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HIGGS WITHIN STANDARD MODEL
➤ within Standard Model (SM), the mass and the self-interactions of the Higgs field are 

parametrised by: 

➤ since 2012 we know not only vev but also mass of the Higgs 

➤ Higgs self-couplings have not been tested yet – important goal for the forthcoming LHC 
runs (and possible future colliders) 

➤ one way to constrain 𝜆 and 𝜅 is by measuring multi-Higgs production channels 
>> limited sensitivity at the LHC (even HL-LHC)  
>> at 14 TeV: 

➤ self-coupling coefficients ⇒ important for pinning down mechanism of EWSB

�hh ⇠ O(35 fb)

�hhh ⇠ O(0.1 fb)
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NEW PHYSICS PARAMETRISATION
➤ Standard Model Effective Field Theory (SMEFT) – convenient way of parametrising BSM 

phenomena using SM degrees of freedom 

➤ in our case we consider the following extensions: 

➤ which implies: 

➤ correspondence to anomalous coupling framework (kappa-framework):
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CORRECTIONS TO THE VVH-VERTEX
➤ vertex:   

➤ two sources of corrections: 
– logs associated with RGE that connects new physics scale (𝛬) with EW scale (𝜇w) 
– finite contributions from the VVH Green’s function corrections 

➤ finite contributions consist of: 
>>> extra diagrams contributing to the VVH vertex: 
 
 
 
 
 
 
>>> wave-function renormalisation corrections 

➤ this leads to expression in terms of form-factors:

V µ(q1) + V ⌫(q1) �! h(q1 + q2)
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Figure 1. The three 1-loop diagrams with an insertion of the effective operator O6 that contribute
to the V V h vertex at O(λ). Here φ denotes the relevant would-be Goldstone field that needs to be
included if the calculation is performed in a Rξ gauge.

The integrals with a tensor structure (3.3) can be reduced to linear combinations

of Lorentz-contravariant tensors constructed from the metric tensor ηµν and a linearly

independent set of the 4-momenta pµi . We define the tensor coefficients of the triangle

integrals in the following way

Cµ =
∑

i=1,2

pµi Ci , Cµν = ηµνC00 +
∑

i,j=1,2

pµi p
ν
j Cij . (3.4)

Notice that of all scalar and tensor-coefficient functions appearing in our 1-loop calculations

only B0 and C00 are ultraviolet (UV) divergent. These divergent contributions appear in

our final results always in the UV-finite combination B0 − 4C00.

With the definitions (3.2), (3.3) and (3.4) at hand, the full analytic expressions of the

form factors can be written as
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Here the arguments of the PV integrals are
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and analog definitions hold for the derivative B′
0 of the scalar bubble integral and the tensor

coefficients C1, C11 and C12 of the triangle integral. Notice that in contrast to [31] an all-

order resummation of 1-loop wave function effects is not performed in (3.5). Since already

the O(λ2) wave function corrections in the SMEFT will be incomplete due to missing 2-

loop Higgs-boson selfenergy diagrams, it is questionable if such a resummation improves

the precision of the calculation and we therefore do not include it our work.

4 Corrections to the Higgs partial decay widths

To determine the signal strengths in V h and VBF Higgs production, one also has to take

into account that the Higgs branching ratios are modified at the loop level by the presence
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Figure 1. The three 1-loop diagrams with an insertion of the effective operator O6 that contribute
to the V V h vertex at O(�). Here � denotes the relevant would-be Goldstone field that needs to be
included if the calculation is performed in a R⇠ gauge.

function renormalisation. We determine the relevant contributions using FeynArts [37] and
FormCalc [38]. Including the SM tree-level contribution, our final result for the renormalised
V V h vertex reads
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where GF = 1/(
p

2v2) is the Fermi constant, gµ⌫ is the metric tensor, while mV and qµi
with i = 1, 2 denote the mass and the 4-momenta of the external gauge bosons. The
indices and momenta are assigned to the vertex as V µ(q1) + V ⌫(q2) ! h(q1 + q2) with
(q1 + q2)2 = m2

h, i.e. an on-shell Higgs boson. Notice that �µ⌫
V (q1, q2) contains only Lorentz

structures that gives rise to a non-vanishing contribution when the vertex is contracted
with massless fermion lines, which is equivalent to including only transversal gauge-boson
polarisations "µi (qi) in an on-shell calculation by requiring "i(qi) · qi = 0.

The form factors entering (3.1) can be expressed in terms of the following 1-loop
Passarino-Veltman (PV) scalar integrals
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and the tensor coefficients of the two tensor integrals
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The integrals with a tensor structure (3.3) can be reduced to linear combinations

of Lorentz-contravariant tensors constructed from the metric tensor ηµν and a linearly

independent set of the 4-momenta pµi . We define the tensor coefficients of the triangle

integrals in the following way
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Notice that of all scalar and tensor-coefficient functions appearing in our 1-loop calculations

only B0 and C00 are ultraviolet (UV) divergent. These divergent contributions appear in

our final results always in the UV-finite combination B0 − 4C00.
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and analog definitions hold for the derivative B′
0 of the scalar bubble integral and the tensor

coefficients C1, C11 and C12 of the triangle integral. Notice that in contrast to [31] an all-

order resummation of 1-loop wave function effects is not performed in (3.5). Since already

the O(λ2) wave function corrections in the SMEFT will be incomplete due to missing 2-

loop Higgs-boson selfenergy diagrams, it is questionable if such a resummation improves

the precision of the calculation and we therefore do not include it our work.

4 Corrections to the Higgs partial decay widths

To determine the signal strengths in V h and VBF Higgs production, one also has to take

into account that the Higgs branching ratios are modified at the loop level by the presence
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The integrals with a tensor structure (3.3) can be reduced to linear combinations

of Lorentz-contravariant tensors constructed from the metric tensor ηµν and a linearly

independent set of the 4-momenta pµi . We define the tensor coefficients of the triangle

integrals in the following way
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pµi Ci , Cµν = ηµνC00 +
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pµi p
ν
j Cij . (3.4)

Notice that of all scalar and tensor-coefficient functions appearing in our 1-loop calculations

only B0 and C00 are ultraviolet (UV) divergent. These divergent contributions appear in

our final results always in the UV-finite combination B0 − 4C00.
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and analog definitions hold for the derivative B′
0 of the scalar bubble integral and the tensor

coefficients C1, C11 and C12 of the triangle integral. Notice that in contrast to [31] an all-

order resummation of 1-loop wave function effects is not performed in (3.5). Since already

the O(λ2) wave function corrections in the SMEFT will be incomplete due to missing 2-

loop Higgs-boson selfenergy diagrams, it is questionable if such a resummation improves

the precision of the calculation and we therefore do not include it our work.

4 Corrections to the Higgs partial decay widths

To determine the signal strengths in V h and VBF Higgs production, one also has to take

into account that the Higgs branching ratios are modified at the loop level by the presence
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FIG. 1: NLO vertex corrections to the associated production
cross section which depend on the Higgs self-coupling. These
terms lead to a linear dependence on modifications of the self-
coupling �h.

recourse to the details of renormalization of the irrelevant
operator in Eq. (3), however proceeding to NNLO in this
case would require the counter-term to this operator.

The dominant Higgs production process at an e+e�

collider at the energies considered here is Higgs associ-
ated production. At NLO the Higgs self-coupling en-
ters the associated production amplitude in two ways. It
enters quadratically via a modified Higgs wavefunction
counter-term, feeding into associated production at NLO
as a modification of the hZZ coupling. The self-coupling
also enters into the amplitude linearly through diagrams
such as Fig. 1. Depending on gauge choice there are also
diagrams with internal Goldstone lines.

