceforge.net/viewvc/tmva/trunk/TMVA.

• Class index of TMVA in ROOT: http://root.cern.ch/root/htmldoc/TMVA Index.html.

• Please send questions and/or report problems to the tmva-users mailing list:
http://sourceforge.net/mailarchive/forum.php?forum name=tmva-users (posting messages requires
prior subscription: https://lists.sourceforge.net/lists/listinfo/tmva-users).

3 Using TMVA

A typical TMVA classification or regression analysis consists of two independent phases: the training
phase, where the multivariate methods are trained, tested and evaluated, and an application phase,
where the chosen methods are applied to the concrete classification or regression problem they have
been trained for. An overview of the code flow for these two phases as implemented in the examples
TMVAClassification.C and TMVAClassificationApplication.C (for classification – see Sec. 2.5),
and TMVARegression.C and TMVARegressionApplication.C (for regression) are sketched in Fig. 7.
Multiclass classification does not di↵er much from two class classification from a technical point of
view and di↵erences will only be highlighted where neccessary.

In the training phase, the communication of the user with the data sets and the MVA methods
is performed via a Factory object, created at the beginning of the program. The TMVA Factory
provides member functions to specify the training and test data sets, to register the discriminating

Figure 1: Left: an example of the distributions f0(s|✓) and f1(s|✓) when the classifier s is
a boosted-decision tree (BDT). Right: the corresponding ROC curve (right) for this and
other classifiers. Figures taken from TMVA manual.

These steps lead to a subsequent statistical analysis where one observes in data {xe},
where e is an event index running from 1 to n. For each event, the classifier is evaluated and
one performs inference on a parameter µ related to the presence of the signal contribution.
In particular, one forms the statistical model

p({xe} |µ, ✓) =
nY

e=1

[µf1(s(xe) | ✓) + (1 � µ) f0(s(xe) | ✓) ] , (1)

where µ = 0 is the null (background-only) hypothesis and µ > 0 is the alternate (signal-
plus-background) hypothesis.1 Typically, we are interested in inference on µ and ✓ are
nuisance parameters; though, sometimes ✓ may include some components that we are also
wish to infer (like the mass of a new particle that a↵ects the distribution x for the signal
events).

1.2 Comments on typical usage of machine learning in HEP

Nuisance parameters are an after thought in the typical usage of machine learning in HEP.
In fact, most machine learning discussions would only consider f0(x) and f1(x). However,
as experimentalists we know that we must account for various forms of systematic uncer-
tainty, parametrized by ✓. In practice, we take the classifier as fixed and then propagate
uncertainty through the classifier as in Eq. 1. Building the distribution f(s(x)|✓) for values
of ✓ other than the nominal ✓0 used to train the classifier can be thought of as a calibration

1Sometimes there is an additional Poisson term when expected number of signal and background events
is known.
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Shallow neural network Deep neural network 

image credit: Michael Nielsen

•In calculus of variations, the optimization is over all functions: 

• In applied calculus of variations, we consider a highly flexible family of 
functions sφ and optimize 

• Think of neural networks as a highly flexible family of functions 

• Machine learning also includes non-convex optimization algorithms that 
are affective even with millions of parameters!

ŝ = argmin
s

L[s]



Machine Learning for Effective Field Theory 

Stronger Bounds on Higgs EFTs



H I G G S  E F T

•Let θ denote the coefficients of higher dimensional operators in the 
Lagrangian and x be high-dimensional data associated to an event 

• we want to compare any two points in EFT parameter space 

• goal: estimate the true likelihood ratio 
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Weak boson fusion, h → ττ
� Well-known probe of Higgs-gauge structure

� Interesting kinematics of tagging jets
[D. Rainwater, D. Zeppenfeld, K. Hagiwara hep-ph/�������;
T. Plehn, D. Rainwater, D. Zeppenfeld hep-ph/�������;
C. Englert, D. Gonçalves-Netto, K.Mawatari, T. Plehn ����.����; . . . ]

� Theory language: dimension-� operators of SM EFT, L ⊃ ∑i
f i
Λ2Oi

[W. Buchmuller, D. Wyler ��; K. Hagiwara, S. Ishihara, S. R. Szalapski, D. Zeppenfeld ��;
B. Grzadkowski, M. Iskrzynski, M. Misiak, J. Rosiek ����.����; . . . ]

� Total rate: O� ,2 =
1
2
∂µ(�†�) ∂µ(�†�)

� New kinematic structures:

OB = i
g
2
(Dµ�†

)(Dν�)Bµν OW = i
g
2
(Dµ�)†σ k

(Dν�)W k
µν

OBB = −
g′2
4
(�†�)Bµν Bµν

OWW = −
g2

4
(�†�)W k

µν W µν k

� CP violation: OWW̃ = −
g2

4
(�†�)W k

µν W̃ µν k

� Others strongly constrained by EWPD or redundant

W , Z h

q

q

q′
τ−
τ+

q′

�/��

Weak boson fusion, h → 4�
� Production vs decay

� hZZ decay vertex:
many angular structures

� Very clean

� Same operators as before:

OB = i
g
2
(Dµ�†

)(Dν�)Bµν OW = i
g
2
(Dµ�)†σ k

(Dν�)W k
µν

OBB = −
g′2
4
(�†�)Bµν Bµν

OWW = −
g2

4
(�†�)W k

µν W µν k

O� ,2 =
1
2
∂µ(�†�) ∂µ(�†�) OWW̃ = −

g2

4
(�†�)W k

µν W̃ µν k

� Setup as before, except:
� No backgrounds, no smearing
� L ⋅ ε = 100 fb−1
� Cuts: pT , j > 20 GeV, �η j � < 5.0, pT ,� > 10 GeV, �η� � < 2.5

W , Z

W , Z

h

Z

Z

q

q

q′
�−
�+
�−
�+

q′

��/��

p(x|✓0)
p(x|✓1)
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Figure 3: Overview of produced samples for morphing validation in the H ! WW ⇤ ! e⌫µ⌫ channel. The SM
coupling gSM = cos(↵) · SM is set to 1 for all input samples and the limits for the BSM parameters are taken such
that a pure BSM sample would have the SM cross section. The parameters for the validation samples are taken
randomly in the desired parameter space.
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Figure 4: The number of expected events in the considered parameter space for H ! WW ⇤ ! e⌫µ⌫ calculated with
the morphing method is shown on the left. The relative uncertainty on the number of expected events propagated
from the morphing function can be seen on the right.
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Figure 2: Distributions of cos (✓1), where ✓1 is the angle between the on-shell Z boson and its negatively charged
lepton (left) and the angle � (right) between the decay planes of the two Z bosons for events generated in the ggF
H ! Z Z⇤ ! 4` process at 13 TeV, calculated in the rest frame of the Higgs boson [1]. Generated validation samples
(solid) as well as predictions calculated via morphing (dashed) are shown. The ratios between the morphing output
and the validation distributions are shown in the lower panels.

5.1.2. Validation in VBF H ! WW
⇤ ! e⌫µ⌫

In addition to the SM coupling SM two non-SM couplings HWW and AWW are used for validation. All
three operators act on the production and decay vertex which results in 15 input samples needed for the
morphing. Besides these 15 input samples additional validation samples are produced to have statistically
independent distributions.

An overview of all generated samples in the parameter space can be found in Figure 3, where the two
additional validation samples have been highlighted and dubbed v0 and v1. Their parameters have been
chosen randomly. For each sample, 50.000 Monte Carlo events have been generated. The cross sections
calculated in arbitrary units using the morphing technique can be seen in Figure 4 (left). Using larger
absolute non-SM coupling values results in larger rates for both non-SM coupling parameters.

The relative uncertainty arising from the morphing function on the number of events is shown in Figure 4
(right). In the considered parameter space the relative Monte Carlo statistical uncertainty remains very
small, in the range of ca. 2-3%, whereas outside the region the uncertainty grows the further away the
parameters lie from the input samples. This explains both the local maxima in the central parameter region
and the rapid increase in the outer region.

For this channel, the kinematic observable used is the azimuthal angle between the two tagging jets �� j j .
All input distributions for morphing and validation are scaled to their respective cross section in arbitrary
units and shown in Figure 5. When morphing to one of the input samples a perfect match is obtained.
The morphing is also tested against statistically independent validation samples, as shown in Figure 6,
exhibiting agreement within ⇠ 5% of the input samples and the morphing.

14

|g1MSM + g2MBSM |2 = g21 |MSM |2 + 2g1g2Re [M⇤
SMMBSM ] + g22 |MBSM |2

The matrix element of such a scenario for given values of {gSM, gBSM} can be written as a sum of the pure
SM and the pure BSM contribution2

M (gSM,gBSM) = gSM · OSM + gBSM · OBSM. (3)

This translates into the description of a physical observable T from the above signal process,

T (gSM,gBSM) / |M(gSM,gBSM) |2 = g2
SM · O

2
SM + g

2
BSM · O

2
BSM + gSM · gBSM · 2<(O⇤SMOBSM). (4)

This can be used to morph to an arbitrary parameter point.

The number of input distributions required to morph to an arbitrary parameter point ~gtarget = {gSM,gBSM}

is equal to the unique terms in the matrix element squared, which is three in this case. It is su�cient
to generate a pure SM distribution Tin(1,0), a pure BSM distribution Tin(0,1) and a mixed distribution
Tin(1,1). Using the proportionalities to the matrix element squared one obtains

Tin(1,0) / |OSM |
2,

Tin(0,1) / |OBSM |
2,

Tin(1,1) / |OSM |
2 + |OBSM |

2 + 2R (O⇤SMOBSM).

(5)

Applying these three equations to Equation 4 results in the morphing function for a distribution at an
arbitrary parameter point

Tout(gSM,gBSM) = (g2
SM � gSMgBSM)
|                {z                }

=w1

Tin(1,0) + (g2
BSM � gSMgBSM)
|                  {z                  }

=w2

Tin(0,1) + gSMgBSM|    {z    }
=w3

Tin(1,1). (6)

2 In this and the following section, the notation O will be used for the amplitude,whereas the notationM will be used for fully
computed matrix elements. However, since the di↵erence is only conceptual, the symbols are used interchangeably.

SM

Mix

BSM

Interference

2SM

2BSM

+1

�1

�1

SM · BSM

Figure 1: Illustration of the morphing procedure in a simple showcase.

43-d vector space, any point in this space is linear mixture of 3 basis samples!

Simple example:

Difficulty is that one changes the 
parameters of the EFT, the 
distributions p(x|θ) change due to 
interference. But there is a trick:

(real examples need more basis samples)
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•For 2 BSM operators affecting VBF Higgs production and decay, we need a 15-D vector space  

•For 5 BSM operators we need 126-D vector space
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Process Number of components for n operators

O�Λ0
� O�Λ−2� O�Λ−4� O�Λ−6� O�Λ−8� ∑

hV /WBF production � n n(n + 1)
2

(n + 1)(n + 2)
2

h → VV decay � n n(n + 1)
2

(n + 1)(n + 2)
2

Production + decay � n n(n + 1)
2

�
n + 2

3� �
n + 3

4� �
n + 4

4�

Table �: Number of components c as given in Eq. (�) for di�erent processes, sorted by their sup-
pression by the EFT cuto� scale Λ.

OB̃ is tightly constrained by LEP.OBB̃ on the other hand does not contribute toHWW couplings
and its contribution to HZZ is suppressed by sin θ2W . We will therefore restrict our analyses to
OWW̃ .

