Test of CP Invariance in H+2jets: VBF and ggF CP studies in H $\rightarrow \tau \tau$

Alena Lösle on behalf of the VBF CP team

Albert-Ludwigs-Universität Freiburg

Higgs plus dijets at the LHC

11.01.2018, Durham

Motivation

- Observed baryon asymmetry in our universe
- One of the Sakharov conditions to explain this asymmetry: CP violation
- CP violation in SM (via CKM matrix) not sufficienct
 - \rightarrow Additional sources in Higgs boson production and/or decay?
- SM prediction: CP-even Higgs boson
- Look for small CP odd contribution to SM-like interactions:
 - \rightarrow CP violation, physics beyond the SM
- Testing CP invariance in H+2jets via:

Motivation

- Observed baryon asymmetry in our universe
- One of the Sakharov conditions to explain this asymmetry: CP violation
- CP violation in SM (via CKM matrix) not sufficienct
 - \rightarrow Additional sources in Higgs boson production and/or decay?
- SM prediction: CP-even Higgs boson
- Look for small CP odd contribution to SM-like interactions:

 \rightarrow CP violation, physics beyond the SM

• Testing CP invariance in H+2jets via:

Alena Lösle

CP H+2jets

Effective Lagrangian

• Ansatz: effective $SU(2) \times U(1)_Y$ invariant Lagrangian with additional CP-odd operators V.Hankele et al.; Phys. Rev. D74(2006)

$$\mathcal{L}_{eff} = \mathcal{L}_{SM} + \sum_{i} rac{f_{i}^{(5)}}{\Lambda} \mathcal{O}_{i}^{(5)} + \sum_{i} rac{f_{i}^{(6)}}{\Lambda^{2}} \mathcal{O}_{i}^{(6)} + O\left(rac{1}{\Lambda^{3}}
ight) + ...$$

 f_i : Wilson coefficients, O_i : operators, Λ : energy scale

- Model-independent approach
- Only consider CP-odd dimension 6 operators: $\mathcal{L}_{eff} = \mathcal{L}_{SM} + \frac{f_{\bar{M}} y}{f_{\bar{M}}} \mathcal{O}_{\bar{M}/M} + \frac{f_{\bar{B}} B}{f_{\bar{B}}} \mathcal{O}_{\bar{B}} + \frac{f_{\bar{B}}}{f_{\bar{D}}} \mathcal{O}_{\bar{B}}$

constrained by measurements of CP-violating

triple gauge-boson couplings at LEP

Phys. Lett. B614 (2005), Eur. Phys. J. C54 (2008), Eur. Phys. J. C19 (2001)

After electroweak symmetry breaking:

 $\mathcal{L}_{eff} = \mathcal{L}_{SM} + \tilde{g}_{HAA} H \tilde{A}_{\mu\nu} A^{\mu\nu} + \tilde{g}_{HAZ} H \tilde{A}_{\mu\nu} Z^{\mu\nu} + \tilde{g}_{HZZ} H \tilde{Z}_{\mu\nu} Z^{\mu\nu} + \tilde{g}_{HWW} H \tilde{W}^+_{\mu\nu} W^{\mu\nu}_-$

Coupling constants

• $SU(2) \times U(1)_Y$ invariance: coupling constants can be expressed with two dimensionless parameters $\tilde{d} \& \tilde{d}_B$ P.Achard et al.; Phys. Lett. B589 (2004):

$$\begin{split} \tilde{g}_{HAA} &= \frac{g}{2m_W} \left(\tilde{d} \sin^2 \theta_W + \tilde{d}_B \cos^2 \theta_W \right) & \qquad \tilde{g}_{HAZ} &= \frac{g}{2m_W} \sin 2\theta_W (\tilde{d} - \tilde{d}_B) \\ \tilde{g}_{HZZ} &= \frac{g}{2m_W} \left(\tilde{d} \cos^2 \theta_W + \tilde{d}_B \sin^2 \theta_W \right) & \qquad \tilde{g}_{HWW} &= \frac{g}{m_W} \tilde{d} \end{split}$$

• Experiment: no distinction of these couplings in Vector-Boson Fusion possible \rightarrow with $\tilde{d} = \tilde{d}_B$:

$$ilde{g}_{HAA} = ilde{g}_{HZZ} = rac{1}{2} ilde{g}_{HWW} = rac{g}{2m_W} ilde{d}$$