The full NLO corrections to e+e� ! hZ are deter-
mined using the FeynArts, FormCalc, and Loop-

Tools suite of packages [18, 19] by calculating the full
one-loop electroweak corrections to associated produc-
tion (see Refs. [20–23]) and extracting the dependence
on the self-coupling parameter. The counter-terms for all
SM-Higgs couplings are calculated automatically follow-
ing the electroweak renormalization prescription of [24].
The analytic form of the correction at a CM energy
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can be extracted from the FeynArts and FormCalc

[18, 19] output in terms of the various one-loop integrals
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FIG. 2: Corrections to �(e+e� ! hZ), for a given variation
in the self-coupling, �h, as a function of the CM energy from
220 to 500 GeV.

The three-point scalar functions are

C0 = C(M2
H , S, M2

Z , M2
H , M2

H , M2
Z), (9)

and C1, which is the scalar coe�cient of k1 in Cµ1 with
the same arguments. C00, C11, C12 are the scalar coef-
ficients of gµ,⌫ , k1k1, and k1k2 in Cµ1,µ2 . All of these
functions can be easily evaluated using the LoopTools

package [18, 19]. With these definitions the full form of
the self-coupling correction is
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and
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Eq. (10) was calculated in the R⇠ gauges, and the absence
of the ⇠ parameter demonstrates the full gauge invariance
of the result. Furthermore, although a number of UV-
divergences appear individually, the final result is UV-
finite as these divergences cancel in B0 � 4C00 and also
in .

At various CM energies the fractional corrections to
the associated production cross section, ��h(e+e� !
hZ), relative to the SM rate are found to be

�240,350,500
� = 1.4, 0.3,�0.2 ⇥ �h% , (14)

where only the lowest-order term in �h has been retained
as other higher-dimension operators may contribute at
O(�2

h), and the coe�cient of this term is unknown. The
full energy dependence is shown in Fig. 2.

[McCollough; 1312.3322] 
>> applied to ee future collider
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FIG. 3: Indirect 1� constraints possible in �Z � �h param-
eter space by combining associated production cross section
measurements of 0.4% (1%-estimated) precision at

p
s = 240

GeV, (350 GeV) in solid black. For large values of |�h| this
ellipse can only be considered qualitatively as the calculation
is only valid to lowest order in �h. The di↵erent scales should
be noted. Direct constraints possible at the high luminosity
LHC and 1 TeV ILC (with LU denoting luminosity upgrade)
are also shown for comparison. This plot only applies to the
specific model discussed in Sec. III B and if energy-dependent
hZZ couplings were allowed then such a constraint could not
be determined.

the deviation in the associated production cross section
from a modified hZZ coupling at tree level would be of
a similar magnitude to the loop-level e↵ect from modi-
fied self-coupling.4 However for clarity in this work the
loop-suppression of the deviation from the self-coupling
will be explicitly written and the NDA factors will not
be included.

This type of scenario where the SM Higgs couplings,
in this case hZZ and h3, are rescaled by some common
factor is often considered in modified Higgs coupling anal-
yses rather than considering the e↵ects of higher dimen-
sion operators, making this section analogous to these
re-scaled coupling scenarios. Now including these modi-
fications, and taking the leading-order coe�cients of �Z
and �h and only expanding to first order in any �, the
associated production cross-section would vary as

�240
� = 100 (2�Z + 0.014�h) % , (17)

Thus in this specific model a single precision measure-
ment of the associated production cross section can con-
strain this linear combination of couplings. Also, if

4 See e.g. [34] for an explicit example where this would be the case.

�Z ⇠ �h, as would typically be expected in perturbative
scenarios, the LO modification of the associated produc-
tion cross section from �Z would completely dominate
the NLO modification from �h.

However, from Eq. (14) it is clear that the NLO self-
coupling correction is energy-dependent, meaning that
measurements at di↵erent energies constrain di↵erent lin-
ear combinations of coupling modifications, which may
lead to ellipse-plot constraints in the space of �Z � �h
couplings.5 In Fig. 3 the indirect ellipse constraint that
would result from precision measurements at 240 GeV
and 350 GeV is shown. A cross section precision of
0.4% at 240 GeV has been assumed [16]. Studies of the
cross section precision at 350 GeV have not yet been per-
formed, and a rough estimate of 1% precision has been
assumed here. This ellipse only applies to the specific
model assumptions employed in this section, but demon-
strates that under the assumption of a rescaled hZZ cou-
pling and Higgs self-coupling interesting constraints may
be imposed on deviations of both parameters, with rele-
vance to strongly coupled Higgs scenarios.

C. Two Higgs-Doublet Scenarios

Precision measurements of Higgs associated produc-
tion at a lepton collider may play an important role in
constraining the Higgs self-coupling in two Higgs-doublet
models (2HDMs). In 2HDMs there are a number of free
parameters which determine the couplings of the SM-like
Higgs boson to other fields. This section will only be con-
cerned with the couplings to SM fields, which, in a CP-
conserving 2HDM, may be parameterized with ↵, �, and
the pseudoscalar mass mA.6 Assuming that the observed
SM-like Higgs boson is the lightest CP-even scalar of the
2HDM and making the replacement cos(��↵) = �, which
measures the deviations of the Higgs couplings from the
SM values, then in terms of these parameters the tree-
level Higgs coupling to the Z-boson is modified from the
SM value to

1 + �Z = sin(� � ↵) =
p

1 � �2 , (18)

and the Higgs self-coupling is modified from the SM value
by the factor

1 + �h =
p

1 � �2
�
1 + 2�2

�
+ 2�3 cot(2�) �

2�2 m2
A

m2
h

⇣
� cot(2�) +

p
1 � �2

⌘
. (19)

5 Similar multiple-energy measurements have been proposed to
disentangle the e↵ects of hhZZ and h3 modifications in di-Higgs
production at the ILC [29].

6 For simplicity it is assumed that the 2HDM couplings such as

|H1|2H1 ·H†
2 are set to zero. Including these couplings does not

change the conclusions of this section.
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CORRECTIONS TO THE VVH-VERTEX

➤ 1-loop expressions for the form factors: 
 
 
 
 
 
with the two- and three-point integrals: 
 
 
 
 
 
and tensor integrals expressed as:

1.3. FUNCTIONS PROVIDED BY LOOPTOOLS 13

1.3.4 Three-point functions

Function call (a real) (a complex) Description

C0i(id, a) C0iC(id, a) three-point tensor coefficient id

Cget(a) CgetC(a) all three-point tensor coefficients

Cput(res, a) CputC(res, a) all three-point tensor coefficients

C0nocache(res, a) C0nocacheC(res, a) scalar three-point function

special case of C0i:

C0(a) C0C(a) scalar three-point function

a = p2
1, p2

2, (p1 + p2)2, m2
1, m2

2, m2
3

p1

p2

p3

m1

m2

m3

=
µ4−D

iπD/2 rΓ

∫

(numerator) dDq
[

q2−m2
1

] [

(q + p1)
2 − m2

2

]

[

(q + p1 + p2)
2 − m2

3

]

1.3. FUNCTIONS PROVIDED BY LOOPTOOLS 11

1.3.2 Two-point functions

Function call (a real) (a complex) Description

B0i(id, a) B0iC(id, a) two-point tensor coefficient id

Bget(a) BgetC(a) all two-point tensor coefficients

Bput(res, a) BputC(res, a) all two-point tensor coefficients

Bputnocache(res, a) BputnocacheC(res, a) all two-point tensor coefficients

special cases of B0i:

B0(a) B0C(a) scalar two-point function

B1(a) B1C(a) coefficient of pµ

B00(a) B00C(a) coefficient of gµν

B11(a) B11C(a) coefficient of pµpν

B001(a) B001C(a) coefficient of gµνpρ

B111(a) B111C(a) coefficient of pµpνpρ

a = p2, m2
1, m2

2

p p

m1

m2

=
µ4−D

iπD/2 rΓ

∫

(numerator) dDq
[

q2 − m2
1

] [

(q + p)2 − m2
2

]

�µ⌫
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⇣p
2GF

⌘1/2
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CORRECTIONS TO THE PARTIAL WIDTHS
➤ the same operator will modify the partial widths of the Higgs boson, via the diagrams: 

 
 
 
 
 
 
>> these affect all types of decays: to fermions, gluons, photons and weak gauge bosonsJ
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Figure 2. Feynman diagrams with an insertion of the effective operator O6 that lead to Higgs-boson
decays into fermion (left), gluon (middle) and photon (right) pairs.