�.� Decomposition into components

Let us return to the decomposition of the amplitudes into several components given in Eq. (�).
In the following sections we will count the number of components for the processes that involve
Higgs-gauge interactions. �e results for di�erent processes are summarized in Tab. �.

Following Eq. (�), the coe�cients wc(θ) are always a product of Wilson coe�cients divided by a
polynomial of Wilson coe�cients (from the normalization).

�.�.� Higgs production

In the pure Higgs production processes

qq′ → hV (��)

and

qq′ → qq′h , (��)

the di�erential cross section decomposes into SMandEFTparts in a straightforwardway. Schem-
atically,

dσ ∝ �MSM +�
i

fi
Λ2Mi�

2

∝ �MSM�
2
+�

i

2 fi
Λ2 Mi ⋅MSM +�

i , j

fi f j
Λ4 Mi ⋅M j , (��)

��

whereMi is the amplitude involving the operator Oi , and the dot product A ⋅ B is short for
ReA†B.

For n dimension-� Wilson coe�cients, there is thus � SM term, n SM-BSM interference terms,
and n(n + 1)�2 BSM-only terms.

�.�.� Higgs decays

For pure Higgs decays

h → VV (��)

the calculation is exactly the same as in Eq. (��). It does not matter whether V decays are in-
cluded.

�.�.� Production and decay

�e situation is slightly more interesting when considering a complete process

qq′ → hV → VV V (��)

or

qq′ → h qq′ → VV qq′ . (��)

For simplicity we ignore non-Higgs amplitudes and the dependence of Γh on the Wilson coe�-
cients. Both e�ects depend on many more operators and are subleading for on-shell measure-
ments.
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Figure ��: Morphing weights wi(θ) for basis points distributed over the full relevant parameter
space.
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p(x|✓) =
X

c

wc(✓)pc(x)

Express EFT as a mixture:



E X T E N D I N G  T H E  L I K E L I H O O D  R AT I O  T R I C K

•A binary classifier approximates 

•Which is one-to-one with the likelihood ratio  

•Can do the same thing for any two points θ₀ & θ₁ in 
parameter space Θ. I call this a parametrized classifier 

48

s(x; ✓0, ✓1) =
p(x|✓1)

p(x|✓0) + p(x|✓1)

K.C., G. Louppe, J. Pavez: Approximating Likelihood Ratios with Calibrated Discriminative Classifiers [arXiv:1506.02169]

s(x) =
p(x|H1)

p(x|H0) + p(x|H1)

p(x|y = 0)

p(x|y = 1)
= 1� 1

s(x)

p(x|H1)

p(x|H0)

http://arxiv.org/abs/1506.02169


C A L I B R AT I N G  T H E  L I K E L I H O O D - R AT I O  T R I C K

•The intractable likelihood ratio based on high-dimensional features x is: 

•We can show that an equivalent test can be made from 1-D projection 

•if the scalar map s: X → ℝ has the same level sets as the likelihood ratio 

•Estimating the density of                       via the simulator calibrates the ratio. 
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Figure 4: Example plots for classifier output distributions for signal and background events from the academic
test sample. Shown are likelihood (upper left), PDE range search (upper right), Multilayer perceptron (MLP
– lower left) and boosted decision trees.

• TMVA tutorial: https://twiki.cern.ch/twiki/bin/view/TMVA.

• An up-to-date reference of all configuration options for the TMVA Factory, the fitters, and all
the MVA methods: http://tmva.sourceforge.net/optionRef.html.

• On request, the TMVA methods provide a help message with a brief description of the method,
and hints for improving the performance by tuning the available configuration options. The
message is printed when the option ”H” is added to the configuration string while booking
the method (switch o↵ by setting ”!H”). The very same help messages are also obtained by
clicking the “info” button on the top of the reference tables on the options reference web page:
http://tmva.sourceforge.net/optionRef.html.

• The web address of this Users Guide: http://tmva.sourceforge.net/docu/TMVAUsersGuide.pdf.

• The TMVA talk collection: http://tmva.sourceforge.net/talks.shtml.
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Figure 5: Example for the background rejection versus signal e�ciency (“ROC curve”) obtained by cutting
on the classifier outputs for the events of the test sample.

• TMVA versions in ROOT releases: http://tmva.sourceforge.net/versionRef.html.

• Direct code views via ViewVC: http://tmva.svn.sourceforge.net/viewvc/tmva/trunk/TMVA.

• Class index of TMVA in ROOT: http://root.cern.ch/root/htmldoc/TMVA Index.html.

• Please send questions and/or report problems to the tmva-users mailing list:
http://sourceforge.net/mailarchive/forum.php?forum name=tmva-users (posting messages requires
prior subscription: https://lists.sourceforge.net/lists/listinfo/tmva-users).

3 Using TMVA

A typical TMVA classification or regression analysis consists of two independent phases: the training
phase, where the multivariate methods are trained, tested and evaluated, and an application phase,
where the chosen methods are applied to the concrete classification or regression problem they have
been trained for. An overview of the code flow for these two phases as implemented in the examples
TMVAClassification.C and TMVAClassificationApplication.C (for classification – see Sec. 2.5),
and TMVARegression.C and TMVARegressionApplication.C (for regression) are sketched in Fig. 7.
Multiclass classification does not di↵er much from two class classification from a technical point of
view and di↵erences will only be highlighted where neccessary.

In the training phase, the communication of the user with the data sets and the MVA methods
is performed via a Factory object, created at the beginning of the program. The TMVA Factory
provides member functions to specify the training and test data sets, to register the discriminating

Figure 1: Left: an example of the distributions f0(s|✓) and f1(s|✓) when the classifier s is
a boosted-decision tree (BDT). Right: the corresponding ROC curve (right) for this and
other classifiers. Figures taken from TMVA manual.

These steps lead to a subsequent statistical analysis where one observes in data {xe},
where e is an event index running from 1 to n. For each event, the classifier is evaluated and
one performs inference on a parameter µ related to the presence of the signal contribution.
In particular, one forms the statistical model

p({xe} |µ, ✓) =
nY

e=1

[µf1(s(xe) | ✓) + (1 � µ) f0(s(xe) | ✓) ] , (1)

where µ = 0 is the null (background-only) hypothesis and µ > 0 is the alternate (signal-
plus-background) hypothesis.1 Typically, we are interested in inference on µ and ✓ are
nuisance parameters; though, sometimes ✓ may include some components that we are also
wish to infer (like the mass of a new particle that a↵ects the distribution x for the signal
events).

1.2 Comments on typical usage of machine learning in HEP

Nuisance parameters are an after thought in the typical usage of machine learning in HEP.
In fact, most machine learning discussions would only consider f0(x) and f1(x). However,
as experimentalists we know that we must account for various forms of systematic uncer-
tainty, parametrized by ✓. In practice, we take the classifier as fixed and then propagate
uncertainty through the classifier as in Eq. 1. Building the distribution f(s(x)|✓) for values
of ✓ other than the nominal ✓0 used to train the classifier can be thought of as a calibration

1Sometimes there is an additional Poisson term when expected number of signal and background events
is known.

2

s     

p
(s

)  
 

s(x; ✓0; ✓1) = monotonic[ p(x|✓0)/p(x|✓1) ]

p(x|✓0)
p(x|✓1)

p(x|✓0)
p(x|✓1)

=
p(s(x; ✓0, ✓1)|✓0)
p(s(x; ✓0, ✓1)|✓1)

s(x; ✓0, ✓1)

✓0✓1

K.C., G. Louppe, J. Pavez: Approximating Likelihood Ratios with Calibrated Discriminative Classifiers [arXiv:1506.02169]

http://arxiv.org/abs/1506.02169
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Figure ��: Inference from truth likelihood ratio and carl’s estimate for the fully di�erential case
with regression. Le�: scatter plot showing the di�erence between the exact expected
likelihood ratio for ��� randomly sampled points and θ1 and carl’s estimate. Right:
true (white) and approximate (cyan) likelihood contours, using a Gaussian Process for
interpolation. �e white and cyan dots show the exact and approximate maximum-
likelihood estimators.�e green and red dots show θobserved and θ1, respectively. Finally,
the small grey dots show the sampled parameter points at which the likelihood ratio
was evaluated.
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Weak boson fusion, h → 4�
� Production vs decay

� hZZ decay vertex:
many angular structures

� Very clean

� Same operators as before:
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� Setup as before, except:
� No backgrounds, no smearing
� L ⋅ ε = 100 fb−1
� Cuts: pT , j > 20 GeV, �η j � < 5.0, pT ,� > 10 GeV, �η� � < 2.5
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work with Juan Pavez, Gilles Louppe, Cyril Becot, and Lukas Heinrich; Johann Brehmer, Felix Kling, and Tilman Plehn 
“Better Higgs Measurements Through Information Geometry” [arXiv:1612.05261] & CARL  [arxiv:1506.02169] 

(based on a 16-Dim observation x)

http://arxiv.org/abs/1506.02169


A M O R T I Z E D  L I K E L I H O O D - F R E E  I N F E R E N C E

•Once we’ve learned the function s(x; θ0,θ1) to approximate the 
likelihood, we can apply it to any data x.  

• unlike MCMC, we pay biggest computational costs up front 

• Here we repeat inference thousands of times & check 
asymptotic statistical theory
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(a) Exact vs. approximated MLEs. (b) p(�2 log⇤(� = 0.05) | � = 0.05)

Figure 2: Using approximated likelihood ratios for parameter inference yields an unbi-

ased maximum likelihood estimator �̂, as empirically estimated from an ensemble of 1000

artificial datasets.

An advantage of this approach compared to Approximate Bayesian Computation (Beau-

mont et al., 2002) is that the classifier and calibration – computationally intensive parts of

the approximation – are independent of the dataset D. Thus once trained and calibrated,

the approximation can be applied to any dataset D. This makes it computationally e�cient

to perform ensemble tests of the method.

Figure 2a shows the empirical distribution of the maximum likelihood estimators (MLEs)

from the approximate likelihood compared to the distribution of the MLEs from the exact

likelihood. It clearly demonstrates that in this case the approximate likelihood yields an

unbiased estimator with essentially the same variance as the exact MLE. In addition to

the MLE, we can study the coverage of a confidence interval based on the likelihood ra-

tio test statistic. This is done by evaluating �2 log⇤(� = 0.05) for samples drawn from

p(x|� = 0.05). Wilks’s theorem states that the distribution of �2 log⇤(� = 0.05) should

follow a �2
1 distribution. Figure 2b also confirms this behavior, supporting the applicability

18

K.C., G. Louppe, J. Pavez: http://arxiv.org/abs/1506.02169

http://arxiv.org/abs/1506.02169
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Jet images

� �

b
ea

m

pre-process

convolutional layer

max-pooling

dense layer

quark jet

gluon jet

� �� �
�3

Figure 2: An illustration of the deep convolutional neural network architecture. The first

layer is the input jet image, followed by three convolutional layers, a dense layer and an

output layer.

would be much slower. There are many options for a smaller set of channels. For example,

one could consider one channel for hadrons and one for leptons, or channels for positively

charged, neutral and negatively charged particles. To be concrete, in this study we take three

input channels:

red = transverse momenta of charged particles

green = the transverse momenta of neutral particles

blue = charged particle multiplicity

– 9 –

[image: Komiske, Metodiev, Schwartz arxiv:1612.01551]

[Oliveira et al arXiv:1511.05190]

[Baldi et al arXiv:1603.09349]

[Barnard et al arXiv:1609.00607]
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is more di↵use for the QCD background which consists largely of gluon jets, which have an octet
radiation pattern, compared to the singlet radiation pattern of the W jets, where the radiation is
mostly restricted to the region between the two hard cores.
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Figure 2: The average jet image for signal W jets (top) and background QCD jets (bottom) before
(left) and after (right) applying the rotation, re-pixelation, and inversion steps of the pre-processing.
The average is taken over images of jets with 240 GeV < pT < 260 GeV and 65 GeV < mass < 95 GeV.