 $ilde{g}_{HAZ} = 0$

- CP violation parametrised by single parameter \tilde{d}
- Connection to Higgs characterisation model: P. Artoisenet, P. de Aquino, F. Demartin, R. Frederix, S. Fixion et al.; JHEP 11 (2013) 043

$$\mathcal{L}_{e\!f\!f}^{V} = \mathcal{L}_{SM} - \tilde{\kappa}_{AZZ} \cdot \tan(\alpha) Z_{\mu\nu} \widetilde{Z}^{\mu\nu} - \frac{1}{2} \cdot \tilde{\kappa}_{AWW} \cdot \tan(\alpha) W_{\mu\nu}^{+} \widetilde{W}^{-,\mu\nu}$$

- Parametrization used by $H \to WW/ZZ$: $\frac{\tilde{\kappa}_{AZZ}}{\kappa_{SM}} \cdot \tan(\alpha), \frac{\tilde{\kappa}_{AWW}}{\kappa_{SM}} \cdot \tan(\alpha)$
- Assumption: $\tilde{\kappa}_{AZZ} = \tilde{\kappa}_{AWW} = \tilde{\kappa}_{AVV} \cong \tilde{d} = \tilde{d}_B$
- $\tilde{d} = -\frac{\tilde{\kappa}_{AVV}}{\kappa_{SM}} \cdot \tan \alpha$

Optimal Observable

Matrix element for process with CP-odd contribution:

$$\mathcal{M} = \mathcal{M}_{SM} + \tilde{d} \cdot \mathcal{M}_{CP-odd}$$
$$|\mathcal{M}|^{2} = \underbrace{|\mathcal{M}_{SM}|^{2}}_{CP-even} + \underbrace{\tilde{d} \cdot 2\text{Re}\left(\mathcal{M}_{SM}^{*} \mathcal{M}_{CPodd}\right)}_{CP-odd \text{ (source of CP violation)}} + \underbrace{\tilde{d}^{2} \cdot |\mathcal{M}_{CPodd}|^{2}}_{CP-even \text{ (increase of cross section)}}$$
$$\bullet \text{ Optimal Observable: } \boxed{OO = \frac{2Re(\mathcal{M}_{SM}^{*} \mathcal{M}_{CPodd})}{|\mathcal{M}_{SM}|^{2}}}$$

- CP-odd observable

Contains full phase-space information in 1-dim. observable for small d
 D. Atwood & A.Soni; Phys Lett. D45 (1992)
 M. Davier et al.; Phys. Lett B306 (1993)
 M. Diehl & O. Nachtmann; Z. Phys. C62 (1994)

- $\langle \textit{OO} \rangle \neq 0 \rightarrow \mathsf{CP}$ violation

• Matrix elements (LO) from HAWK

A.Denner, S.Dittmaier, S.Kallweit & A.Möck; Comput. Phys. Commun. 195(2015)

Optimal Observable

- Input for ME calculation (reconstruction level):
 - Lorentzvector of reconstruced Higgs boson (MMC A. Elagin et al.; Nul.Instrum.Meth. A654 (2011))
 - Lorentzvector of two leading jets
- Higgs-boson decay products not directly used
 - \rightarrow method independent of decay channel
- Flavour of incoming and outgoing partons not known in experiment:
 - \rightarrow summation over all possible flavour configurations $ij \rightarrow klH$ weighted by parton distribution functions $f_i(x_{1,2})$:

$$|\mathcal{M}_{SM}|^2 = \sum_{i,j,k,l} f_i(x_1) f_j(x_2) |\mathcal{M}_{SM}|^2 (ij \to klH)$$

$$2\text{Re} \left(\mathcal{M}_{SM}^* \mathcal{M}_{CPodd}\right) = \sum_{i,j,k,l} f_i(x_1) f_j(x_2) 2\text{Re} \left(\mathcal{M}_{SM}^* \mathcal{M}_{CPodd}\right) (ij \to klH)$$