Here the arguments of the PV loop integrals are defined as in (3.6). We have verified that

the expression (4.4) agrees numerically with the results presented in [31].

The changes in partial decay widths of the Higgs boson to gluon and photon pairs can

be written in the following way

∆Γ(h → gg) =
GF α2

sm
3
h

36
√
2π3

∣∣∣∣
∑

q

Aq

∣∣∣∣
2

∆g ,

∆Γ(h → γγ) =
GF α2m3

h

128
√
2π3

∣∣∣∣
∑

f

4Nf
c Q2

f

3
Af −AW

∣∣∣∣
2

∆γ ,

(4.8)

where αs = αs(mh), α = 1/137.04, while Qu = 2/3, Qd = −1/3 and Qℓ = −1 denote

the electric charges of the fermions. The leading-order (LO) form factors that encode the

1-loop corrections due to SM fermion and W -boson loops read

Af =
3τf
2

[
1 + (1− τf ) arctan

2 1√
τf − 1

]
,

AW = 2 + 3τW + 3τW (2− τW ) arctan2
1√

τW − 1
,

(4.9)

with τX = 4m2
X/m2

h for X = f,W . The O(λ) correction to the partial decay width of the

Higgs to gluons and photons originate from 2-loop diagrams with an insertion of O6. Two

example graphs are shown in the middle and on the right of figure 2. The results presented

in [30, 40] lead to

∆g =
λ c̄6
(4π)2

(
8.42− 9m2

h (c̄6 + 2)B′
0

)
,

∆γ =
λ c̄6
(4π)2

(
− 3.70− 9m2

h (c̄6 + 2)B′
0

)
.

(4.10)

Notice that there is no need to take the real part here because the B′
0 integral corresponding

to a Higgs loop is real for on-shell kinematics. The expression for ∆g agrees with the results

obtained in [31].

5 Description of the V h calculation

In order to explain how we obtain our predictions for the associated production of the

Higgs boson with massive gauge bosons it is useful to first consider the O(λ) corrections

– 7 –

[Gorbahn, Haisch – 1607.03773]  
[WB, Gorbahn, Haisch, Zanderighi – 1610.05771]
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Figure 5. Shifts in the partial decay widths (left panel) and the branching ratios (right panel) of the
Higgs boson as a function of the Wilson coefficient c̄6. The coloured curves indicate the individual
decay channels, while the black dashed curve corresponds to the total Higgs decay width.

ables. As input parameters we have used αs(mh) = 0.1127, mt = 173.2GeV, mb(mh) =

2.81GeV, mc(mh) = 0.65GeV, mτ = 1.777GeV, mW = 80.37GeV, mZ = 91.15GeV,

ΓW = 2.0886GeV and ΓZ = 2.4958GeV. The quoted values for the bottom and charm

quark MS masses have been obtained by employing 2-loop running. The SM predictions for

the total decay width of the Higgs and its branching ratios are taken from [66]. In the case

of the partial decay widths (left panel), one observes that the relative corrections to ΓF all

have a very similar c̄6 dependence and are essentially always negative. These features are

related to the fact that for |c̄6| ! 1 the partial decay widths are dominated by the universal

corrections arising from the Higgs wave function renormalisation which is quadratic in c̄6
and carries a minus sign. Numerically, we find that the relative shifts in ΓF can reach up to

around −40% (−45%) for c̄6 ≃ −15 (c̄6 ≃ 15). The corrections to the total decay width Γh

are only about −30%. In the case of the shifts in the Higgs branching ratios (right panel),

one observes instead that the modifications in all channels do not exceed ±10% in the

same c̄6 range. The impact of O(λ) corrections is thus generically smaller in the branching

ratios than in the partial decay widths, since in the former quantities the universal Higgs

wave function corrections and thus the quadratic dependence on c̄6 cancels.

7.3 Modifications of the V h and VBF Higgs distributions

Since the vertex corrections (3.1) depend in a non-trivial way on the external 4-momenta,

the O(λ) corrections not only change the overall size of the cross sections in V h and VBF

Higgs production but also modify the shape of the corresponding kinematic distributions.

In this subsection we present results for the spectra that are most sensitive to modifications

in the trilinear Higgs coupling. All results shown below correspond to
√
s = 13TeV,

PDF4LHC15 nnlo mc PDFs and the default scale choices introduced in section 7.1. Off-shell

effects in Higgs-boson production are taken into account by modelling the width of the

Higgs with a Breit-Wigner line shape.

– 13 –



(1) DESCRIPTION OF THE VH CALCULATION
➤ QCD corrections “almost” factorize: 

 
 
 
 
 
 
>> the last diagram (only ZH production, not for WH): 
       – purely NNLO contribution  
       – modified vertex would require two-loop integrals which are not known  
                   [neglected in our calculation] 

➤ in our prediction we have identified and altered the MCFM-8.0 code which provides fully 
differential description of the VH production at NNLO QCD
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Figure 3. Examples of diagrams that contribute to pp → Zh at O(α2
s). As indicated by the black

square the left and middle diagram receive a correction of O(λ) from δV , while the graph on the
right-hand side does not involve a modified ZZh vertex. See text for further explanations.

to σV h = σ(qq̄ → V h) working to zeroth order in the strong coupling constant. At this

order in QCD the O(λ) shift in the integrated partonic cross section can be written as

∆σV h =
G2

Fm
4
V

72π
N̄V

√
α(m2

V ,m
2
h, s)

α(m2
V ,m

2
h, s) s+ 12m2

V(
s−m2

V

)2 δV , (5.1)

with N̄W = 1 and N̄Z =
(
1− 8T q

3 Qqs2w + 8Q2
qs

4
w

)
/2, where T q

3 (Qq) denotes the third

component of the weak isospin (electric charge) of the relevant quark. The function δV
encodes the contributions from the three 1-loop diagrams in figure 1 when one of the gauge

bosons is contracted with a quark line and the other one is put on its mass shell. Explicitly

we find

δV =
λ c̄6
(4π)2

Re

[
− 6B0 − 24

(
m2

V C0 − C00
)

−
12α(m2

V ,m
2
h, s) s

(
m2

V −m2
h + s

)

α(m2
V ,m

2
h, s) s+ 12m2

V

(
C1 + C11 + C12

)
− 9m2

h (c̄6 + 2)B′
0

]
,

(5.2)

where the function α(x, y, z) has been defined in (4.6). The arguments of the scalar triangle

integral are

C0 = C0
(
m2

h, s,m
2
V ,m

2
h,m

2
h,m

2
V

)
, (5.3)

and all other tensor coefficients carry the same functional dependence. The B0 integral is

defined in (3.6). Our result (5.2) for δV can be shown to agree with the analytic expression

given in the publication [28] for the case of e+e− → Zh.

At NNLO the production cross section for pp → V h receives corrections from two

types of topologies. The first kind of graphs involves an exchange of a single off-shell

vector boson in the s-channel, while the second sort of corrections arise from the coupling

of the Higgs boson to a closed loop of top quarks. For on-shell bosons the former type

of O(α2
s) corrections have been obtained in [41], while fully differential NNLO calculations

of these Drell-Yan (DY) parts have been presented in [42, 43] and [44] for the Wh and Zh

final state, respectively. Subsets of the diagrams where the Higgs is radiated off a top loop

have been considered in [44, 45] and a calculation of all such graphs can be found in [46].

The latter results have been implemented into version 8 of MCFM [47].