One standard pre-processing step that is often additionally applied in Computer Vision tasks is
normalization. A common normalization scheme is the L

2 norm such that
P

I
2
i = 1 where Ii is the

intensity of pixel i. This is particularly useful for the jet images where pixel intensities can span many
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Figure 2: The average jet image for signal W jets (top) and background QCD jets (bottom) before
(left) and after (right) applying the rotation, re-pixelation, and inversion steps of the pre-processing.
The average is taken over images of jets with 240 GeV < pT < 260 GeV and 65 GeV < mass < 95 GeV.

One standard pre-processing step that is often additionally applied in Computer Vision tasks is
normalization. A common normalization scheme is the L

2 norm such that
P

I
2
i = 1 where Ii is the

intensity of pixel i. This is particularly useful for the jet images where pixel intensities can span many
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F R O M  I M A G E S  T O  S E N T E N C E S

•Recursive Neural Networks showing great performance for 
Natural Language Processing tasks 

• neural network’s topology given by parsing of sentence!
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•Recursive Neural Networks showing great performance for 
Natural Language Processing tasks 

• neural network’s topology given by parsing of sentence!
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Analogy: 
word → particle 
parsing → jet algorithm
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FIG. 3. Jet classification performance for various input rep-
resentations of the RNN classifier, using kt topologies for the
embedding. The plot shows that there is significant improve-
ment from removing the image processing step and that sig-
nificant gains can be made with more accurate measurements
of the 4-momenta.

FIG. 4. Jet classification performance of the RNN classifier
based on various network topologies for the embedding (par-
ticles scenario). This plot shows that topology is significant,
as supported by the fact that results for kt, C/A and desc-pT
topologies improve over results for anti-kt, asc-pT and random
binary trees. Best results are achieved for C/A and desc-pT
topologies, depending on the metric considered.

further supported by the poor performance of the random
binary tree topology. We expected however that a simple
sequence (represented as a degenerate binary tree) based
on ascending and descending pT ordering would not per-
form particularly well, particularly since the topology
does not use any angular information. Surprisingly, the
simple descending pT ordering slightly outperforms the
RNNs based on kt and C/A topologies. The descending
pT network has the highest pT 4-momenta near the root
of the tree, which we expect to be the most important.
We suspect this is the reason that the descending pT out-
performs the ascending pT ordering on particles, but this
is not supported by the performance on towers. A similar
observation was already made in the context of natural
languages [24–26], where tree-based models have at best
only slightly outperformed simpler sequence-based net-
works. While recursive networks appear as a principled
choice, it is conjectured that recurrent networks may in
fact be able to discover and implicitly use recursive com-
positional structure by themselves, without supervision.
d. Gating The last factor that we varied was

whether or not to incorporate gating in the RNN. Adding
gating increases the number of parameters to 48,761, but
this is still about 20 times smaller than the number of
parameters in the MaxOut architectures used in previ-
ous jet image studies. Table I shows the performance of
the various RNN topologies with gating. While results
improve significantly with gating, most notably in terms
of R✏=50%, the trends in terms of topologies remain un-
changed.
e. Other variants Finally, we also considered a num-

ber of other variants. For example, we jointly trained
a classifier with the concatenated embeddings obtained
over kt and anti-kt topologies, but saw no significant
performance gain. We also tested the performance of
recursive activations transferred across topologies. For
instance, we used the recursive activation learned with
a kt topology when applied to an anti-kt topology and
observed a significant loss in performance. We also con-
sidered particle and tower level inputs with an additional
trimming preprocessing step, which was used for the jet
image studies, but we saw a significant loss in perfor-
mance. While the trimming degraded classification per-
formance, we did not evaluate the robustness to pileup
that motivates trimming and other jet grooming proce-
dures.

B. Infrared and Collinear Safety Studies

In proposing variables to characterize substructure,
physicists have been equally concerned with classification
performance and the ability to ensure various theoretical
properties of those variables. In particular, initial work
on jet algorithms focused on the Infrared-Collinear (IRC)
safe conditions:

• Infrared safety. The model is robust to augmenting
e with additional particles {vN+1, . . . ,vN+K} with

Q C D - I N S P I R E D  R E C U R S I V E  N E U R A L  N E T W O R K S
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towers 

particles

images

• Parton Shower is a tree-
like, ~stationary Markov 
Process 

• Neural network will 
leverage this structure 

• Tree-RNN needs much 
less data to train!

kt anti-kt
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•Jointly optimize jet embedding → event embedding → classifier
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Appendix A: Gated recursive embedding of jets

The recursive activation proposed in the previous sec-
tion su↵ers from two critical issues. First, it assumes
that left-child, right-child and local node information
hkL , hkR , uk are all equally relevant for computing the
new activation, while only some of this information may
be needed and selected. Second, it forces information to
pass through several levels of non-linearities and does not
allow to propagate unchanged from leaves to root. Ad-
dressing these issues and generalizing from [5–7], we pro-
pose to recursively define a recursive activation equipped

with reset and update gates as follows:

hk =

8
><

>:

uk if k is a leaf

zH � h̃k + zL � hkL+ otherwise

,! zR � hkR + zN � uk

(A1)

uk = � (Wuok + bu) (A2)

ok =

(
vi(k) if k is a leaf

okL + okR otherwise
(A3)

h̃k = �

0

@W
h̃

2

4
rL � hkL

rR � hkR

rN � uk
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5+ b
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3
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1
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4
rL
rR
rN

3

5 = sigmoid

0

@Wr

2

4
hkL

hkR

uk

3

5+ br

1

A (A6)

where W
h̃

2 Rq⇥3q, b
h̃

2 Rq, Wz 2 Rq⇥4q, bz 2 Rq,
Wr 2 Rq⇥3q, br 2 Rq, Wu 2 Rq⇥4 and bu 2 Rq form
together the shared parameters to be learned, � is the
ReLU activation function and � denotes the element-
wise multiplication.

Intuitively, the reset gates rL, rR and rN control how
to actively select and then merge the left-child embed-
ding hkL , the right-child embedding hkR and the local
node information uk to form a new candidate activation
h̃k. The final embedding hk can then be regarded as a

It scales!
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Neural Message Passing for Jet
Physics

Isaac Henrion, Johann Brehmer, Joan Bruna,
Kyunghyun Cho, Kyle Cranmer, Gilles Louppe,

Gaspar Rochette

Courant Institute & Center for Data Science

Talk:    https://dl4physicalsciences.github.io/files/nips_dlps_2017_slides_henrion.pdf
Paper: https://dl4physicalsciences.github.io/files/nips_dlps_2017_29.pdf

Isaac Henrion

https://dl4physicalsciences.github.io/files/nips_dlps_2017_slides_henrion.pdf
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J E T S  A S  A  G R A P H

•Using message passing neural networks over a fully connected graph on the particles 

• Two approaches for adjacency matrix for edges 

• import physics knowledge by using metric of jet algorithms 

• learn adjacency matrix and export new jet algorithm
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Jet graphs

W jetQCD jet

C/A algorithm with α=0 
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Introduction Jet Physics Previous work Proposed model Experiments Conclusions

Classification results

Model Iterations R✏=50%

Rec-NN (no gating) 1 70.4 ± 3.6
Rec-NN (gating) 1 83.3 ± 3.1

MPNN (directed) 1 89.4 ± 3.5
MPNN (directed) 2 98.3 ± 4.3
MPNN (directed) 3 85.9 ± 8.5

MPNN (identity) 3 74.5 ± 5.2

Relation Network 1 67.7 ± 6.8

1/FPR @ TPR = 50%

Significant improvement on W vs. QCD jet classification! 
This is with a learned adjacency matrix 

- what did it learn? Is that adjacency matrix useful? 
- we are working MPNN with QCD-motivated adjacency matrix

QCD Jet rejection @ 50% W-jet tagging efficiency
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•We can inject our knowledge of physics into the machine learning models! 
We can extract knowledge learned from the data!
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in to the paper may be tricky

• essentially, does our Gaussian Process have features
we’d expect from JES/PDF e↵ects

To better construct a kernel, we can also include our un-
derstanding of detector e↵ects and physics e↵ects. We
look at the covariance matrix of the 3 parameter fit func-
tion by fitting the ATLAS dataset and using Markov
Chain Monte Carlo [cite emcee?] to sample the posterior
(Fig 1). One can see a visible structure in the covariance,
suggesting the inflexibility of the fit function causes an-
chor points which the fit pivots around. This hints that
the parametric fits have some sort of inherent structure
that is not grounded in any physical properties of the
distribution.

As a comparison, the covariance matrix created from
posterior samples from the Gaussian Process fit to the
ATLAS dataset show less correlation between points at
higher mass (Fig 2). The correlation seems constrained
to diagonal, with the o↵ diagonal dying o↵ quickly.

We can now look at two e↵ects; jet energy scale (JES)
and parton density function (PDF) e↵ects. JES e↵ects
smear out the spectrum due to uncertainty on the mea-
sured energy of the jet. To model this, we use a Gaus-
sian kernel of various widths and means to smear out our

FIG. 3: JES Covariance Structure

FIG. 4: PDF Covariance Structure

distribution, and create a covariance matrix from these
samples (Fig 3). One can see a high degree of correlation
across all points in the distribution.
PDF e↵ects were implemented in the paper [cite] by

taking the 8 TeV dijet analysis data [cite] and comput-
ing a covariance matrix from applying di↵erent PDF sets
(Fig 4).
For comparison, we also create a covariance from a

Sliding Window Fit (SWiFt). The SWiFt solution to
the problems with fitting at high luminosities is to fit the
parametric form within smaller segments of the distribu-
tion, and piece together a final background estimation
across the whole spectrum. This method should create a
covariance structure which is limited to the diagonal and
zero in the o↵ diagonal, as each fit includes only a small
portion of the distribution. Indeed this is what we see in
Figure 5.

Other related plots

• Covariance and correlations as a function of mjj i.e.
plotting each row of the correlation and covariance
matrix separately.

3

FIG. 1: Three parameter covariance

FIG. 2: Gaussian Process covariance

in to the paper may be tricky

• essentially, does our Gaussian Process have features
we’d expect from JES/PDF e↵ects

To better construct a kernel, we can also include our un-
derstanding of detector e↵ects and physics e↵ects. We
look at the covariance matrix of the 3 parameter fit func-
tion by fitting the ATLAS dataset and using Markov
Chain Monte Carlo [cite emcee?] to sample the posterior
(Fig 1). One can see a visible structure in the covariance,
suggesting the inflexibility of the fit function causes an-
chor points which the fit pivots around. This hints that
the parametric fits have some sort of inherent structure
that is not grounded in any physical properties of the
distribution.

As a comparison, the covariance matrix created from
posterior samples from the Gaussian Process fit to the
ATLAS dataset show less correlation between points at
higher mass (Fig 2). The correlation seems constrained
to diagonal, with the o↵ diagonal dying o↵ quickly.