- symmetric for SM coupling
- shifted to OO>(<)0 for ${ ilde d}>(<)0$
- $\langle OO \rangle$ as function of \tilde{d} :
 - linear for small \tilde{d} , - $\langle OO \rangle \rightarrow 0$ for large \tilde{d}

Signal reweighting

$$w(ilde{d}) = rac{|\mathcal{M}_{ ilde{d}}|^2}{|\mathcal{M}_{SM}|^2}$$

- Reweighting depends on :
 - Process: $qq \rightarrow qqH$

qq
ightarrow qqgH & $qq
ightarrow qq\bar{q}H$

- Flavour of incoming and outgoing partons
- Bjorken $x_{1,2} = M_{\text{final state}} e^{\pm y_{\text{final state}}}$
- Color information neglected for reweighting
- \rightarrow Good agreement between LO reweighted and directly generated NLO events

Run-1 results

- Publication with OO method in Run-1 ATLAS Collaboration; Eur. Phys. J. C76 (2016)
- $\tau_{lep}\tau_{lep}, \tau_{lep}\tau_{had}$ included
- Maximum-Likelihood-Fit in OO

- Confidence intervals at 68% CL: [-0.11,0.05] ([-0.08,0.08]) observed(expected) with $\mu_{bestfit}(\tilde{d}=0) = 1.55^{+0.86}_{-0.76}$
- Comparison to limits from $H \rightarrow VV$ ATLAS Collaboration; Eur. Phys. J. C75(2015): 68% CL factor 10 better, but no 95% CL reached

- Aim of analysis: use OO to improve limits on \tilde{d} -parameter
- At the moment: mainly follow Run 1 approach
- CP analysis is based on $H \rightarrow \tau \tau$ coupling analysis in terms of
 - Background estimation
 - Systematic uncertainties
 - Event selection
 - MVA analysis
- Use complete 2015+2016 dataset: 36.1 fb⁻¹
- No official ATLAS results so far
- in this talk: preliminary results of studies by Dirk Sammel and A.L., focus on analysis in $\tau_{lep}\tau_{lep}$ and $\tau_{lep}\tau_{had}$ channels

$\tau_{lep}\tau_{lep}$	$\tau_{lep}\tau_{had}$			
Preselection:				
2 isolated leptons	1 isolated lepton, 1 τ_{had} candidate			
$30 < m_{mvis} < 75(100) \text{GeV}$ for $ee/\mu\mu(e\mu)$	$m_T(I, E_T^{miss}) < 70 \text{GeV}$			
$E_T^{miss} > 55(20) \text{ GeV for } ee/\mu\mu(e\mu)$				
b-jet veto	b-jet veto			
Common VBF selection:				
$n_{jets} \ge 2$				
$m_{jj} > 300 { m GeV}$				
$\mid \Delta\eta_{jj} \mid > 3$				

	TlepTlep	$\tau_{lep}\tau_{had}$
VBF $H \rightarrow \tau \tau$	27.8 ± 0.1	56.7 ± 0.35
$VBF\ H\to WW$	15.0 ± 0.3	-
Non-VBF $H \rightarrow \tau \tau$, WW	26.3 ± 0.6	35.9 ± 0.8
Sum of bkgs	2598.7 ± 90.6	5160.8 ± 67.9
S/B	0.02	0.01

• $\tau_{lep}\tau_{lep}$: VBF $H \rightarrow WW \rightarrow 2/2\nu$ considered as signal

• Non-VBF production treated as background (assuming SM coupling)

Alena Lösle

Checks on VBF $H \rightarrow WW$

Contribution from anomlous HVV couplings in $H \rightarrow WW$ decay:

• OO shape with anomalous coupling in decay vertex only for SM and $\tilde{d} = 0.5$:

 Only small differences → Effect is considered to be negligible

Comparison of OO shape for VBF $H \rightarrow \tau \tau$ and $H \rightarrow WW$:

 Check if VBF H → WW events introduce artificial distortion in OO:

• Good agreement between $H \rightarrow \tau \tau$ and $H \rightarrow WW$ for various \tilde{d} -models

