

Jet Clustering Dependence in VBF

Michael Rauch | Workshop "Higgs plus dijets at the LHC", Jan 2018

INSTITUTE FOR THEORETICAL PHYSICS

www.kit.edu

Event Topology

topology of VBF shows distinct signature

- two so-called tagging jets in forward direction
- reduced jet activity in central direction
- leptonic decay products typically between the tagging jets
- \rightarrow two-sided deep-inelastic scattering

(LO, $\sqrt{S} = 13$ TeV)

VBF-*Hjj*: no cuts; (VBF- W^+W^+jj : $p_{T,j} > 30$ GeV, $|y_j| < 4.5$ and $R_{jj} > 0.4$)

Event Topology

topology of VBF shows distinct signature

- two so-called tagging jets in forward direction
- reduced jet activity in central direction
- leptonic decay products typically between the tagging jets
- \rightarrow two-sided deep-inelastic scattering

- process finite without any cuts¹
- despite having jets already at leading order
- also true for s-channel Higgsstrahlung contribution¹

¹ (when neglecting contributions from loop-induced $H\gamma\gamma/HZ\gamma$ couplings)

Jet Definition

hard parton (single quark or gluon)

parton shower, hadronization (mostly) narrow cone of hadrons

 $\rightarrow \text{jets}$

- $\leftrightarrow \text{ large-angle emissions, underlying event}$
- N^xLO calculation
 - \rightarrow real emissions describe first step in evolution
- need algorithm to cluster hadrons into jets
 - infrared-safe
 - sequential
- mostly relevant nowadays: k_T family

two parameters:

• jet radius R
• exponent
$$n = \begin{cases} 1 & k_T, \\ 0 & \text{Cambridge/Aachen (C/A)}, \\ -1 & \text{anti-}k_T. \end{cases}$$

k₇-Family Jet Algorithms

Definition:

define measure for collinearity

$$y_{ij} = \frac{R_{ij}}{R} \min\left(p_{T,i}^n, p_{T,j}^n\right), \qquad \qquad y_{iB} = p_{T,i}^n$$

put all final-state partons as jet candidates

- for all combinations $(i, j \neq i)$ of jet candidates:
 - find minimum $y^{\min} = \min_{i,j} (y_{ij}, y_{iB})$
 - if $y^{\min} = y_{ij}$, combine *i* and *j* to new jet candidate with $k_{ij} = k_i + k_j$
 - if $y^{\min} = y_{iB}$, move candidate *i* to list of jets
- repeat last item until candidate list empty

Typical shapes for IR and collinear safe algorithms

Effects of Jet Algorithm

processes with single final-state parton:

- LO: no effect (parton→jet)
- NLO: R determines whether both (real-emission) partons clustered, n irrelevant
- NNLO++: clustering determined by R and n

processes with multiple final-state partons:

- LO: R acts as cut: $R_{ij} > R$, n irrelevant
- NLO++: clustering determined by R and n

VBF processes:

- two final-state partons at LO
 - \rightarrow expect multi-parton case
- ↔ typical VBF cuts require large rapidity separation between tagging jets
- $\blacksquare \rightarrow \text{LO}$ partons can never be clustered
- $\blacksquare \rightarrow$ single-parton case for both sides

Higher-order Corrections to Inclusive Process

- NNLO QCD correction to VBF-H production first calculated in structure-function approach
- \bullet \Rightarrow inclusive cross section (no cuts on jets)
- \bullet \leftrightarrow no interference effects between upper and lower line
- $\blacksquare \leftrightarrow \text{phase-space-} \text{ and colour-suppressed} \rightarrow \text{small}$
- recently also N³LO QCD calculation available

Results:

	$\sigma^{(no cuts)}$ [pb]	$\sigma/\sigma^{\rm NLO}$
LO	$4.099^{+0.051}_{-0.067}$	1.032
NLO	$3.970^{+0.025}_{-0.023}$	1
NNLO	$3.932 \substack{+0.015 \\ -0.010}$	0.990
N3LO	$3.928 \substack{+0.005 \\ -0.001}$	0.989

- small corrections beyond NLO
- mostly reduction of scale uncertainties

[Bolzoni, Maltoni, Moch, Zaro]

[Dreyer, Karlberg]

From Inclusive to Differential NNLO Corrections

Projection-to-Born method

[Cacciari, Dreyer, Karlberg, Salam, Zanderighi]

- structure-function approach contains real emission in integrated-out form
- use VBF-*H* + 3 jets calculation to generate real-emission structure
- events + corresponding counter-events, which subtract from inclusive result
- lacksquare ightarrow differential calculation

NNLO QCD corrections to VBF-Higgs

VBF-Higgs production in NNLO QCD

[Cacciari, Dreyer, Karlberg, Salam, Zanderighi] Karlsruhe

$\sigma^{(\rm no\ cuts)}$ [pb]	$\sigma/\sigma^{\rm NLO}$		
$4.032^{+0.057}_{-0.069}$	1.026		
$3.929 {}^{+0.024}_{-0.023}$	1		
$3.888^{+0.016}_{-0.012}$	0.990		
$\sigma^{\rm (VBF\ cuts)}$ [pb]	$\sigma/\sigma^{\rm NLO}$		
$0.957 {}^{+0.066}_{-0.059}$	1.092		
$0.876 {}^{+0.008}_{-0.018}$	1		
$0.826 {}^{+0.013}_{-0.014}$	0.943		
central scale:			
$M_{\rm H}$ $(M_{\rm H})^2$			
$\mu_0^{c}(p_{T,H}) = \frac{m_H}{2} \sqrt{\left(\frac{m_H}{2}\right)} + p_{T,H}^2$			
	$ \begin{split} & \sigma^{(\text{no cuts})} \text{ [pb]} \\ & 4.032 \stackrel{+0.057}{_{-0.069}} \\ & 3.929 \stackrel{+0.024}{_{-0.024}} \\ & 3.888 \stackrel{+0.012}{_{-0.012}} \\ & \sigma^{(\text{VBF cuts})} \text{ [pb]} \\ & 0.957 \stackrel{+0.066}{_{-0.059}} \\ & 0.876 \stackrel{+0.018}{_{-0.018}} \\ & 0.826 \stackrel{+0.013}{_{-0.014}} \\ & \text{le:} \\ & \text{e} \\ & \frac{M_H}{2} \sqrt{\left(\frac{M_H}{2}\right)^2} \end{split} $		