We can now look at two e↵ects; jet energy scale (JES)
and parton density function (PDF) e↵ects. JES e↵ects
smear out the spectrum due to uncertainty on the mea-
sured energy of the jet. To model this, we use a Gaus-
sian kernel of various widths and means to smear out our

FIG. 3: JES Covariance Structure

FIG. 4: PDF Covariance Structure

distribution, and create a covariance matrix from these
samples (Fig 3). One can see a high degree of correlation
across all points in the distribution.
PDF e↵ects were implemented in the paper [cite] by

taking the 8 TeV dijet analysis data [cite] and comput-
ing a covariance matrix from applying di↵erent PDF sets
(Fig 4).
For comparison, we also create a covariance from a

Sliding Window Fit (SWiFt). The SWiFt solution to
the problems with fitting at high luminosities is to fit the
parametric form within smaller segments of the distribu-
tion, and piece together a final background estimation
across the whole spectrum. This method should create a
covariance structure which is limited to the diagonal and
zero in the o↵ diagonal, as each fit includes only a small
portion of the distribution. Indeed this is what we see in
Figure 5.

Other related plots

• Covariance and correlations as a function of mjj i.e.
plotting each row of the correlation and covariance
matrix separately.

3

FIG. 1: Three parameter covariance

FIG. 2: Gaussian Process covariance

in to the paper may be tricky

• essentially, does our Gaussian Process have features
we’d expect from JES/PDF e↵ects

To better construct a kernel, we can also include our un-
derstanding of detector e↵ects and physics e↵ects. We
look at the covariance matrix of the 3 parameter fit func-
tion by fitting the ATLAS dataset and using Markov
Chain Monte Carlo [cite emcee?] to sample the posterior
(Fig 1). One can see a visible structure in the covariance,
suggesting the inflexibility of the fit function causes an-
chor points which the fit pivots around. This hints that
the parametric fits have some sort of inherent structure
that is not grounded in any physical properties of the
distribution.

As a comparison, the covariance matrix created from
posterior samples from the Gaussian Process fit to the
ATLAS dataset show less correlation between points at
higher mass (Fig 2). The correlation seems constrained
to diagonal, with the o↵ diagonal dying o↵ quickly.

We can now look at two e↵ects; jet energy scale (JES)
and parton density function (PDF) e↵ects. JES e↵ects
smear out the spectrum due to uncertainty on the mea-
sured energy of the jet. To model this, we use a Gaus-
sian kernel of various widths and means to smear out our

FIG. 3: JES Covariance Structure

FIG. 4: PDF Covariance Structure

distribution, and create a covariance matrix from these
samples (Fig 3). One can see a high degree of correlation
across all points in the distribution.
PDF e↵ects were implemented in the paper [cite] by

taking the 8 TeV dijet analysis data [cite] and comput-
ing a covariance matrix from applying di↵erent PDF sets
(Fig 4).
For comparison, we also create a covariance from a

Sliding Window Fit (SWiFt). The SWiFt solution to
the problems with fitting at high luminosities is to fit the
parametric form within smaller segments of the distribu-
tion, and piece together a final background estimation
across the whole spectrum. This method should create a
covariance structure which is limited to the diagonal and
zero in the o↵ diagonal, as each fit includes only a small
portion of the distribution. Indeed this is what we see in
Figure 5.

Other related plots

• Covariance and correlations as a function of mjj i.e.
plotting each row of the correlation and covariance
matrix separately.

+ Jet Energy Scale

+ Parton Density  
Functions

Final Kernel = 

Poisson fluctuations 

+ Mass Resolution=

+ 
…

+ 

QCD-Aware recursive neural networks
• arXiv:1702.00748• arXiv:1709.05681

Physics-aware Gaussian Processes

QCD-Aware graph convolutional neural networks
• NIPS2017 workshop [http://bit.ly/2AkwYRG] 

http://bit.ly/2AkwYRG
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observed data 
simulated data

θ 
parameters of interest

forward modeling 
generation 
simulation

inverse problem 
measurement 

parameter estimation

p( x, z | θ, ν )

ν 
nuisance parameters

z 
latent variables 

Monte Carlo truth
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N E W !  AV O

•Similar to GAN setup, but 
instead of using a neural network 
as the generator, use the actual 
simulation (eg. Pythia, GEANT)
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Adversarial Variational Optimization of Non-Di↵erentiable Simulators

Gilles Louppe
1 and Kyle Cranmer

1

1New York University

Complex computer simulators are increasingly used across fields of science as generative models
tying parameters of an underlying theory to experimental observations. Inference in this setup is
often di�cult, as simulators rarely admit a tractable density or likelihood function. We introduce
Adversarial Variational Optimization (AVO), a likelihood-free inference algorithm for fitting a non-
di↵erentiable generative model incorporating ideas from empirical Bayes and variational inference.
We adapt the training procedure of generative adversarial networks by replacing the di↵erentiable
generative network with a domain-specific simulator. We solve the resulting non-di↵erentiable mini-
max problem by minimizing variational upper bounds of the two adversarial objectives. E↵ectively,
the procedure results in learning a proposal distribution over simulator parameters, such that the
corresponding marginal distribution of the generated data matches the observations. We present
results of the method with simulators producing both discrete and continuous data.

I. INTRODUCTION

In many fields of science such as particle physics, epi-
demiology, and population genetics, computer simulators
are used to describe complex data generation processes.
These simulators relate observations x to the parame-
ters ✓ of an underlying theory or mechanistic model.
In most cases, these simulators are specified as proce-
dural implementations of forward, stochastic processes
involving latent variables z. Rarely do these simulators
admit a tractable density (or likelihood) p(x|✓). The
prevalence and significance of this problem has motivated
an active research e↵ort in so-called likelihood-free infer-
ence algorithms such as Approximate Bayesian Compu-
tation (ABC) and density estimation-by-comparison al-
gorithms [1–6].

In parallel, with the introduction of variational auto-
encoders [7] and generative adversarial networks [8],
there has been a vibrant research program around im-
plicit generative models based on neural networks [9].
While some of these models also do not admit a tractable
density, they are all di↵erentiable by construction. In ad-
dition, generative models based on neural networks are
highly parametrized and the model parameters have no
obvious interpretation. In contrast, scientific simulators
can be thought of as highly regularized generative mod-
els as they typically have relatively few parameters and
they are endowed with some level of interpretation. In
this setting, inference on the model parameters ✓ is often
of more interest than the latent variables z.

In this note, we develop two likelihood-free inference al-
gorithms for non-di↵erentiable, implicit generative mod-
els. The first allows us to perform empirical Bayes
through variational inference, and the second provides
a point estimator of the parameters ✓. We adapt the
adversarial training procedure of generative adversarial
networks [8] by replacing the implicit generative network
with a domain-based scientific simulator, and solve the
resulting non-di↵erentiable minimax problem by mini-
mizing variational upper bounds [10, 11] of the adver-
sarial objectives. The objective of both algorithms is to

match marginal distribution of the generated data to the
empirical distribution of the observations.

II. PROBLEM STATEMENT

We consider a family of parametrized densities p(x|✓)
defined implicitly through the simulation of a stochas-
tic generative process, where x 2 Rd is the data and ✓
are the parameters of interest. The simulation may in-
volve some complicated latent process where z 2 Z is a
latent variable providing an external source of random-
ness. Unlike implicit generative models defined by neural
networks, we do not assume z to be a fixed-size vector
with a simple density. Instead, the dimension of z and
the nature of its components (uniform, normal, discrete,
continuous, etc.) are inherited from the control flow of
the simulation code and may depend on ✓ in some in-
tricate way. Moreover, the dimension of z may be much
larger than the dimension of x.
We assume that the stochastic generative process that

defines p(x|✓) is specified through a non-di↵erentiable
deterministic function g(·;✓) : Z ! Rd. Operationally,

x ⇠ p(x|✓) ⌘ z ⇠ p(z|✓),x = g(z;✓) (1)

such that the density p(x|✓) can be written as

p(x|✓) =
Z

{z:g(z;✓)=x}
p(z|✓)µ(dz), (2)

where µ is a probability measure.
Given some observed data {xi|i = 1, . . . , N} drawn

from the (unknown) true distribution pr(x), our goal is to
estimate the parameters ✓⇤ that minimize the divergence
between pr(x) and the implicit model p(x|✓). That is,

✓⇤ = argmin
✓

⇢(pr(x), p(x|✓)), (3)

where ⇢ is some distance or divergence.

G. Louppe & K.C. arXiv:1707.07113

Catch me if you can

Leo is G Tom is D

5 / 13

•Continue to use a neural network 
discriminator / critic. 

•Difficulty: the simulator isn’t 
differentiable, but there’s a trick! 

•Allows us to efficiently fit /  
tune simulation with stochastic 
gradient techniques!

http://arxiv.org/abs/1707.07113
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CaloGAN: Simulating 3D High Energy Particle

Showers in Multi-Layer Electromagnetic Calorimeters

with Generative Adversarial Networks

Michela Paganini
a,b

, Luke de Oliveira
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Abstract: Simulation is a key component of physics analysis in particle physics and nuclear physics.
The most computationally expensive simulation step is the detailed modeling of particle showers inside
calorimeters. Full detector simulations are too slow to meet the growing demands resulting from large
quantities of data; current fast simulations are not precise enough to serve the entire physics program.
Therefore, we introduce CaloGAN, a new fast simulation based on generative adversarial neural
networks (GANs). We apply the CaloGAN to model electromagnetic showers in a longitudinally
segmented calorimeter. This represents a significant stepping stone toward a full neural network-based
detector simulation that could save significant computing time and enable many analyses now and
in the future. In particular, the CaloGAN achieves speedup factors comparable to or better than
existing fast simulation techniques on CPU (100⇥-1000⇥) and even faster on GPU (up to ⇠ 105⇥))
and has the capability of faithfully reproducing many aspects of key shower shape variables for a variety
of particle types.
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Creating Virtual Universes Using Generative Adversarial Networks

Mustafa Mustafa⇤1, Deborah Bard1, Wahid Bhimji1, Rami Al-Rfou2, and Zarija Lukić1

1Lawrence Berkeley National Laboratory, Berkeley, CA 94720
2Google Research, Mountain View, CA 94043

Abstract

Inferring model parameters from experimental data is a grand challenge in many sciences, including cosmol-
ogy. This often relies critically on high fidelity numerical simulations, which are prohibitively computationally
expensive. The application of deep learning techniques to generative modeling is renewing interest in using high
dimensional density estimators as computationally inexpensive emulators of fully-fledged simulations. These
generative models have the potential to make a dramatic shift in the field of scientific simulations, but for that
shift to happen we need to study the performance of such generators in the precision regime needed for science
applications. To this end, in this letter we apply Generative Adversarial Networks to the problem of generating
cosmological weak lensing convergence maps. We show that our generator network produces maps that are
described by, with high statistical confidence, the same summary statistics as the fully simulated maps.

The scientific success of the next generation of sky
surveys (e.g. [1–5]) to test the current “standard model”
of cosmology (⇤CDM), hinges critically on the success
of underlying simulations. Answering questions in cos-
mology about the nature of cold dark matter, dark
energy and the inflation of the early universe, requires
relating observations of a large number of astrophysical
objects which trace the underlying matter density field,
to simulations of “virtual universes” with different cos-
mological parameters. Currently the creation of each
virtual universe requires an extremely computationally
expensive simulation on High Performance Computing
resources. In order to make this inverse problem prac-
tically solvable, constructing a computationally cheap
surrogate model or an emulator [6, 7] is imperative.