The existing fully differential MCFM implementation of pp → V h at NNLO serves as

a starting point of our own computation. We have identified the routines in MCFM that

– 8 –

modified vertexmodified vertex
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(2) DESCRIPTION OF THE VBF CALCULATION
➤ the differential VBF cross-section can be parametrised using the modified VVH vertex and 

hadronic tensors: 

➤ after tensor reduction we get: 

➤ numerical implementation using fully-differential VBF code from (NNLO QCD): 

2

(a) Born VBF process

two loop

passed to analysis
projected momentum,

original momentum,

H

W,Z

W,Z

+

double−real counterevent

one−loop single−real counterevent

integrated over

double real

one−loop single real

+ −

+ −

(b) NNLO "inclusive" part (from structure function method) (c) NNLO "exclusive" part (from VBF H+3j@NLO)

projected double real

projected one−loop single real

+ +

FIG. 1: (a) Illustration of the Born VBFH process. (b) NNLO corrections to the upper sector of the VBF process, from the
“inclusive” part of our calculation. (c) Corresponding “exclusive” part. The double-real and one-loop single-real counterevents
in the exclusive part cancel the projected double-real and one-loop single-real contributions in the inclusive part. In the
“projected” and “counterevent” contributions, the dashed lines corresponds to the full set of parton momenta that are integrated
over (for the structure functions, this integral is implicit in the derivation of the coe�cient functions), while the solid lines
correspond to the partons that are left over after projection to Born-like kinematics and then passed to the analysis. The
projection does not change the direction of initial partons and so the corresponding incoming dashed lines are implicit.

quark ! quark + V , then it is straightforward to show
that knowledge of the vector-boson momentum q

1

(q
2

)
uniquely determines the momenta of both the incoming
and outgoing (on-shell) quarks,

p
in,i = xiPi, p

out,i = xiPi � qi . (1)

We exploit this feature in order to assemble a full cal-
culation from two separate ingredients. For the first one,
the “inclusive” ingredient, we remain within the struc-
ture function approach, and for each set of q

1

and q
2

use
Eq. (1) to assign VBF Born-like kinematics to the up-
per and lower sectors. This is represented in Fig. 1b
(showing, for brevity, just the upper sector): for the
two-loop contribution, the Born kinematics that we as-
sign corresponds to that of the actual diagrams; for the
tree-level double-real and one-loop single-real diagrams,
it corresponds to a projection from the true kinematics
(2 ! H + n for n = 3, 4) down to the Born kinemat-
ics (2 ! H + 2). The projected momenta are used to
obtain the “inclusive” contribution to di↵erential cross
sections. Note that the Higgs momentum is una↵ected
by the projection.

Our second, “exclusive”, ingredient starts from the
NLO fully di↵erential calculation of vector-boson fusion
Higgs production with three jets [16, 17], as obtained in
a factorised approximation, i.e. where there is no cross-
talk between upper and lower sectors.2 Thus each par-
ton can be uniquely assigned to one of the upper or lower
sectors and the two vector-boson momenta can be unam-
biguously determined. For each event in a Monte Carlo
integration over phase space, with weight w, we add a

2 The NLO calculation without this approximation is given in
Ref. [18].

counterevent, with weight �w, to which we assign pro-
jected Born VBF kinematics based on the vector-boson
momenta and Eq. (1). This is illustrated in Fig. 1c.
From the original events, we thus obtain the full mo-
mentum structure for tree-level double-real and one-loop
single-real contributions. Meanwhile, after integration
over phase space, the counterevents exactly cancel the
projected tree-level double-real and one-loop single-real
contributions from the inclusive part of the calculation.
Thus the sum of the inclusive and exclusive parts gives
the complete di↵erential NNLO VBFH result.3

For the implementation of the inclusive part of the cal-
culation, we have taken the phase space from POWHEG’s
Higgs plus two-jet VBF calculation [20], while the matrix
element has been coded with structure functions evalu-
ated using parametrised versions [21, 22] of the NNLO
DIS coe�cient functions [23–25] integrated with HOPPET
v1.1.5 [26]. We have tested our implementation against
the results of one of the codes used in Ref. [9, 10] and
found agreement, both for the structure functions and the
final cross sections. We have also checked that switching
to the exact DIS coe�cient functions has a negligible im-
pact. A further successful comparison of the evaluation of
structure functions was made against APFEL v.2.4.1[27].

For the exclusive part of the calculation, as a starting
point we took the NLO (i.e. fixed-order, but not parton-
shower) part of the POWHEG H+3-jet VBF code [17], it-
self based on the calculation of Ref. [16], with tree-level
matrix elements from MadGraph 4 [28]. This code al-
ready uses a factorised approximation for the matrix ele-
ment, however for a given phase-space point it sums over

3 Our approach can be contrasted with the di↵erential NNLO
structure-function type calculation for single-top production [19]
in that we do not need any fully di↵erential ingredients at NNLO.

modified vertexhadronic tensors (in terms of DIS structure functions: F1, F2, F3)

[Cacciari,Dreyer,Karlberg,Salam,Zanderighi – 1506.02660]

coefficients – functions of Lorentz invariants and loop-integrals  
(encode new physics)

DIS structure functions



NUMERICAL RESULTS

➤ total cross-section dependence on anomalous coupling c6: 

➤ worth noting:  quadratic term is unique (for large c6 deviations from SM are driven by 
quadratic term)
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➤ total cross-section dependence on anomalous coupling c6: 

➤ worth noting:  quadratic term is unique (for large c6 deviations from SM are driven by 
quadratic term)
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Worth noting:  [Degrassi,Giardino,Maltoni,Pagani – 1607.04251]  
 
> for VBF, VH, ggH very similar dependence  
> for ttH linear terms very different – distinguishable curve  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Figure 6. Dependence of ���3 for the relevant production processes at the LHC as a function of
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degenerate with � ⇠ 6. The fact that the degeneracy appears at different values � for
different processes is important in order to be able to lift it.

The results for the decay widths and branching ratios are shown Fig. 7. We plot (left)
�⌃�

3

as a function of � for the decay widths of the relevant modes at the LHC, which
we denote as ���

3

, and we show (right) the analogous quantity (�BR�
3

) for the Branching
Ratios (BRs). The quantity �BR�

3

(i) for the Higgs decay into the final-state i can be
conveniently written as

�BR�
3

(i) =
(� � 1)(C�

1 (i)� C�
tot

1 )

1 + (� � 1)C�
tot

1

, (4.4)

where we have defined C�
tot

1 ⌘ P
j BR

SM
(j)C�

1 (j) and with our input parameters C�
tot

1 =

2.3 · 10�3. The quantity C�
tot

1 , which actually is the C1 term for the total decay width, is
very small since C�

1 (b
¯b) = 0 and b¯b is the dominant decay channel. Note that, although the

H ! gg decay is not phenomenologically relevant, the total decay width does depend on
���

3

(gg), since �gg yields a non-negligible fraction (8.5 %) of �tot.
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NUMERICAL RESULTS - DISTRIBUTIONS (WH)

➤ distributions with a SM baseline and two variations c6=+10 and c6=–10: 

➤ behaviour of the distribution at large-pT(H) / large-M(WH): 
> contributions to these parts are dominated by parts of the phase-space with large- 
> the O6-correction scales as:  

➤ all of the non-trivial modifications at the intermediate pT(H) / intermediate M(WH) 
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NUMERICAL RESULTS - DISTRIBUTIONS (VBF)

➤ distributions with a SM baseline and two variations c6=+10 and c6=–10: 

➤ pT(H) distribution only mildly modified (even for large-pT values one of the gauge boson 
virtualises may be very small + for fixed-pT a range of Q1 and Q2 may be probed) 

➤ when pT(j3) is hard both Q1 and Q2 tend to be hard, increase in magnitude of Q1,Q2 

results in linear modification of the form factors > seen from the ratio to the SM
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HIGGS SELF-COUPLING - ESTIMATION
➤                             :      

ATLAS, LHC Run I:             –15.5 < c6 < +18.1   @95% CL 
ATLAS, HL-LHC(3 ab-1):       –2.3 < c6 <  +7.7    @95% CL 

➤ define signal strengths in standard way: 

➤ performing     fit we obtain at 95% CL: 

➤ CONCLUSION: 
– The indirect probes provide competitive way of measuring the Higgs self-coupling. 
– A comparison of predictions with/without theory uncertainty shows that the theoretical 
uncertainty is not the limiting factor.

pp ! 2H ! 2b2b̄

µF
I =

�I

(�I)SM

BrF

(BrF )SM

�2

–13.6 < c6 < +16.9  [LHC Run I]  
  –7.0 < c6 < +10.9  [HL-LHC, with theory uncert.]  
  –6.2 < c6 <   +9.6  [HL-LHC, no theory uncert.]