jets: anti-
$$k_T$$
, $R = 0.4$,
 $p_{T,j} > 25$ GeV, $|y_j| < 4.5$
VBF cuts: $m_{jj} > 600$ GeV,
 $\Delta y_{jj} > 4.5$, $y_{j1} \cdot y_{j2} < 0$

tiny corrections to inclusive cross section

■ significant (O(-10%)) corrections in VBF region

Conversion between Different Jet Clusterings

- in NNLO calculation fixed choice of jet-clustering parameters (*R*, *n*)
- ↔ no dependence at LO
 → two-loop contributions unaffected
- \Rightarrow *H* + 3 partons process sufficient to convert between different values

[MR, Zeppenfeld]

$$d\sigma_{Hjj}^{\text{NNLO}}(R,n) = d\sigma_{Hjj}^{\text{NNLO}}(R=0.4, n=-1)$$

$$-d\sigma_{H3+}^{\text{NLO}}(R=0.4, n=-1) + d\sigma_{H3+}^{\text{NLO}}(R, n)$$

$$=\Delta(R,n)$$

- → subtract one-loop single-real and double real contributions at given clustering parameters
- $\blacksquare \rightarrow add$ same contributions at new clustering parameters
- requires using same values of cuts, scales, PDFs, etc.

Verification at NLO QCD

Verification:

apply to NLO QCD calculation

$$\rightarrow \qquad \sigma_{Hjj}^{\mathsf{NLO}}(R) = \sigma_{Hjj}^{\mathsf{NLO}}(R=0.4) - \sigma_{H3+}^{\mathsf{LO}}(R=0.4) + \sigma_{H3+}^{\mathsf{LO}}(R)$$

 \leftrightarrow compare with NLO calculation directly evaluated at different R

 \rightarrow excellent agreement

Integrated NNLO Cross Section

Repeat same procedure based on NNLO result

$$\sigma_{\text{NNLO}}(\textit{R},\textit{n}) = \sigma_{\text{NNLO}}(\textit{R}_{\text{ref}},\textit{n}_{\text{ref}}) + \sigma_{\textit{Hjjj} \text{ NLO}}(\textit{R},\textit{n}) - \sigma_{\textit{Hjjj} \text{ NLO}}(\textit{R}_{\text{ref}},\textit{n}_{\text{ref}})$$

[MR, Zeppenfeld; using NNLO QCD result from Cacciari et al.]

- band: uncertainty from scale variation
- small cone misses part of the jet energy
 - \Rightarrow smaller m_{jj}
 - \Rightarrow less events with $m_{jj} > 600 \text{ GeV}$

Fixed Integrated NNLO Cross Section

[thanks to Alexander for updated NNLO result]

- matching point stays at R = 1.0
- slope of NNLO *R*-dependence reduced
- scale-variation overlap over larger R range

Jets at HERA

[Kauer, Reina, Repond, Zeppenfeld]

energy flow in DIS jets at HERA

- differential E_T-distribution inside jet cone (ZEUS: black dots)
- Energy flow significantly smaller for NLO (max. 2 partons, red) than for NNLO (up to 3 partons, blue)

Karlsruhe Institute of Technology

 \rightarrow look at differential distributions

Transverse momentum of the Higgs boson

- good agreement between NLO and NNLO calculation when using R = 1.0 (matching point between NLO and NNLO calculation)
- influence of exponent $n(k_T, C/A, anti-k_T)$ small

Transverse momentum of second jet

again good agreement between NLO and NNLO calculation for R = 1.0

Transverse momentum of leading jet

• overall good agreement between NLO and NNLO calculation for R = 1.0

some remaining effects O(5%) for small transverse momenta

Rapidity difference between two tagging jets

• again good agreement with R = 1.0 for smaller values $\Delta y_{ii} \lesssim 7$

• cannot explain deviations at large Δy_{ii} values

Conclusions

- significant reduction of cross section seen for NNLO calculation of VBF-Hjj with VBF cuts w.r.t. NLO
- $\blacksquare \leftrightarrow$ not present in inclusive cross sections
- can study jet clustering dependence using NLO calculation of VBF-H + 3 partons
- differences reduced when using larger R value
 - R = 1.0 as matching value determined from integrated cross section
 - some distributions reproduced well (p_{T,H}, p_{T,j2})
 - remaining differences for others $(p_{T,j1}, \Delta y_{jj})$ (\leftrightarrow impact of H + 3 jets bug?)
- \rightarrow Jet shape dependence intrinsic effect for all processes with jets at LO
- \rightarrow should be taken into account as uncertainty

NNLO QCD corrections to VBF-Higgs

VBF-Higgs production in NNLO QCD

[Cacciari, Dreyer, Karlberg, Salam, Zanderighi] Karlsruhe Institute of Te

NNLO QCD corrections to VBF-Higgs

VBF-Higgs production in NNLO QCD

[Cacciari, Dreyer, Karlberg, Salam, Zanderighi] Karlsruhe Institute of

Fixed Integrated NNLO Cross Section

M. Rauch – Jet Clustering Dependence in VBF