However, traditional approaches to emulators re-
quire the use of a summary-statistic which is to be em-
ulated. An approach that does not require such math-
ematical templates of the simulation outcome would
be of considerable value in the field. The ability to
emulate these simulations with high fidelity, in a frac-
tion of the computational time, would boost our ability
to understand the fundamental nature of the universe.
While in this letter we focus our attention on cosmol-
ogy, and in particular weak lensing convergence maps,
we believe that this approach is relevant to many areas
of science and engineering.

Recent developments in deep generative modeling
techniques open the potential to meet this need. The
density estimators in these models are built out of neu-
ral networks which can serve as universal approxima-
tors [8], thus having the ability to learn the underlying
distributions of data and emulate the observable with-
out being biased by the choice of summary-statistics,

⇤Corresponding author: mmustafa@lbl.gov

as in the traditional approach to emulators.
In this letter, we study the ability of a recent vari-

ant of generative models - Generative Adversarial Net-
works (GANs) [9] to generate weak lensing convergence
maps. The training and validation maps are produced
using N-body simulations of ⇤CDM cosmology. We
show that maps generated by the neural network ex-
hibit, with high statistical confidence, the same power
(Fourier) spectrum of the fully-fledged simulator maps,
as well as higher order non-Gaussian features, thus
demonstrating that such scientific data is amenable to
a GAN treatment for generation. The very high level
of agreement we achieve offers promise for building em-
ulators out of deep neural networks. We first present
our results and analysis then outline the future inves-
tigations which we think are critical to build such em-
ulators in the Discussion section.

Results
Gravitational lensing has potential to be one of the
most sensitive probes of the nature of dark energy [10],
and affects the shape and apparent brightness of every
galaxy we observe. Convergence (⌫) is the quantity
that defines the brightness of an observed object as it
is affected by the matter along the line of sight between
that galaxy and the observer. It can be interpreted as
a measure of the density of the universe observed from
a particular direction. A full N-body simulation cre-
ates convergence maps corresponding to many random
realizations of the same cosmological model. We set
out to train a GAN model on 256 ⇥ 256 pixels conver-
gence maps taken from these simulations. A descrip-
tion of the simulations and data preparation methods
is in the Methods section. Before we describe our re-
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Figure 1: Weak lensing convergence maps for a ⇤CDM cosmological model with �8 = 0.798, w = �1.0,
⌦m = 0.26 and ⌦⇤ = 0.74. Randomly selected maps from validation dataset (top) and GAN generated
examples (bottom).

sults we first outline the objective of generative models
and the GANs framework.

The central problem of generative models is the ques-
tion: given a distribution of data Pdata can one devise
a generator G such that the distribution of model gen-
erated data Pmodel = Pdata? Our information about
Pdata comes from the training dataset, typically an in-
dependent and identically distributed random sample
x1, x2, . . . , xn which is assumed to have the same dis-
tribution as Pdata. Achieving a high fidelity genera-
tion scheme amounts to the construction of a density
estimator of the training data. In the GANs frame-
work a generator function G is optimized to generate
samples that are indistinguishable from training data
as judged by a discriminator function D. D is opti-
mized to discriminate between training data and gen-
erated data. In the neural network formulation of this
framework the generator network G✓ parametrized by
network parameters ✓ and discriminator network Dw

parametrized by w are simultaneously optimized using
gradient-descent.

Of interest to us here is the generator G✓. Its param-
eters are optimized to map a vector z sampled from a
prior to the support of Pmodel. The only requirement
on the generator is that it is differentiable with respect
to its parameters and input (except at possibly finitely
many points). For the 256 ⇥ 256 convergence maps we
study, we choose a normal prior, so:

z ⇠ [N0(0, 1), . . . ,N63(0, 1)]

G✓ : z ! x ✏ R256⇥256.

The dimension of the vector z needs to be com-
mensurate with the support of the training conver-
gence maps Pdata in R256⇥256. Because the underly-
ing physics of the convergence maps is translation and
rotation invariant [11], we chose to construct the gener-
ator and discriminator networks mainly from convolu-
tional layers. To allow the network to learn the proper
correlations on the components of the input z early on,
the first layer of the generator network needs to be a
fully-connected layer. A well studied architecture that
meets these criteria is the Deep Convolutional Gener-
ative Adversarial Networks (DCGAN) [12]. DCGAN
is a set of empirically chosen architectural guidelines
and hyper-parameters which have been shown to be
robust to excel at a variety of tasks. We experimented
with DCGAN architectural parameters and we found
that most of the hyper-parameters optimized for natu-
ral images by the original authors perform well on the
convergence maps, for example, changing the learning
rates or the kernel sizes worsens the performance. We
used DCGAN with slight modifications to meet our
problem dimensions as described in the Methods sec-
tion.

2

Figure 8: Average ⇡
+ Geant shower (top), and average ⇡

+ CaloGAN shower (bottom), with
progressive calorimeter depth (left to right).

Figure 9: Five randomly selected e
+ showers per calorimeter layer from the training set (top) and the

five nearest neighbors (by euclidean distance) from a set of CaloGAN candidates.

Figure 10: Five randomly selected � showers per calorimeter layer from the training set (top) and the
five nearest neighbors (by euclidean distance) from a set of CaloGAN candidates.

Figure 11: Five randomly selected ⇡
+ showers per calorimeter layer from the training set (top) and

the five nearest neighbors (by euclidean distance) from a set of CaloGAN candidates.
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•Use of generative models of 
galaxy images to help calibrate 
down-stream analysis in next-
generation surveys. 
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Abstract—Understanding the nature of dark energy, the mys-
terious force driving the accelerated expansion of the Universe, is
a major challenge of modern cosmology. The next generation of
cosmological surveys, specifically designed to address this issue,
rely on accurate measurements of the apparent shapes of distant
galaxies. However, shape measurement methods suffer from
various unavoidable biases and therefore will rely on a precise
calibration to meet the accuracy requirements of the science
analysis. This calibration process remains an open challenge as
it requires large sets of high quality galaxy images. To this
end, we study the application of deep conditional generative
models in generating realistic galaxy images. In particular we
consider variations on conditional variational autoencoder and
introduce a new adversarial objective for training of conditional
generative networks. Our results suggest a reliable alternative
to the acquisition of expensive high quality observations for
generating the calibration data needed by the next generation
of cosmological surveys.

The last two decades have greatly clarified the contents of
the Universe, while leaving several large mysteries in our cos-
mological model. We now have compelling evidence that the
expansion rate of the Universe is accelerating, suggesting that
the vast majority of the total energy content of the Universe
is the so-called dark energy. Yet we lack an understanding
of what dark energy actually is, which provides one of the
main motivations behind the next generation of cosmological
surveys such as LSST (LSST Science Collaboration et al.,
2009), Euclid (Laureijs et al., 2011) and WFIRST (Green
et al., 2012). These billion dollar projects are specifically
designed to shed light on the nature of dark energy by
probing the Universe through the weak gravitational lensing

effect –i.e., the minute deflection of the light from distant
objects by the intervening massive large scale structures of the
Universe. On cosmological scales, this lensing effect causes
very small but coherent deformations of background galaxy
images, which appear slightly sheared, providing a way to
statistically map the matter distribution in the Universe. To
measure the lensing signal, future surveys will image and
measure the shapes of billions of galaxies, significantly driving
down statistical errors compared to the current generation of
surveys, to the level where dark energy models may become
distinguishable.

However, the quality of this analysis hinges on the accuracy
of the shape measurement algorithms tasked with estimating
the ellipticities of the galaxies in the survey. This point
is particularly crucial to the success of these missions, as
any unaccounted for measurement biases in their ensemble

averages would impact the final cosmological analysis and
potentially lead to false conclusions. In order to detect and/or
calibrate any such biases, future surveys will heavily rely on
image simulations, closely mimicking real observations but
with a known ground truth lensing signal.

Fig. 1: Illustration of the processes involved in the measurement
of weak gravitational lensing. The light from distant galaxies is
deflected by the matter in the Universe, causing a shearing of the
galaxy images, which are then further blurred by the atmosphere and
the telescope optics and finally pixelated into a noisy image by the
imaging sensor. Image credit: Mandelbaum et al. (2014), adapted
from Kitching et al. (2010).

Producing these image simulations, however, is challenging
in itself as they require high quality galaxy images as the
input of the simulation pipeline. Such observations can only be
obtained by extremely expensive space-based imaging surveys,
which will remain a scarce resource for the foreseeable future.
The largest current survey being used for image simulation
purposes is the COSMOS survey (Scoville et al., 2007), carried
out using the Hubble Space Telescope (HST). Despite being
the largest available dataset, COSMOS is relatively small, and
there is great interest in increasing the size of our galaxy
image samples to improve the quality of this crucial calibration
process.

In this work, we propose an alternative to the expensive
acquisition of more high quality calibration data using deep
conditional generative models. In recent years, these models
have achieved remarkable success in modeling complex high-
dimensional distributions, producing natural images that can
pass the visual Turing test. Two prominent approaches for
training these models are variational autoencoder (VAE)
(Kingma and Welling, 2013; Rezende et al., 2014) and gener-
ative adversarial network (GAN) (Goodfellow et al., 2014).
Our aim is to train a coditional variation of these models
using existing HST data and generate new galaxy images
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mological model. We now have compelling evidence that the
expansion rate of the Universe is accelerating, suggesting that
the vast majority of the total energy content of the Universe
is the so-called dark energy. Yet we lack an understanding
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designed to shed light on the nature of dark energy by
probing the Universe through the weak gravitational lensing
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objects by the intervening massive large scale structures of the
Universe. On cosmological scales, this lensing effect causes
very small but coherent deformations of background galaxy
images, which appear slightly sheared, providing a way to
statistically map the matter distribution in the Universe. To
measure the lensing signal, future surveys will image and
measure the shapes of billions of galaxies, significantly driving
down statistical errors compared to the current generation of
surveys, to the level where dark energy models may become
distinguishable.

However, the quality of this analysis hinges on the accuracy
of the shape measurement algorithms tasked with estimating
the ellipticities of the galaxies in the survey. This point
is particularly crucial to the success of these missions, as
any unaccounted for measurement biases in their ensemble

averages would impact the final cosmological analysis and
potentially lead to false conclusions. In order to detect and/or
calibrate any such biases, future surveys will heavily rely on
image simulations, closely mimicking real observations but
with a known ground truth lensing signal.

Fig. 1: Illustration of the processes involved in the measurement
of weak gravitational lensing. The light from distant galaxies is
deflected by the matter in the Universe, causing a shearing of the
galaxy images, which are then further blurred by the atmosphere and
the telescope optics and finally pixelated into a noisy image by the
imaging sensor. Image credit: Mandelbaum et al. (2014), adapted
from Kitching et al. (2010).

Producing these image simulations, however, is challenging
in itself as they require high quality galaxy images as the
input of the simulation pipeline. Such observations can only be
obtained by extremely expensive space-based imaging surveys,
which will remain a scarce resource for the foreseeable future.
The largest current survey being used for image simulation
purposes is the COSMOS survey (Scoville et al., 2007), carried
out using the Hubble Space Telescope (HST). Despite being
the largest available dataset, COSMOS is relatively small, and
there is great interest in increasing the size of our galaxy
image samples to improve the quality of this crucial calibration
process.