[ATLAS-CONF-2015-044]

[ATL-PHYS-PUB-2014-016]



WHY DOES IT MATTER?
➤ if the predictive power is similar to the one of double-Higgs production why bother? 

➤ situation changes when more additional operators considered 
 
 
EXAMPLE:  
> add the following operators (that modify VVH vertex at tree-level): 
 
 
 
 
 
 
 
 
> consider two scenarios: 
    Scenario A: cHW-free,  cW = cB = 0,  c6=0  
    Scenario B: cHW-free,  cW = 2cB = –cHW,  c6=0  
 
 
In scenario A:    R ~ pT(H)^2  
In scenario B:    R ~ const

Tree vs. loop effects in pp→Wh  
Bizoń, & UH, preliminary
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sented in Section 3 and 4, respectively. Our numerical analyses are performed in Sections 5
and 6. We conclude in Section 7. Some technical details of our computations are described
in Appendix A, B, C and D.

2 Preliminaries

New physics can be described in a model-independent way by augmenting the SM La-
grangian LSM by SU(3)C ⇥SU(2)L⇥U(1)Y gauge-invariant higher-dimensional operators.
In our work, we consider the effective Lagrangian
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[Degrande, Fuks, Mawatari, Mimasu, Sanz – 1609.04833]
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robust bounds on each individual coupling.”



WHY DOES IT MATTER?
➤ if the predictive power is similar to the one of double-Higgs production why bother? 

➤ situation changes when more additional operators considered 
 
 
EXAMPLE:  
> assuming each bin of the pT(H) distribution in WH-channel measured with accuracy ~20% 
 
 
 
 
 
 
 

σtotal
pt,H distribution
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[Di Vita, Grojean, Panico, Riembau, Vantalon – 1704.01953]
“We show that a global fit exploiting only single-Higgs inclusive 
data suffers from degeneracies that prevent one from extracting 
robust bounds on each individual coupling.”



ANOTHER STORY: LIGHT-YUKAWAS
➤ extracting charm yukawa coupling is hard, but not hopeless at the HL-LHC 

➤ several strategies proposed 

➤ consider impact of modified charm yukawa on the  
transverse momentum distribution of the Higgs boson

Charm contributions to pp→hj
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Figure 2: Direct (left and center) and indirect (right) contributions to the h → V γ
decay amplitude. The crossed circle in the third diagram denotes the off-shell h → γγ∗

and h → γZ∗ amplitudes, which in the SM arise first at one-loop order.

of an off-shell photon or Z boson produced in a h → γγ∗/γZ∗ transition [10]. We refer to
this as the “indirect” contribution. It involves the hadronic matrix element of a local current
and thus can be expressed in terms of the decay constant fV of the vector meson. The direct
contribution is sensitive to the Yukawa coupling of the Higgs boson to the quarks which make
up the vector meson. We shall find that in the SM the direct and indirect contributions to
the h → V γ decay amplitude interfere destructively. They are of similar size for V = Υ,
while the direct contributions are smaller than the indirect ones by factors of about 0.06 for
V = J/ψ, 0.002 for V = φ, and few times 10−5 for V = ρ0 and ω. The sensitivity to the
Yukawa couplings thus crucially relies on the precision with which the indirect contributions
can be calculated. We will come back to this point below.

The most general parametrization of the h → V γ decay amplitude is

iA(h → V γ) = −
efV
2

[

(

ε∗V · ε∗γ −
q · ε∗V k · ε∗γ

k · q

)

F V
1 − iϵµναβ

kµqνε∗αV ε
∗β
γ

k · q
F V
2

]

, (5)

where both the final-state meson and the photon are transversely polarized. From (5), the
decay rate is obtained as

Γ(h → V γ) =
αf 2

V

8mh

(

∣

∣F V
1

∣

∣

2
+
∣

∣F V
2

∣

∣

2
)

. (6)

Here α = 1/137.036 is the fine-structure constant evaluated at q2 = 0 [22], as appropriate
for a real photon. We choose to normalize the decay amplitude in (5) to the vector-meson
decay constant fV , which is defined in terms of a matrix element of a local vector current.
Since we consider neutral, flavor-diagonal mesons, the definition of the decay constants (and
of other hadronic matrix elements) is complicated by the effects of flavor mixing. In complete
generality, such a neutral meson V can be regarded as a superposition of flavor states |qq̄⟩.
We can thus define flavor-dependent decay constants f q

V via

⟨V (k, ε)| q̄γµq |0⟩ = −if q
VmV ε

∗µ ; q = u, d, s, . . . . (7)

A certain combination of these flavor-specific decay constants can be measured in the leptonic
decay V → e+e−. The corresponding decay amplitude involves the matrix element of the
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FIG. 2. Example diagram that modifies V h production when
the charm-quark Yukawa is enhanced.

The total width: Both ATLAS and CMS give a
model independent bound on the Higgs total width from
the invariant-mass distribution of the h ! 4` and h ! ��
signal. These bounds are limited by the experimental
resolution of approximately 1GeV. Assuming no inter-
ference with the background, the upper limits by AT-
LAS [42] and CMS [43] are

�
total

<

8
><

>:

2.4, 5.0 GeV (CMS, ATLAS) h ! ��

3.4, 2.6 GeV (CMS, ATLAS) h ! 4`

1.7 GeV (CMS) combined h ! ��, 4`

(13)

at 95% CL. This should be compared with the SM predic-
tion of �SM

total

= 4.07 MeV [36] for mh = 125GeV. We use
the above upper bound on the total width to bound the
charm Yukawa by assuming that the entire Higgs width
is saturated by it

2

c BRSM

cc̄ �SM

total

= 1.18 ⇥ 10�42

c GeV < �
total

(14)

with BRSM

cc̄ = 2.9 ⇥ 10�2 . The corresponding upper
bounds at 95% CL from Eq. (13) are

c < 120 (CMS), c < 150 (ATLAS), (15)

where in the case of ATLAS we have used the bound from
h ! 4` and in the case of CMS the combined bound.

Interpretation of h ! J/ �: Very recently, AT-
LAS set the first bound on the exclusive Higgs decay to
J/ � [35]

�BRJ/ � < 33 fb at 95% CL . (16)

Under the assumption of SM Higgs production, this can
be interpreted as a bound of BR(h ! J/ �) < 1.5⇥10�3 .
The partial width of h ! J/ � is given by [44]

�J/ � = 1.42[(1.0 ± 0.017)�

� (0.087 ± 0.012)c]
2 ⇥ 10�8 GeV .