Process	Generator		PDF set		Tune	Order
	ME	PS	ME	PS		
$H \to \tau \tau, WW$						
ggF	Powheg	Pythia8	PDF4LHC15	CTEQ6L1	AZNLO	NNLO+NNLL
VBF	Powheg	Pythia8	PDF4LHC15	CTEQ6L1	AZNLO	(N)NLO
VH	Powheg	Pythia8	PDF4LHC15	CTEQ6L1	AZNLO	NNLO
ttH	Powheg	Pythia8	PDF4LHC15	CTEQ6L1	AZNLO	NLO
Background						
V+jets	Sherpa 2.2.1 NNPDF30		Sherpa	NNLO		
tī	Powheg	Pythia6	CT10	CTEQ6L1	Perugia2012	NNLO+NNLL
Single top	Powheg	Pythia6	CT10	CTEQ6L1	Perugia2012	NNLO
Di-Boson	Sherpa	a 2.2.1	NNPD	F30	Sherpa	NNLO

- in Run 1: used τ -embedded $Z \rightarrow \mu\mu$ data to model $Z \rightarrow \tau\tau$ processes ATLAS Collaboration, JINST 10(2015) no.09
- Not available in Run 2 (yet)

• Enhance signal-to-background ratio: select events with high BDT_{score}

High BDT signal region

	$\tau_{lep}\tau_{lep}$	$ au_{lep} au_{had}$
VBF $H \rightarrow \tau \tau$	11.6 ± 0.1	23.8 ± 0.2
$VBF\ H\to WW$	4.0 ± 0.2	-
Non-VBF $H \rightarrow \tau \tau$, WW	2.5 ± 0.2	4.6 ± 0.3
Sum of bkgs	41.8 ± 5.1	56.7 ± 4.2
S/B	0.37	0.42

signal-to-background ratio improved

Alena Lösle

NN NN

Fitmodel

• For each \widetilde{d} -model: Maximum Likelihood Fit $ightarrow \Delta$ NLL-curve

No rate information used

Alena Lösle

Expected sensitivity (stat. only) $\tau_{lep}\tau_{lep}+\tau_{lep}\tau_{had}$

UNI UNI

- $\Delta NLL = 0.5$: expected confidence intervals at 68% CL
- Asimov data (SM signal+bkgs) in signal region, data in control regions
- Only statistical uncertainties included here

 $\tau_{lep}\tau_{lep}+\tau_{lep}\tau_{had}$ combination:

- (1 σ) exclusion for \tilde{d} outside [-0.038,0.035]
- (2 σ) exclusion for \tilde{d} outside [-0.108,0.098]

Comparison to $\Delta \Phi_{ii}^{sign}$ ($\tau_{lep} \tau_{lep}$ only)

• Other CP odd observable:

 $\Delta \Phi^{sign}_{jj} = \Phi_{j+} - \Phi_{j-}$

j + (-): jet in positive(negative) detector hemispheres

 Same fitmodel as for OO in high BDT signal region

Testing CP Invariance in H+2jets

• First studies in context of master thesis (A.L. 2015):

Test of CP Invariance in gluon-gluon fusion production in $H\to \tau_{lep}\tau_{lep}$ at $\sqrt{s}=8\,{\rm TeV}$

- Dataset corresponding to 20.3 fb⁻¹
- Signal sample for ggF $H \rightarrow \tau_{lep} \tau_{lep}$: H+1jet NLO MiNLO J. M. Campbell, R. K. Ellis, R. Frederix, P. Nason, C. Oleari & C. Williams; JHEP 07 (2012)
- Matrix element calculation for OO and reweighting extracted from MadGraph5 J. Alwall, M. Herquet, F. Maltoni, O. Mattelaer & T. Stelzer; JHEP 06 (2011)

Alena Lösle

Higgs-gluon coupling in EFT approach for $m_{top} \rightarrow \infty$: (*HiggsCharacterisation* framework)

$$\mathcal{L}_{eff} = \underbrace{a_2 G^a_{\mu\nu} G^{a,\mu\nu} H}_{\text{SM contribution}} + \underbrace{a_3 G^a_{\mu\nu} G^a_{\rho\sigma} \epsilon^{\mu\nu\rho\sigma} A}_{\text{CP odd contribution}}$$
$$G^{a,\mu\nu} : \text{gluon field strength tensor}$$
$$\epsilon^{\mu\nu\rho\sigma} : \text{total asymmetric tensor}$$