In this work, we propose an alternative to the expensive
acquisition of more high quality calibration data using deep
conditional generative models. In recent years, these models
have achieved remarkable success in modeling complex high-
dimensional distributions, producing natural images that can
pass the visual Turing test. Two prominent approaches for
training these models are variational autoencoder (VAE)
(Kingma and Welling, 2013; Rezende et al., 2014) and gener-
ative adversarial network (GAN) (Goodfellow et al., 2014).
Our aim is to train a coditional variation of these models
using existing HST data and generate new galaxy images
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Fig. 2: Samples from the GALAXY-ZOO dataset and generated samples using conditional generative adversarial network of Section III. Each
synthetic image is a 128⇥ 128 colored image (here inverted) produced by conditioning on the same set of features y 2 [0, 1]37 as its real
pair. These instances are selected from the test-set and were unavailable to the model during the training.

conditioned on statistics of interest such as the brightness or
size of the galaxy. This will allow us to synthesize calibration
datasets for specific galaxy populations, with objects exhibit-
ing realistic morphologies.

In the following, Section I gives a brief background on the
image generation for calibration and its significance for mod-
ern cosmology. We then review the current approaches to deep
conditional generative models and introduce new techniques
for our problem setting in Sections II and III. In Section IV we
assess the quality of the generated images by comparing the
conditional distributions of shape and morphology parameters
between simulated and real galaxies, and find good agreement.

I. WEAK GRAVITATIONAL LENSING

In the weak regime of gravitational lensing, the distortion of
background galaxy images can be modeled by an anisotropic
shear, noted �, whose amplitude and orientation depend on
the matter distribution between the observer and these distant
galaxies. This shear affects in particular the apparent ellipticity
of galaxies, denoted e. Measuring this weak lensing effect is
made possible under the assumption that background galaxies
are randomly oriented, so that the ensemble average of the
shapes would average to zero in the absence of lensing. Their
apparent ellipticity e can then be used as a noisy but unbiased
estimator of the shear field �: E[e] = �. The cosmological
analysis then involves computing auto- and cross-correlations
of the measured ellipticities for galaxies at different distances.
These correlation functions are compared to theoretical pre-
dictions in order to constrain cosmological models and shed
light on the nature of dark energy.

However, measuring galaxy ellipticities such that their
ensemble average (used for the cosmological analysis) is
unbiased is an extremely challenging task. Fig. 1 illustrates
the main steps involved in the acquisition of the science
images. The weakly sheared galaxy images undergo additional
distortions (essentially blurring) as they go through the at-
mosphere and telescope optics, before being acquired by the
imaging sensor which pixelates the noisy image. As this figure
illustrates, the cosmological shear is clearly a subdominant
effect in the final image and needs to be disentangled from
subsequent blurring by the atmosphere and telescope options.
This blurring, or Point Spread Function (PSF), can be directly

measured by using stars as point sources, as shown at the top
of Fig. 1.

Once the image is acquired, shape measurement algorithms
are used to estimate the ellipticity of the galaxy while correct-
ing for the PSF. However, despite the best efforts of the weak
lensing community for nearly two decades, all current state-
of-the-art shape measurement algorithms are still susceptible
to biases in the inferred shears. These measurement biases are
commonly modeled in terms of additive and multiplicative bias
parameters c and m defined as:

E[e] = (1 +m) � + c (1)

where � is the true shear. Depending on the shape measure-
ment method being used, m and c can depend on factors such
as the PSF size/shape, the level of noise in the images or,
more generally, intrinsic properties of the galaxy population
(like their size and ellipticity distributions, etc. ). Calibration of
these biases can be achieved using image simulations, closely
mimicking real observations for a given survey but using
galaxy images distorted with a known shear, thus allowing
the measurement of the bias parameters in Eq. (1).

Image simulation pipelines, such as the GalSim package
(Rowe et al., 2015), use a forward modeling of the observa-
tions, reproducing all the steps of the image acquisition pro-
cess in Fig. 1, and therefore require as a starting point galaxy
images with high resolution and S/N. The main difficulty in
these image simulations is therefore the need for a calibration
sample of high quality galaxy images representative of the
galaxy population of the survey being simulated. Our aim in
this work is to train a deep generative model which can be
used to cheaply synthesize such data sets for specific galaxy
populations, by conditioning the samples on measurable quan-
tities.

A. Data set

As our main dataset, we use the COSMOS survey to build
a training and validation set of galaxy images and extract
from the corresponding catalog a condition vector y with
three features: half-light radius (measure of size), magnitude
(measure of brightness) and redshift (cosmological measure of
distance). To facilitate the training, we align all galaxies along
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C O N C L U S I O N S

•While“Big Data” is relevant for the computing aspects of HEP, we have not had 
much of an impact on industry or taken much advantage of their developments 

•In contrast, recent developments in machine learning and AI are closely aligned 
with our “Big Decisions” when formulated in a statistical language 

• more opportunities for HEP community to collaborate with ML community 

• likelihood-free inference and generative models are two particularly 
exciting areas for physics 

•Our understanding of how to leverage our prior physics knowledge while 
letting machine learning do what it’s good at is maturing. 

• ability to inject and extract physics knowledge from models 

•Harnessing the full potential of these techniques will require deep integration 
into our scientific workflow
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L E A R N I N G  T O  P I V O T  W I T H  A D V E R S A R I A L  N E T W O R K S

• Typically classifier f(x) trained to 
minimize loss Lf.  

• want classifier output to be 
insensitive to systematics 
(nuisance parameter ν) 

• introduce an adversary r that 
tries to predict ν based on f.  

• setup as a minimax game:

77G. Louppe, M. Kagan, K. Cranmer, Learning to Pivot with Adversarial Networks [arXiv:1611.01046]
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f(X; ✓f )

Lf (✓f )

...
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�1(f(X; ✓f ); ✓r)

�2(f(X; ✓f ); ✓r)

. . .
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Z

p✓r (Z|f(X; ✓f ))

P(�1, �2, . . . )

Lr(✓f , ✓r)

FIG. 1. Architecture for the adversarial training of a binary classifier f against a nuisance parameters Z. The adversary r
models the distribution p(z|f(X; ✓f ) = s) of the nuisance parameters as observed only through the output f(X; ✓f ) of the
classifier. By maximizing the antagonistic objective Lr(✓f , ✓r) (as part of minimizing Lf (✓f ) � �Lr(✓f , ✓r)), the classifier f
forces p(z|f(X; ✓f ) = s) towards the prior p(z), which happens when f(X; ✓f ) is independent of the nuisance parameter Z and
therefore pivotal.

parameters. This implies that f(X; ✓f ) and Z are inde-
pendent random variables.

As stated in Eqn. 1, the pivotal quantity criterion is
imposed with respect to p(X|Z) where Y is marginalized
out. In some situations however (see e.g., Sec. VB), class
conditional independence of f(X; ✓f ) on the nuisance Z

is preferred, which can then be stated as requiring

p(f(X; ✓f ) = s|z, y) = p(f(X; ✓f ) = s|z0, y) (2)

for one or several specified values y 2 Y.

III. METHOD

Joint training of adversarial networks was first pro-
posed by [21] as a way to build a generative model capable
of producing samples from random noise z. More specif-
ically, the authors pit a generative model g : Rn 7! Rp

against an adversary classifier d : Rp 7! [0, 1] whose an-
tagonistic objective is to recognize real data X from gen-
erated data g(Z). Both models g and d are trained simul-
taneously, in such a way that g learns to produce samples
that are di�cult to identify by d, while d incrementally
adapts to changes in g. At the equilibrium, g models a
distribution whose samples can be identified by d only
by chance. That is, assuming enough capacity in d and
g, the distribution of g(Z) eventually converges towards
the real distribution of X.

In this work, we repurpose adversarial networks as a
means to constrain the predictive model f in order to
satisfy Eqn. 1. As illustrated in Fig. 1, we pit f against
an adversary model r := p✓r (z|f(X; ✓f ) = s) of pa-
rameters ✓r and associated loss Lr(✓f , ✓r). This model
takes as input realizations f(X; ✓f ) and produces as out-
put a function modeling the posterior probability den-

sity p✓r (z|f(X; ✓f ) = s). Intuitively, if p(f(X; ✓f ) = s|z)
varies with z, then the corresponding correlation can be
captured by r. By contrast, if p(f(X; ✓f ) = s|z) is invari-
ant with z, as we require, then r should perform poorly
and be close to random guessing. Training f such that
it additionally minimizes the performance of r therefore
acts as a regularization towards Eqn. 1.
If Z takes discrete values, then p✓r can be represented

e.g. as a probabilistic classifier R 7! R|Z| whose j
th out-

put (for j = 1, . . . , |Z|) is the estimated probability mass
p✓r (zj |f(X; ✓f ) = s). Similarly, if Z takes continuous
values, then we can model the posterior probability den-
sity p(z|f(X; ✓f ) = s) with a su�ciently flexible para-
metric family of distributions P(�1, �2, . . . ), where the
parameters �j depend on f(X, ✓f ) and ✓r. The adver-
sary r may take any form, i.e. it does not need to be
a neural network, as long as it exposes a di↵erentiable
function p✓r (z|f(X; ✓f ) = s) of su�cient capacity to rep-
resent the true distribution. Fig. 1 illustrates a concrete
example where p✓r (z|f(X; ✓f ) = s) is a mixture of gaus-
sians, as modeled with a mixture density network [10]).
The j

th output corresponds to the estimated value of
the corresponding parameter �j of that distribution (e.g.,
the mean, variance and mixing coe�cients of its compo-
nents). As in [10, 26], the estimated probability density
p✓r (z|f(X; ✓f ) = s) can then be evaluated for any z 2 Z
and any score s 2 S.
As with generative adversarial networks, we propose

to train f and r simultaneously, which we carry out by
considering the value function

E(✓f , ✓r) = Lf (✓f )� Lr(✓f , ✓r) (3)

that we optimize by finding the minimax solution

✓̂f , ✓̂r = argmin
✓f

max
✓r

E(✓f , ✓r). (4)

f(x)

p(⌫|f)
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posed by [21] as a way to build a generative model capable
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ically, the authors pit a generative model g : Rn 7! Rp

against an adversary classifier d : Rp 7! [0, 1] whose an-
tagonistic objective is to recognize real data X from gen-
erated data g(Z). Both models g and d are trained simul-
taneously, in such a way that g learns to produce samples
that are di�cult to identify by d, while d incrementally
adapts to changes in g. At the equilibrium, g models a
distribution whose samples can be identified by d only
by chance. That is, assuming enough capacity in d and
g, the distribution of g(Z) eventually converges towards
the real distribution of X.

In this work, we repurpose adversarial networks as a
means to constrain the predictive model f in order to
satisfy Eqn. 1. As illustrated in Fig. 1, we pit f against
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T H E  A D V E R S A R I A L  M O D E L

•the γ₁, γ₂, … are the mean, 
standard deviation, and amplitude 
for the Gaussian Mixture Model. 

• the neural network takes in f 
and predicts γ₁, γ₂, …
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Classifier f

X

✓f

f(X; ✓f )

Lf (✓f )

...

Adversary r

�1(f(X; ✓f ); ✓r)

�2(f(X; ✓f ); ✓r)

. . .

✓r

...