(17)

The dependence on the production mechanism and the
Higgs total width can be canceled to a good approxima-
tion in the ratio between the bound (or measurement in
the future) of the h ! J/ � rate and one of the other
Higgs rate measurements with inclusive production, for

example h ! ZZ⇤ ! 4` . We define

RJ/ ,Z =
�BRJ/ �

�BRZZ⇤
!4`

'
�J/ �

�ZZ⇤
!4`

= 2.79
(� � 0.087c)2

2

V

⇥ 10�2 ,

(18)

where a perfect cancellation of the production is as-
sumed (correct to leading order) and BRSM

ZZ⇤
!4` = 1.26⇥

10�4 [36]. Using Eq. (16) and the ZZ⇤ signal strength
µZZ⇤ = 1.44+0.40

�0.33 [45] we extract

RJ/ ,Z =
�BRJ/ �

µZZ⇤�
SM

BRSM

ZZ⇤
!4`

< 9.3 , (19)

at 95% CL. Combining the last two equations leads to

�210V + 11� < c < 210V + 11� . (20)

This yields the bound c . 220 assuming that � and V

(see discussion below) and also the Higgs decay width to
a Z and two leptons (e.g. h ! Z�⇤ ! 4`) are all close to
their respective SM values.
Global analysis: A global analysis of the Higgs data

leads to an indirect bound on the Higgs total width and
untagged decay width, see e.g.Refs. [46–53]. In the ab-
sence of non-SM production mechanisms, the allowed
range for untagged decays is the leading bound on the
charm Yukawa. For this, we can safely ignore non-SM
V h and VBF-like production enhancements because they
are found to be negligible for c . 50. The allowed range
of V from EW precision data assuming a cuto↵ scale of
3 TeV is V = 1.08±0.07 [50]. This, along with the Higgs
measurement of VBF and gluon fusion in WW ⇤, ZZ⇤,
and ⌧ ⌧̄ final states, results in a much stronger bound on
the total Higgs width than the direct measurement.

Following the analysis of Ref. [26], we consider the cur-
rent available Higgs data from ATLAS [3–5, 45, 54–57],
CMS [6–8, 10, 43, 58–61] and Tevatron [62, 63], extracted
by using Ref. [64], along with the EW data as in Ref. [50].
We find that the 95% CL allowed range for the charm
Yukawa is

c . 6.2 , (21)

where all the Higgs couplings (including h !
WW, ZZ, ��, gg, Z�, bb̄, ⌧ ⌧̄) were allowed to vary from
their SM values. Allowing the up-quark Yukawa also to
vary does not change this bound. Note that the bound
in Eq. (21) depends on the global fit assumption, in par-
ticular the LEP constraints, and as such carries model
dependence.

The ratio between the on-shell and the o↵-shell h !
ZZ(⇤) rates can probe the Higgs width [65]. The current
bounds are at the order of �

total

/�SM

total

. 5.4 , 7.7 from
CMS [66] and ATLAS [67], respectively. This corre-
sponds to c . 14 , 16. However, as pointed out in

�c yc

  

Contributions and their scaling
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ANOTHER STORY: LIGHT-YUKAWAS
➤ pT(H) distribution evaluated at NLO QCD using MCFM-8.0 

➤ log(pT(H)/mH) resummed at NNLL

Normalized pT,h spectra at 8 TeV
Bishara, UH, Monni & Re, 1606.09253
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modes can be studied by means of the di↵erential spec-
tra of the Higgs boson and jets transverse momentum
(henceforth generically denoted by pT ) in the moderate-
pT region. In fact, the double logarithms can be nu-
merically large for transverse momenta pT . mh/2.
This partly compensates for the quadratic mass suppres-
sion m2

Q/m
2
h appearing in (1). As a result of the loga-

rithmic sensitivity and of the 2
Q dependence in quark-

initiated production, one expects deviations of several
percent in the pT spectra in Higgs production for O(1)
modifications of Q. In the SM, the light-quark e↵ects
are small. Specifically, in comparison to the Higgs ef-
fective field theory (HEFT) prediction, in gg ! hj the
bottom contribution has an e↵ect of around �5% on the
di↵erential distributions while the impact of the charm
quark is at the level of �1%. Likewise, the combined
gQ ! hQ, QQ̄ ! hg channels (with Q = b, c) lead to a
shift of roughly 2%. Precision measurements of the Higgs
distributions for moderate pT values combined with pre-
cision calculations of these observables are thus needed
to probe O(1) deviations in yb and yc. Achieving such
an accuracy is both a theoretical and experimental chal-
lenge, but it seems possible in view of foreseen advances
in higher-order calculations and the large statistics ex-
pected at future LHC runs.

Theoretical framework. The goal of our work is
to explore the sensitivity of the Higgs-boson (pT,h) and
leading-jet (pT,j) transverse momentum distributions in
inclusive Higgs production to simultaneous modifications
of the light Yukawa couplings. We consider final states
where the Higgs boson decays into a pair of gauge bosons.
To be insensitive to the variations of the corresponding
branching ratios due to light Yukawa modifications, we
normalise the distributions to the inclusive cross section
in the considered channels. The e↵ect on branching ratios
can be included in the context of a global analysis, jointly
with the method proposed here.

The gg ! hj channel has been analysed in depth in
the HEFT framework where one integrates out the domi-
nant top-quark loops and neglects the contributions from
lighter quarks. While in this approximation the two spec-
tra and the total cross section have been studied exten-
sively, the e↵ect of lighter quarks is not yet known with
the same precision for pT . mh/2. Within the SM, the
LO distribution for this process has been derived long
ago [17, 19], and the next-to-leading-order (NLO) cor-
rections to the total cross section have been calculated
in [20–24]. In the context of analytic resummations of
the Sudakov logarithms ln (pT /mh), the inclusion of mass
corrections to the HEFT has been studied both for the
pT,h and pT,j distributions [25–27]. More recently, the
first resummations of some of the leading logarithms (1)
have been accomplished both in the abelian [28] and
in the high-energy [29] limit. The reactions gQ !
hQ, QQ̄ ! hg have been computed at NLO [30, 31] in
the five-flavour scheme that we employ here, and the re-
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Figure 1: The normalised pT,h spectrum of inclusive Higgs
production at

p
s = 8TeV divided by the SM prediction for

di↵erent values of c. Only c is modified, while the remain-
ing Yukawa couplings are kept at their SM values.

summation of the logarithms ln (pT,h/mh) in QQ̄ ! h
has also been performed up to next-to-next-to-leading-
logarithmic (NNLL) order [32].
In the case of gg ! hj, we generate the LO spectra

with MG5aMC@NLO [33]. We also include NLO corrections
to the spectrum in the HEFT [34–36] using MCFM [37].
The total cross sections for inclusive Higgs production are
obtained from HIGLU [38], taking into account the next-
to-next-to-leading order corrections in the HEFT [39–
41]. Sudakov logarithms ln (pT /mh) are resummed up
to NNLL order both for pT,h [42–44] and pT,j [45–47],
treating mass corrections following [27]. The latter ef-
fects will be significant, once the spectra have been pre-
cisely measured down to pT values of O(5GeV). The
gQ ! hQ, QQ̄ ! hg contributions to the distributions
are calculated at NLO with MG5aMC@NLO [48] and cross-
checked against MCFM. The obtained events are showered
with PYTHIA 8.2 [49] and jets are reconstructed with the
anti-kt algorithm [50] as implemented in FastJet [51] us-
ing R = 0.4 as a radius parameter.

Our default choice for the renormalisation (µR), fac-
torisation (µF ) and the resummation (QR, present in the
gg ! hj case) scales is mh/2. Perturbative uncertainties
are estimated by varying µR, µF by a factor of two in
either direction while keeping 1/2  µR/µF  2. In ad-
dition, for the gg ! hj channel, we vary QR by a factor
of two while keeping µR = µF = mh/2. The final to-
tal theoretical errors are then obtained by combining the
scale uncertainties in quadrature with a ±2% relative er-
ror associated with PDFs and ↵s for the normalised dis-
tributions. We stress that the normalised distributions
used in this study are less sensitive to PDFs and ↵s vari-

O(1) deviations in κc lead to few % effects in pT,h distribution
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by CMS [66] show that the residual experimental sys-
tematic uncertainty will be reduced to the level of a few
percent at the HL-LHC. Therefore, it is natural to study
the prospects of the method in future scenarios assuming
a reduced theory uncertainty given that this error may
become the limiting factor.