 $a_2 = g_{Hgg} \kappa_{Hgg} \cos(\alpha), \ a_3 = g_{Agg} \kappa_{Agg} \sin(\alpha)$

 g_{Hgg}, g_{Agg} : coupling strength, $\kappa_{Hgg}, \kappa_{Agg}$: dimensionless constants

- ightarrow Mixing between CP even and CP odd coupling driven by $\cos(lpha)$
- \rightarrow CP violation for $\kappa_{\textit{Hgg}}, \kappa_{\textit{Agg}} \neq 0$ and $\cos(\alpha) \neq 0, \pm 1$

ggF H+2jets: Event selection

(1) Basic preselection:

- two isolated leptons
- at least two jets with $p_T > 40(30) \, \text{GeV}$
- $E_T^{miss} > 20(70)\,{
 m GeV}$ for $e\mu(ee/\mu\mu)$
- 30 $< m_{vis} <$ 100(75) GeV for $e\mu(ee/\mu\mu)$
- b-jet veto

$$\frac{\text{ggF H+2jets}}{B} = 7.4 \times 10^{-3}$$
$$\frac{\text{ggF H+2jets}}{\text{VBE H}} = 2.1$$

(2) Enhance signal-to-background ration by using BDTs:

- BDT_{bkg} : separate **ggF signal** from all considered backgrounds
- BDT_{VBF}: separate **ggF signal** from VBF $H \rightarrow \tau \tau$ background

Signal region: $BDT_{bkg} > 0.6 \text{ and} \\ BDT_{VBF} > -0.3$

Alena Lösle

ggF H+2jets: Sensitivity at $\sqrt{s} = 8 \text{ TeV}$

• OO in signal region:

- Likelihood fit in OO (same fitmodel as for VBF CP analysis)
- Full set of systematic uncertainties included here

No sensitivity with Run 1 data yet

Parameter	Postfit@SM	$Postfit@c_{lpha} = 0.50$
$\mu_{\textit{betsfit}}$	$2.60^{+2.57}_{-2.08}$	$2.67^{+2.66}_{-2.03}$
NF(Top)	1.00 ± 0.12	1.00 ± 0.12
NF(<i>ZII</i>)	0.93 ± 0.42	0.92 ± 0.41
NF(Z au au)	0.99 ± 0.11	0.99 ± 0.11

Zä

Summary and outlook

- Sensitivity studies for tests of CP invariance in VBF $H \rightarrow \tau \tau$ with 36 fb⁻¹
- Using Optimal Observable
- Expected sensitivity $(\tau_{lep}\tau_{lep} + \tau_{lep}\tau_{had})$ with stat. uncert, only:
 - (1 σ) exclusion for \tilde{d} outside [-0.038,0.035]
 - (2 σ) exclusion for \tilde{d} outside [-0.108,0.098]
- Test of CP invariance in ggF $H + 2jets \rightarrow \tau_{lep}\tau_{lep}$ with 20.3 fb⁻¹:
 - Limited sensitivity with Run1 dataset
 - Still interesting to look into this for Run 2

Outlook:

- Expected sensitivity with systematic uncertainties
- Combination of all final states (so far only $\tau_{lep}\tau_{lep}$, $\tau_{lep}\tau_{had}$)
- Pure CP test by measuring
 - Mean of Optimal Observable $\langle OO
 angle$
 - Asymmetry of Optimal Observable $\mathcal{A}(OO) = \frac{N(OO>0) N(OO<0)}{N(OO>0) + N(OO<0)}$
- Include rate information
- Consider more general EFT Lagrangian

Thank you for your attention

BACKUP

Alena Lösle

11.01.2018 24 / 22

Expected results from full Asimov fit

- $\Delta NLL = 0.5$: expected confidence intervals at 68% CL
- Asimov data (SM signal+bkgs) in signal region and control regions
- only statistical uncertainties included here

 $\tau_{lep}\tau_{lep}+\tau_{lep}\tau_{had}$ combination:

- (1 σ) exclusion for \tilde{d} outside [-0.041, 0.040]
- (2 σ) exclusion for \tilde{d} outside [-0.135, 0.132]

Postfit plots $(au_{lep} au_{lep} + au_{lep} au_{lep}$ combination)

SM signal hypothesis:

NN NN