Z

p✓r (Z|f(X; ✓f ))

P(�1, �2, . . . )

Lr(✓f , ✓r)

FIG. 1. Architecture for the adversarial training of a binary classifier f against a nuisance parameters Z. The adversary r
models the distribution p(z|f(X; ✓f ) = s) of the nuisance parameters as observed only through the output f(X; ✓f ) of the
classifier. By maximizing the antagonistic objective Lr(✓f , ✓r) (as part of minimizing Lf (✓f ) � �Lr(✓f , ✓r)), the classifier f
forces p(z|f(X; ✓f ) = s) towards the prior p(z), which happens when f(X; ✓f ) is independent of the nuisance parameter Z and
therefore pivotal.

parameters. This implies that f(X; ✓f ) and Z are inde-
pendent random variables.

As stated in Eqn. 1, the pivotal quantity criterion is
imposed with respect to p(X|Z) where Y is marginalized
out. In some situations however (see e.g., Sec. VB), class
conditional independence of f(X; ✓f ) on the nuisance Z

is preferred, which can then be stated as requiring

p(f(X; ✓f ) = s|z, y) = p(f(X; ✓f ) = s|z0, y) (2)

for one or several specified values y 2 Y.

III. METHOD

Joint training of adversarial networks was first pro-
posed by [21] as a way to build a generative model capable
of producing samples from random noise z. More specif-
ically, the authors pit a generative model g : Rn 7! Rp

against an adversary classifier d : Rp 7! [0, 1] whose an-
tagonistic objective is to recognize real data X from gen-
erated data g(Z). Both models g and d are trained simul-
taneously, in such a way that g learns to produce samples
that are di�cult to identify by d, while d incrementally
adapts to changes in g. At the equilibrium, g models a
distribution whose samples can be identified by d only
by chance. That is, assuming enough capacity in d and
g, the distribution of g(Z) eventually converges towards
the real distribution of X.

In this work, we repurpose adversarial networks as a
means to constrain the predictive model f in order to
satisfy Eqn. 1. As illustrated in Fig. 1, we pit f against
an adversary model r := p✓r (z|f(X; ✓f ) = s) of pa-
rameters ✓r and associated loss Lr(✓f , ✓r). This model
takes as input realizations f(X; ✓f ) and produces as out-
put a function modeling the posterior probability den-

sity p✓r (z|f(X; ✓f ) = s). Intuitively, if p(f(X; ✓f ) = s|z)
varies with z, then the corresponding correlation can be
captured by r. By contrast, if p(f(X; ✓f ) = s|z) is invari-
ant with z, as we require, then r should perform poorly
and be close to random guessing. Training f such that
it additionally minimizes the performance of r therefore
acts as a regularization towards Eqn. 1.
If Z takes discrete values, then p✓r can be represented

e.g. as a probabilistic classifier R 7! R|Z| whose j
th out-

put (for j = 1, . . . , |Z|) is the estimated probability mass
p✓r (zj |f(X; ✓f ) = s). Similarly, if Z takes continuous
values, then we can model the posterior probability den-
sity p(z|f(X; ✓f ) = s) with a su�ciently flexible para-
metric family of distributions P(�1, �2, . . . ), where the
parameters �j depend on f(X, ✓f ) and ✓r. The adver-
sary r may take any form, i.e. it does not need to be
a neural network, as long as it exposes a di↵erentiable
function p✓r (z|f(X; ✓f ) = s) of su�cient capacity to rep-
resent the true distribution. Fig. 1 illustrates a concrete
example where p✓r (z|f(X; ✓f ) = s) is a mixture of gaus-
sians, as modeled with a mixture density network [10]).
The j

th output corresponds to the estimated value of
the corresponding parameter �j of that distribution (e.g.,
the mean, variance and mixing coe�cients of its compo-
nents). As in [10, 26], the estimated probability density
p✓r (z|f(X; ✓f ) = s) can then be evaluated for any z 2 Z
and any score s 2 S.
As with generative adversarial networks, we propose

to train f and r simultaneously, which we carry out by
considering the value function

E(✓f , ✓r) = Lf (✓f )� Lr(✓f , ✓r) (3)

that we optimize by finding the minimax solution

✓̂f , ✓̂r = argmin
✓f

max
✓r

E(✓f , ✓r). (4)

p(z|f)

f(x)

G. Louppe, M. Kagan, K. Cranmer, arXiv:1611.01046
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FIG. 11. Profile of the paramterized NN responses
to background versus jet mass, where the parameterized
network was evaluated at di↵erent Z0 mass hypotheses.
Top shows the response of the adversarially-trained clas-
sifier, which minimizes correlation with jet mass; bottom
shows the response of a network trained in the traditional
manner, to optimize classification accuracy.

able of interest, the jet mass. This allows the classi-
fier to enhance signal to noise ratio while minimiz-
ing the tendency of the background distribution to
morph into a shape which is degenerate with the ob-
servable signal. When the background cannot be re-
liably predicted a priori, as is often the case, it is im-
portant to be able to constrain its rate in sidebands
surrounding the signal region. Therefore, avoiding
such degeneracy is critical to performing successful
measurements.

We note that, from Fig. 8, it is clear that ap-
plying su�ciently tight cuts to the adversarial clas-
sifier causes significant background morphing, par-
ticularly when compared to the ⌧21-based discrimi-
nants. However, the solid lines of Fig. 9 illustrate
the case where the background rate is uncertain
and hence benefits from sideband constraints. We
see that the optimal significance is realized for the
adversarial classifier at a relatively high signal e�-
ciency of roughly 90%, where the background mor-
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FIG. 13. Discovery significance for a hypothetical sig-
nal after optimizing thresholds on the output of networks
parameterized in mZ0 trained with an adversarial or tra-
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0
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and ⌧ 00
21 or to placing no threshold. Significance is eval-

uated for the case of 50% background uncertainty.

phing is quite limited (Fig. 7). Hence, the adversar-
ial classifier achieves its goal of optimizing the trade-
o↵ between correlation and discrimination power.

We also note that the decorrelation could poten-

9

FA I R  C L A S S I F I E R S

•Adversarial approach of 
“Learning to Pivot” can also be 
used to train a classifier that is 
independent from some other 
continuous variable.  

• fairness to continuous 
attribute 

• motivation for doing this is 
related to robustnesss to 
uncertainties and 
interpretability
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Abstract
A grand challenge of the 21st century cosmol-
ogy is to accurately estimate the cosmological
parameters of our Universe. A major approach
in estimating the cosmological parameters is to
use the large scale matter distribution of the Uni-
verse. Galaxy surveys provide the means to map
out cosmic large-scale structure in three dimen-
sions. Information about galaxy locations is typ-
ically summarized in a “single” function of scale,
such as the galaxy correlation function or power-
spectrum. We show that it is possible to estimate
these cosmological parameters directly from the
distribution of matter. This paper presents the
application of deep 3D convolutional networks
to volumetric representation of dark-matter sim-
ulations as well as the results obtained using a
recently proposed distribution regression frame-
work, showing that machine learning techniques
are comparable to, and can sometimes outper-
form, maximum-likelihood point estimates using
“cosmological models”. This opens the way to
estimating the parameters of our Universe with
higher accuracy.

1. Introduction
The 21st century has brought us tools and methods to ob-
serve and analyze the Universe in far greater detail than
before, allowing us to deeply probe the fundamental prop-
erties of cosmology. We have a suite of cosmological ob-

Proceedings of the 33 rd
International Conference on Machine

Learning, New York, NY, USA, 2016. JMLR: W&CP volume
48. Copyright 2016 by the author(s).

Figure 1. Dark matter distribution in three cubes produced using
different sets of parameters. Each cube is divided into small sub-
cubes for training and prediction. Note that although cubes in
this figure are produced using very different cosmological param-
eters in our constrained sampled set, the effect is not visually dis-
cernible.

servations that allow us to make serious inroads to the un-
derstanding of our own universe, including the cosmic mi-
crowave background (CMB) (Planck Collaboration et al.,
2015; Hinshaw et al., 2013), supernovae (Perlmutter et al.,
1999; Riess et al., 1998) and the large scale structure of
galaxies and galaxy clusters (Cole et al., 2005; Anderson
et al., 2014; Parkinson et al., 2012). In particular, large
scale structure involves measuring the positions and other
properties of bright sources in great volumes of the sky.
The amount of information is overwhelming, and modern
methods in machine learning and statistics can play an in-
creasingly important role in modern cosmology. For ex-
ample, the common method to compare large scale struc-
ture observation and theory is to compare the compressed
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Figure 9: Distribution of the four-lepton reconstructed mass in the full mass range for the sum
of the 4e, 2e2µ and 4µ channels. Points with error bars represent the data, shaded histograms
represent the backgrounds, and the unshaded histogram the signal expectation for a mass hy-
pothesis of mH = 126 GeV. Signal and ZZ background are normalized to the SM expectation,
Z + X background to the estimation from data. The expected distributions are presented as
stacked histograms. No events are observed with m4` > 800 GeV.

Table 3: The number of observed candidate events compared to the mean expected background
and signal rates for each final state. Uncertainties include statistical and systematic sources.
The results are given integrated over the full mass measurement range m4` > 100 GeV and for
7 and 8 TeV data combined.

Channel 4e 2e2µ 4µ 4`
ZZ background 77 ± 10 191 ± 25 119 ± 15 387 ± 31
Z + X background 7.4 ± 1.5 11.5 ± 2.9 3.6 ± 1.5 22.6 ± 3.6
All backgrounds 85 ± 11 202 ± 25 123 ± 15 410 ± 31
mH = 500 GeV 5.2 ± 0.6 12.2 ± 1.4 7.1 ± 0.8 24.5 ± 1.7
mH = 800 GeV 0.7 ± 0.1 1.6 ± 0.2 0.9 ± 0.1 3.1 ± 0.2
Observed 89 247 134 470

Table 4: The number of observed candidate events compared to the mean expected background
and signal rates for each final state. Uncertainties include statistical and systematic sources.
The results are integrated over the mass range from 121.5 to 130.5 GeV and for 7 and 8 TeV data
combined.

Channel 4e 2e2µ 4µ 4`
ZZ background 1.1 ± 0.1 3.2 ± 0.2 2.5 ± 0.2 6.8 ± 0.3
Z + X background 0.8 ± 0.2 1.3 ± 0.3 0.4 ± 0.2 2.6 ± 0.4
All backgrounds 1.9 ± 0.2 4.6 ± 0.4 2.9 ± 0.2 9.4 ± 0.5
mH = 125 GeV 3.0 ± 0.4 7.9 ± 1.0 6.4 ± 0.7 17.3 ± 1.3
mH = 126 GeV 3.4 ± 0.5 9.0 ± 1.1 7.2 ± 0.8 19.6 ± 1.5
Observed 4 13 8 25
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W H Y  W E  S H O U L D  C A R E

•Many areas of science have simulations based on some well-
motivated  mechanistic model. 

•However, the aggregate effect of many interactions between these 
low-level components leads to an intractable inverse problem. 

•The developments in machine learning and AI go way beyond 
improved classifiers and have the potential to effectively bridge the 
microscopic - macroscopic divide & aid in the inverse problem. 