In order to investigate the future prospects of our
method, we need a more precise assessment of the non-
perturbative corrections to the pT,h distribution. To esti-
mate these e↵ects, we used MG5aMC@NLO and POWHEG [67]
showered with Pythia 8.2 and found that the correc-
tions can reach up to 2% in the relevant pT,h region.
This finding agrees with recent analytic studies of non-
perturbative corrections to pT,h (see e.g. [68]). With im-
proved perturbative calculations, a few-percent accuracy
in this observable will therefore be reachable.

We study two benchmark cases. Our LHC Run II sce-
nario employs 0.3 ab�1 of integrated luminosity and as-
sumes a systematic error of ±3% on the experimental
side and a total theoretical uncertainty of ±5%. This
means that we envision that the non-statistical uncer-
tainties present at LHC Run I can be halved in the
coming years, which seems plausible. Our HL-LHC sce-
nario instead uses 3 ab�1 of data and foresees a reduc-
tion of both systematic and theoretical errors by an-
other factor of two, leading to uncertainties of ±1.5%
and ±2.5%, respectively. The last scenario is illustrative
of the reach that can be achieved with improved the-
ory uncertainties. Alternative theory scenarios are dis-
cussed in the appendix. In both benchmarks, we employp
s = 13TeV and the PDF4LHC15 nnlo mc set [69–72],

consider the range pT 2 [0, 100]GeV in bins of 5GeV,
and take into account h ! ��, h ! ZZ⇤ ! 4` and
h ! WW ⇤ ! 2`2⌫`. We assume that future measure-
ments will be centred around the SM predictions. These
channels sum to a branching ratio of 1.2%, but given the
large amount of data the statistical errors per bin will
be at the ±2% (±1%) level in our LHC Run II (HL-
LHC) scenario. We model the correlation matrix as in
the 8TeV case.

The results of our �2 fits are presented in Figure 3,
showing the constraints in the c–b plane. The un-
shaded contours refer to the LHC Run II scenario with
the dot-dashed (dotted) lines corresponding to ��2 =
2.3 (5.99). Analogously, the shaded contours with the
solid (dashed) lines refer to the HL-LHC. By profiling
over b, we find in the LHC Run II scenario the follow-
ing 95% CL bound on the yc modifications

c 2 [�1.4, 3.8] (LHC Run II) , (3)

while the corresponding HL-LHC bound reads

c 2 [�0.6, 3.0] (HL-LHC) . (4)

These limits compare well not only with the projected
reach of other proposed strategies but also have the nice

×
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HL-LHC
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Figure 3: Projected future constraints in the c–b plane.
The SM point is indicated by the black cross. The figure
shows our projections for the LHC Run II (HL-LHC) with
0.3 ab�1 (3 ab�1) of integrated luminosity at

p
s = 13TeV.

The remaining assumptions entering our future predictions
are detailed in the main text.

feature that they are controlled by the size of systematic
uncertainties that can be reached in the future. Also, at
future LHC runs our method will allow one to set relevant
bounds on the modifications of yb. For instance, in the
HL-HLC scenario we obtain b 2 [0.7, 1.6] at 95% CL.
Finally, we also explored the possibility of constrain-

ing modifications of the strange Yukawa coupling. Under
the assumption that yb is SM-like but profiling over c,
we find that at the HL-LHC one should have a sensitiv-
ity to ys values of around 30 times the SM expectation.
Measurements of exclusive h ! �� decays are expected
to have a reach that is weaker than this by a factor of
order 100 [11].
Conclusions. In this letter, we have demonstrated

that the normalised pT distribution of the Higgs or of
jets recoiling against it, provide sensitive probes of the
bottom, charm and strange Yukawa couplings. Our new
proposal takes advantage of the fact that the di↵eren-
tial Higgs plus jets cross section receives contributions
from the channels gg ! hj, gQ ! hQ, QQ̄ ! hg
that feature two di↵erent functional dependences on Q.
We have shown that in the kinematic region where the
transverse momentum p

?

of emissions is larger than the
relevant quark mass mQ, but smaller than the Higgs
mass mh, both e↵ects can be phenomenologically rele-
vant and thus their interplay results in an enhanced sen-
sitivity to Q. This feature allows one to obtain unique
constraints on yb, yc and ys at future LHC runs.
We derived constraints in the c–b plane that arise

from LHC Run I data and provided sensitivity projec-
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FUTURE WORK
➤ take a look at double-Higgs production channel: draw a two-loop diagram with modified quartic-

coupling: 

➤ decompose the amplitude into form-factors (F1, F2): 

➤ evaluation of the two-loop integrals now possible using pySecDec tool 

➤ evaluate the change in cross-section due to presence of modified quartic-coupling…

�

�
�

��
�
�

�

�

�

������ �

�
�

��
�
�

�

�

�

������

�

�

�

�
�

� �

�

� �

������

� � → � �

modified quartic-coupling

2

where Ref. [8] contains corrections up to ⇢

max = 6
at NLO, and ⇢

max = 2 for the soft-virtual part
at NNLO. In Ref. [8] it is also demonstrated that
the sign of the finite top-quark mass corrections de-
pends on whether the re-weighting factor is applied
at di↵erential level, i.e. before the integration over
the partonic center of mass energy, or at total cross
section level.

All these results suggest that the uncertainty on the cross
section due to top-quark mass e↵ects is ±10% at NLO.

In this letter we present results for the total cross sec-
tion and the Higgs boson pair invariant mass distribution
for the process gg ! hh at NLO, including the full top-
quark mass dependence. The analytically unknown two-
loop integrals have been calculated numerically with the
program SecDec [18–20]. Our results settle the long-
standing question about the uncertainty related to the
various approximations which have been calculated so
far.

NLO CALCULATION

Amplitude structure

At any loop order, the amplitude for the process
g(p1) + g(p2) ! h(p3) + h(p4) can be decomposed into
form factors as

Mab = �ab✏
µ
1 ✏

⌫
2 Mµ⌫ (1)

Mµ⌫ = F1(ŝ, t̂, m
2
h, m

2
t , D) T

µ⌫
1 + F2(ŝ, t̂, m

2
h, m

2
t , D) T

µ⌫
2 ,

where ✏

µ
1 , ✏

⌫
2 are the gluon polarization vectors, a, b are

colour indices, and

ŝ = (p1 + p2)
2
, t̂ = (p1 � p3)

2
, û = (p2 � p3)

2
. (2)

The decomposition into tensors carrying the Lorentz
structure is not unique. With the following definitions

T

µ⌫
1 = g

µ⌫ � p

⌫
1 p

µ
2

p1 · p2
, (3)

T

µ⌫
2 = g

µ⌫ +
1

p

2
T (p1 · p2)

T̃

µ⌫
2 ,

T̃

µ⌫
2 =

�

m

2
h p

⌫
1 p

µ
2 � 2 (p1 · p3) p

⌫
3 p

µ
2 � 2 (p2 · p3) p

µ
3 p

⌫
1

+2 (p1 · p2) p

⌫
3 p

µ
3} ,

where p

2
T = (t̂û � m

4
h)/ŝ ,

T1 · T2 = D � 4 , T1 · T1 = T2 · T2 = D � 2 ,

we have [1]

M++ = M�� = �F1 , M+� = M�+ = �F2 . (4)

At leading order, we can further split F1 into a triangle
diagram and a box diagram contribution, F1 = F4 +F⇤.

As the form factor F4 only contains the triangle dia-
grams, which have no angular momentum dependence,
it can be attributed entirely to an s-wave contribution.
The form factor F2 contains only box contributions. At
NLO in QCD, the feature persists that only F1 contains
diagrams involving the triple Higgs coupling. The form
factors F1 and F2 can be attributed to the spin-0 and
spin-2 states of the scattering amplitude, respectively.

We construct projectors P

µ⌫
j such that

P

µ⌫
1 Mµ⌫ = F1(ŝ, t̂, m

2
h, m

2
t , D) ,

P

µ⌫
2 Mµ⌫ = F2(ŝ, t̂, m

2
h, m

2
t , D) .