• they can provide effective statistical models that describe 
macroscopic phenomena that are tied back to the low-level 
microscopic (reductionist) model 

• generative models and likelihood-free inference are two 
particularly exciting areas 
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T W O  A P P R O A C H E S

• Approximate Bayesian 
Computation (ABC) 

• Probabilistic Programming 

• Adversarial Variational 
Optimization (AVO)

90

Use simulator  
(much more efficiently)

Learn simulator  
(with deep learning)

• Generative Adversarial Networks (GANs), 
Variational Auto-Encoders (VAE) 

• Likelihood ratio from classifiers (CARL) 

• Autogregressive models,  
Normalizing Flows

[image credit: A.P. Goucher]

https://cp4space.wordpress.com/2016/02/06/deep-learning-with-the-analytical-engine/


P H Y S I C S - A W A R E  M A C H I N E  L E A R N I N G

•We can inject our knowledge of physics into the machine learning models! 
We can extract knowledge learned from the data!
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FIG. 1: Three parameter covariance

FIG. 2: Gaussian Process covariance

in to the paper may be tricky

• essentially, does our Gaussian Process have features
we’d expect from JES/PDF e↵ects

To better construct a kernel, we can also include our un-
derstanding of detector e↵ects and physics e↵ects. We
look at the covariance matrix of the 3 parameter fit func-
tion by fitting the ATLAS dataset and using Markov
Chain Monte Carlo [cite emcee?] to sample the posterior
(Fig 1). One can see a visible structure in the covariance,
suggesting the inflexibility of the fit function causes an-
chor points which the fit pivots around. This hints that
the parametric fits have some sort of inherent structure
that is not grounded in any physical properties of the
distribution.

As a comparison, the covariance matrix created from
posterior samples from the Gaussian Process fit to the
ATLAS dataset show less correlation between points at
higher mass (Fig 2). The correlation seems constrained
to diagonal, with the o↵ diagonal dying o↵ quickly.

We can now look at two e↵ects; jet energy scale (JES)
and parton density function (PDF) e↵ects. JES e↵ects
smear out the spectrum due to uncertainty on the mea-
sured energy of the jet. To model this, we use a Gaus-
sian kernel of various widths and means to smear out our

FIG. 3: JES Covariance Structure

FIG. 4: PDF Covariance Structure

distribution, and create a covariance matrix from these
samples (Fig 3). One can see a high degree of correlation
across all points in the distribution.
PDF e↵ects were implemented in the paper [cite] by

taking the 8 TeV dijet analysis data [cite] and comput-
ing a covariance matrix from applying di↵erent PDF sets
(Fig 4).
For comparison, we also create a covariance from a

Sliding Window Fit (SWiFt). The SWiFt solution to
the problems with fitting at high luminosities is to fit the
parametric form within smaller segments of the distribu-
tion, and piece together a final background estimation
across the whole spectrum. This method should create a
covariance structure which is limited to the diagonal and
zero in the o↵ diagonal, as each fit includes only a small
portion of the distribution. Indeed this is what we see in
Figure 5.

Other related plots

• Covariance and correlations as a function of mjj i.e.
plotting each row of the correlation and covariance
matrix separately.
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+ Jet Energy Scale

+ Parton Density  
Functions

Final Kernel = 

Poisson fluctuations 

+ Mass Resolution=

+ 
…

+ 

QCD-Aware recursive neural networks
• arXiv:1702.00748• arXiv:1709.05681

Physics-aware Gaussian Processes

QCD-Aware graph convolutional neural networks
• NIPS2017 workshop [http://bit.ly/2AkwYRG] 

http://bit.ly/2AkwYRG
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•Physics goes into the construction of a 
“Kernel” that defines M.L. model 

• Vocabulary of kernels + grammar for 
composition = powerful modeling
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Structure Discovery in Nonparametric Regression through Compositional Kernel Search

cylinders. Some of their discrete graph structures have
continous analogues in our own space; e.g. SE1 ⇥ SE2

and SE1 ⇥ Per2 can be seen as mapping the data to
a plane and a cylinder, respectively.

Grosse et al. (2012) performed a greedy search over a
compositional model class for unsupervised learning,
using a grammar and a search procedure which parallel
our own. This model class contained a large number
of existing unsupervised models as special cases and
was able to discover such structure automatically from
data. Our work is tackling a similar problem, but in a
supervised setting.

5. Structure discovery in time series

To investigate our method’s ability to discover struc-
ture, we ran the kernel search on several time-series.

As discussed in section 2, a gp whose kernel is a sum
of kernels can be viewed as a sum of functions drawn
from component gps. This provides another method
of visualizing the learned structures. In particular, all
kernels in our search space can be equivalently writ-
ten as sums of products of base kernels by applying
distributivity. For example,

SE⇥ (RQ+ Lin) = SE⇥RQ+ SE⇥ Lin.

We visualize the decompositions into sums of compo-
nents using the formulae given in the appendix. The
search was run to depth 10, using the base kernels from
Section 2.

Mauna Loa atmospheric CO2 Using our method,
we analyzed records of carbon dioxide levels recorded
at the Mauna Loa observatory. Since this dataset was
analyzed in detail by Rasmussen & Williams (2006),
we can compare the kernel chosen by our method to a
kernel constructed by human experts.
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As discussed in section 2, a gp whose kernel is a sum
of kernels can be viewed as a sum of functions drawn
from component gps. This provides another method
of visualizing the learned structures. In particular, all
kernels in our search space can be equivalently writ-
ten as sums of products of base kernels by applying
distributivity. For example,

SE⇥ (RQ+ Lin) = SE⇥RQ+ SE⇥ Lin.

We visualize the decompositions into sums of compo-
nents using the formulae given in the appendix. The
search was run to depth 10, using the base kernels from
Section 2.

Mauna Loa atmospheric CO2 Using our method,
we analyzed records of carbon dioxide levels recorded
at the Mauna Loa observatory. Since this dataset was
analyzed in detail by Rasmussen & Williams (2006),
we can compare the kernel chosen by our method to a
kernel constructed by human experts.

RQ

2000 2005 2010
−20

0

20

40

60

( Per + RQ )

2000 2005 2010
0

10

20

30

40
SE × ( Per + RQ )

2000 2005 2010
10

20

30

40

50

Figure 3. Posterior mean and variance for di↵erent depths

of kernel search. The dashed line marks the extent of the

dataset. In the first column, the function is only modeled

as a locally smooth function, and the extrapolation is poor.

Next, a periodic component is added, and the extrapolation

improves. At depth 3, the kernel can capture most of the

relevant structure, and is able to extrapolate reasonably.

( Lin × SE + SE × ( Per + RQ ) )

1960 1965 1970 1975 1980 1985 1990 1995 2000 2005 2010
−40

−20

0

20

40

60

=
 Lin × SE

1960 1965 1970 1975 1980 1985 1990 1995 2000 2005 2010

−40

−20

0

20

40

60

+
SE × Per

1984 1985 1986 1987 1988 1989

−5

0

5

+
SE × RQ 

1960 1965 1970 1975 1980 1985 1990 1995 2000 2005 2010

−4

−2

0

2

4

+
Residuals

1960 1965 1970 1975 1980 1985 1990 1995 2000 2005 2010

−0.5

0

0.5

Figure 4. First row: The posterior on the Mauna Loa

dataset, after a search of depth 10. Subsequent rows show

the automatic decomposition of the time series. The de-

compositions shows long-term, yearly periodic, medium-

term anomaly components, and residuals, respectively. In

the third row, the scale has been changed in order to clearly

show the yearly periodic structure.



P H Y S I C S - A W A R E  M A C H I N E  L E A R N I N G

•We can inject our knowledge of physics into the machine learning models! 
We can extract knowledge learned from the data!
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in to the paper may be tricky

• essentially, does our Gaussian Process have features
we’d expect from JES/PDF e↵ects

To better construct a kernel, we can also include our un-
derstanding of detector e↵ects and physics e↵ects. We
look at the covariance matrix of the 3 parameter fit func-
tion by fitting the ATLAS dataset and using Markov
Chain Monte Carlo [cite emcee?] to sample the posterior
(Fig 1). One can see a visible structure in the covariance,
suggesting the inflexibility of the fit function causes an-
chor points which the fit pivots around. This hints that
the parametric fits have some sort of inherent structure
that is not grounded in any physical properties of the
distribution.

As a comparison, the covariance matrix created from
posterior samples from the Gaussian Process fit to the
ATLAS dataset show less correlation between points at
higher mass (Fig 2). The correlation seems constrained
to diagonal, with the o↵ diagonal dying o↵ quickly.

We can now look at two e↵ects; jet energy scale (JES)
and parton density function (PDF) e↵ects. JES e↵ects
smear out the spectrum due to uncertainty on the mea-
sured energy of the jet. To model this, we use a Gaus-
sian kernel of various widths and means to smear out our
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distribution, and create a covariance matrix from these
samples (Fig 3). One can see a high degree of correlation
across all points in the distribution.
PDF e↵ects were implemented in the paper [cite] by

taking the 8 TeV dijet analysis data [cite] and comput-
ing a covariance matrix from applying di↵erent PDF sets
(Fig 4).
For comparison, we also create a covariance from a

Sliding Window Fit (SWiFt). The SWiFt solution to
the problems with fitting at high luminosities is to fit the
parametric form within smaller segments of the distribu-
tion, and piece together a final background estimation
across the whole spectrum. This method should create a
covariance structure which is limited to the diagonal and
zero in the o↵ diagonal, as each fit includes only a small
portion of the distribution. Indeed this is what we see in
Figure 5.

Other related plots

• Covariance and correlations as a function of mjj i.e.
plotting each row of the correlation and covariance
matrix separately.
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+ Jet Energy Scale

+ Parton Density  
Functions

Final Kernel = 

Poisson fluctuations 

+ Mass Resolution=

+ 
…

+ 

QCD-Aware recursive neural networks
• arXiv:1702.00748• arXiv:1709.05681

Physics-aware Gaussian Processes

QCD-Aware graph convolutional neural networks
• NIPS2017 workshop [http://bit.ly/2AkwYRG] 

http://bit.ly/2AkwYRG
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decide which 
experiment to 
perform

perform experiment, 
gather data

updated knowledge 
based on analyzing 
data

statistical analysis
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•Proof-of-principle algorithm can: 

• measure parameter of theory (eg. Weinberg angle in 
Standard Model of particle Physics) from raw data 

• optimize experiment (eg. beam energy) for most 
sensitive measurement

80                    90                   100

https://github.com/cranmer/active_sciencing


C O N C L U S I O N S

•The developments in machine learning and AI go way beyond 
improved classifiers and have the potential to revolutionize physics 

• likelihood-free inference and generative models are two 
particularly exciting areas 

•Our understanding of how to leverage our prior physics knowledge 
while letting machine learning do what it’s good at is maturing. 

• ability to inject and extract physics knowledge from models 

• exploit hierarchical structure of data 

•Harnessing the full potential of these techniques will require deep 
integration into our scientific workflow
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98

pencil & paper calculable from first principles 
p(z₁ | θ)

controlled approximation of first principles 
p(z2 | z1, ν₁)

phenomenological model 
p(z3 | z2, ν₂)





Detector Simulation p(x | z3, ν₃):  
• detailed engineering (CAD) 
• in situ measurements of temperature, magnetic field, alignment, calibration constants 
• first-principles description of interaction of particles with matter 
• measured interaction of particles with matter
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Track reconstruction at LHC

15

Figure:  
ATLAS pixel model as described in simulation (left), tomography from vertices built from tracks for hadronic interactions (right)

Slide Credit: A. Salzburger (CERN) 