For the projectors in D dimensions we can use as a
basis the tensors T

µ⌫
i defined in Eqs. (3). The projectors

can be written as

P

µ⌫
1 =

1

4

D � 2

D � 3
T

µ⌫
1 � 1

4

D � 4

D � 3
T

µ⌫
2 , (5)

P

µ⌫
2 = �1

4

D � 4

D � 3
T

µ⌫
1 +

1

4

D � 2

D � 3
T

µ⌫
2 . (6)

LO cross section

The partonic leading order cross section can be written
as

�̂

LO =
1

29
⇡ ŝ

2

Z t̂+

t̂�

dt̂

n

|F1|2 + |F2|2
o

, (7)

where

t̂

± = m

2
h � ŝ

2
(1 ⌥ �h) , �

2
h = 1 � 4

m

2
h

ŝ

. (8)

The leading order form factors Fi with full mass depen-
dence can be found e.g. in Refs. [1, 2].

For the total cross section, we also have to integrate
over the parton distribution functions, so we have

�

LO =

Z 1

⌧0

d⌧

dLgg

d⌧

�̂

LO(ŝ = ⌧s) . (9)

The luminosity function is defined as

dLij

d⌧

=
X

ij

Z 1

⌧

dx

x

fi(x, µF )fj

✓

⌧

x

, µF

◆

, (10)

where s is the square of the hadronic centre of mass en-
ergy, ⌧0 = 4m

2
h/s, µF is the factorization scale and fi

are the parton distribution functions (PDFs) for parton
type i.

NLO cross section

The NLO cross section is composed of various parts,
which we will discuss separately in the following:

�

NLO(pp ! hh) = �

LO + �

virt +
X

i,j2{g,q,q̄}

�

real
ij (11)
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CONCLUSIONS
➤ loop-induced probes might provide a complimentary tool for putting bounds on the Higgs 

boson self-couplings 

➤ examples considered so far provide bounds which are competitive with other strategies 
(trilinear Higgs coupling, charm yukawa coupling) 

➤ many interesting paths to explore…
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compatibility of the LHC measurements with the SM and to interpret the Higgs data in

the context of BSM searches.

To obtain the current constraints on c̄6 we use the LHC Run I combination of the

ATLAS and CMS measurements of the Higgs boson production and decay rates [1]. In the

case of the vector boson mediated production processes the relevant µF
I parameters read

µbb̄
V = 0.65+0.30

−0.29 , µWW
V = 1.38+0.41

−0.37 ,

µτ+τ−
V = 1.12+0.37

−0.35 , µZZ
V = 0.48+1.37

−0.91 , µγγ
V = 1.05+0.44

−0.41 ,
(7.8)

where the subscript V indicates that the above numbers correspond to a combination of

the V h and VBF channels. These numbers have been obtained from a 10-parameter fit to

each of the five decay channels and can be found in the upper part of table 13 of [1]. The

quoted uncertainties take into account the experimental uncertainty in the measurement

of µF
I as well as the SM theory error associated to each particular channel. In the following

we will employ this framework to set limits on the Wilson coefficient c̄6.

Using our predictions for σI and BrF presented in sections 7.1 and 7.2 we then can

calculate the signal strengths µF
I and compare them to experiment. Including the errors

quoted in (7.8) but neglecting theoretical uncertainties associated to missing λ terms, we

obtain the limit

c̄6 ∈ [−13.6, 16.9] , (LHC Run I) , (7.9)

by performing a χ2 fit with ∆χ2 = 3.84 which corresponds to a 95% CL for a Gaussian

distribution. This constraint is somewhat weaker than both the bound (7.5) as well as the

limit of c̄6 ∈ [−11.9, 10.3] that follows from a combination of the gg → h and h → γγ

channels [30, 40]. Notice that our bound (7.9) compares well with the current limits on

the modifications of the trilinear Higgs coupling reported in [31].

The experimental prospects for measuring the Higgs boson signal strengths (7.7) in

the vector boson mediated production modes at future LHC runs has been studied by both

the ATLAS and CMS collaborations [75–80]. To estimate the sensitivity on c̄6 that can be

reached at the HL-LHC with 3 ab−1 of data, we study two benchmark scenarios based on

the results reported in the fourth and fifth column of table 1 of [77].4 Our first scenario

includes the current theory uncertainties and reads

∆µbb̄
Wh = ±37% , ∆µγγ

Wh = ±19% ,

∆µbb̄
Zh = ±14% , ∆µγγ

Zh = ±28% , ∆µZZ
V h = ±13% ,

∆µWW
VBF = ±15% , ∆µτ+τ−

VBF = ±19% , ∆µZZ
VBF = ±21% , ∆µγγ

VBF = ±22% ,

(7.10)

whereas in the second benchmark scenario theoretical errors are not taken into account.

4The inclusion of further channels such as for instance pp → V h (h → τ+τ−) [81] or technical de-

velopments like extended jet tracking [82] are expected to result in an improved precision on the signals

strengths µF
I . In order to obtain a conservative future limit on the Wilson coefficient c̄6 we do not consider

such improvements.
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(7.8)
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VBF = ±21% , ∆µγγ

VBF = ±22% ,

(7.10)
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I . In order to obtain a conservative future limit on the Wilson coefficient c̄6 we do not consider
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The corresponding relative uncertainties are

∆µbb̄
Wh = ±36% , ∆µγγ

Wh = ±17% ,

∆µbb̄
Zh = ±13% , ∆µγγ

Zh = ±27% , ∆µZZ
V h = ±12% ,

∆µWW
VBF = ±9% , ∆µτ+τ−

VBF = ±15% , ∆µZZ
VBF = ±16% , ∆µγγ

VBF = ±15% .

(7.11)

Notice that compared to the CMS projections [79] our HL-LHC benchmark uncertain-

ties ∆µF
I are comparable but in all cases slightly larger, irrespectively of whether or not

theory errors are included in the final numbers.

Assuming that the central values of the future HL-LHC measurements coincide in

every channel with the predictions of the SM, we obtain the following 95% CL limit on the

Wilson coefficient of O6 from our χ2 fit

c̄6 ∈ [−7.0, 10.9] , (HL-LHC, all uncertainties) , (7.12)

when all uncertainties are included. If theoretical errors are neglected, we instead find

c̄6 ∈ [−6.2, 9.6] , (HL-LHC, no theory uncertainty) . (7.13)

These limits improve on the current constraint (7.9) by a factor of around 1.7 to 2, depend-

ing on how theory errors are treated. They should be compared to the determination (7.6)

of c̄6 in double-Higgs production. We see that with the full HL-LHC data set the indirect

determination of c̄6 through measurements of pp → V h and pp → jjh should allow to

test shifts in the trilinear Higgs coupling that are at the same level than the more direct

extraction via pp → hh. A comparison of (7.12) and (7.13) also shows that theoretical

uncertainties are not a limiting factor for the extraction of c̄6 through measurements of V h

and VBF Higgs production.

We finally add that future LHC combinations of the cross section measurements of

pp → V h and pp → jjh with those of gg → h [30, 31] and pp → tt̄h [31] are expected to

further strengthen the indirect constraints on the Wilson coefficient of the operator O6.

Differential information from single Higgs production and/or decays may also be used to

improve the sensitivity on c̄6. Making the latter statement more precise would require

a MVA of the prospects to measure V h and VBF Higgs distributions in the HL-LHC

environment building on the results presented in section 7.3. Such a study is however

beyond the scope of this article.

8 Conclusions

The main goal of this work was to constrain possible deviations in the h3 coupling using

measurements of V h and VBF Higgs production in pp collisions. In order to keep the

entire discussion model independent, we have adopted the SMEFT framework, in which the

effects of new heavy particles are encoded in the Wilson coefficients of higher-dimensional

operators. Within the SMEFT, we have calculated the O(λ) corrections to the pp → V h

and pp → jjh amplitudes that arise from insertions of the operator O6 = −λ
(
H†H

)3
into
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