HepData for BSM reinterpretation of LHC data

Andy Buckley, University of Glasgow HepData Advisory Meeting, 24 Nov 2017

Intro

- Quantity and quality of HepData content from LHC has been steadily improving – including ad hoc "auxiliary data"
- BSM pheno community very happy about this vision of an automated limit re-setting toolchain with comprehensive data coverage
- ▶ Include both "SM measurements" & dedicated BSM search data
- Primary data faithfully recorded, modulo format details. Issue is with secondary data:
 - (MC) background estimates
 - Correlation data
- All data needs to "automatically" flow from experiments, through HepData, and into analysis tools
 ⇒ standardise formats and conventions for data & aux data

Intro

- Quantity and quality of HepData content from LHC has been steadily improving – including ad hoc "auxiliary data"
- BSM pheno community very happy about this vision of an automated limit re-setting toolchain with comprehensive data coverage
- ▶ Include both "SM measurements" & dedicated BSM search data
- Primary data faithfully recorded, modulo format details. Issue is with secondary data:
 - (MC) background estimates
 - Correlation data
- All data needs to "automatically" flow from experiments, through HepData, and into analysis tools
 ⇒ standardise formats and conventions for data & aux data
- ▶ Frames a potential work-plan to include in funding application

Correlations in fits/limit setting

Many types of correlation:

- Between bins/SRs, introduced by experimental/theory systematics
- Between bins/analyses, introduced by sharing events (or normalisation)
- Between systematic (nuisance) params, induced by profile fitting

Correlations in fits/limit setting

Many types of correlation:

- Between bins/SRs, introduced by experimental/theory systematics
- Between bins/analyses, introduced by sharing events (or normalisation)
- Between systematic (nuisance) params, induced by profile fitting

Possible approaches to providing this information:

- ▶ full likelihood expression, e.g. HistFactory demo 🖒
- approximate: express as independent error sources, correlated across bins — extensible
- approximate: simplified likelihoods: drop connection to error sources, bkg systs only, express as (symm) bin covariance Actively used by CMS: https://cds.cern.ch/record/2242860

Correlations in fits/limit setting

Many types of correlation:

- Between bins/SRs, introduced by experimental/theory systematics
- Between bins/analyses, introduced by sharing events (or normalisation)
- Between systematic (nuisance) params, induced by profile fitting

Possible approaches to providing this information:

- ▶ full likelihood expression, e.g. HistFactory demo 🖒
- approximate: express as independent error sources, correlated across bins — extensible
- approximate: simplified likelihoods: drop connection to error sources, bkg systs only, express as (symm) bin covariance Actively used by CMS: https://cds.cern.ch/record/2242860

Not 100% clear that correlations are necessary, but without them there will always be questions of whether an analysis was too optimistic or conservative

Correlation formats: error sources vs. bin covariance

CMS 0ℓ cov matrix – note log-scale!

Error breakdown in a HepData record NB. normal in *Standard Model* analyses

RE	P P> JETS
COS PHI	TEEC
-10.96	10.5165 ±0.00779481 stat +0.013337 sys.jesNp1 +0.0335544 sys.jesNp2 +71 more errors Show all
-0.96 - -0.92	0.716955 ±0.00468718 tat =4.00187000 9ys_jestip1 =4.00168822 9ys_jestip2 = 71 more errors Show all
-0.92 - -0.88	0.322052 ±0.00239636 tat +0.00154137 yr,jethp1 +0.00015441 yr,jethp2 +71 more errors Show all

SL originally formalised as symm covariance Simple to use: $L(\mu, \vec{\theta}) = \prod_i \text{Pois}(n_i, \mu, \vec{\theta}) \cdot \text{Gaus}(\vec{\theta}, C)$ Dimensionality of cov fixed: uniform approach, scales well. But limited to symmetric errs and no correlations between analyses.

Correlation formats: error sources vs. bin covariance

CMS 0ℓ cov matrix – note log-scale!

Error breakdown in a HepData record NB. normal in *Standard Model* analyses

RE	P P> JETS
COS PHI	TEEC
-10.96	10.5165 ±0.00779481 stat +0.0117651 sys.jesNp1 +0.0034308 sys.jesNp2 + 71 more errors Show all
-0.96 - -0.92	0.716955 20.00468718 tat -0.0011100 gr_jethp1 -0.0010020 gr_jethp2 +71 more errors Show all
-0.92 - -0.88	0.322052 ±0.00239638 1841 *********************************

SL originally formalised as symm covariance Simple to use: $L(\mu, \vec{\theta}) = \prod_i \text{Pois}(n_i, \mu, \vec{\theta}) \cdot \text{Gaus}(\vec{\theta}, C)$ Dimensionality of cov fixed: uniform approach, scales well. But limited to symmetric errs and no correlations between analyses.

HepData doesn't understand datasets semantics: would need "link" metadata to reliably connect correlation datasets to primary datasets

Correlation formats: error sources vs. bin covariance

CMS 0ℓ cov matrix – note log-scale!

Error breakdown in a HepData record NB. normal in *Standard Model* analyses

RE	P P> JETS
COS PHI	TEEC
-10.96	10.5165 ±0.00779481 stat +0.0112551 975.jesNp1 +0.00335944 975.jesNp2 +71 more errors Show all
-0.96 - -0.92	0.716955 10.00468718 stat +4.00111060 sys_jestep1 +4.00188823 sys_jestep2 + 71 more errors Show all
-0.92 - -0.88	0.322052 40.00239636 tat -constants yn,jestpt +71 more errors Show all

SL originally formalised as symm covariance Simple to use: $L(\mu, \vec{\theta}) = \prod_i \text{Pois}(n_i, \mu, \vec{\theta}) \cdot \text{Gaus}(\vec{\theta}, C)$ Dimensionality of cov fixed: uniform approach, scales well. But limited to symmetric errs and no correlations between analyses.

HepData doesn't understand datasets semantics: would need "link" metadata to reliably connect correlation datasets to primary datasets

Error-source representation more flexible: can construct cov matrix $C_{ij} = \sum_{e} \sigma_i \sigma_j$, or asymm by toy-sampling Extensible! Supported already. HD preference. But...

Logistical issues & extensions

- Need standard names, esp. to distinguish uncorr stat errors
- ► Also need groupings, e.g. to separate theory/MC errors from experimental/detector resolutions ⇒ future reinterpretations with theory improvements. Easier with explicit cov matrices?
- Error-sources are naturally usable in an asymmetric way. But current activity ^[2] on use of skew moments to implement asymm parametrisation: how to store this in HD?!

Logistical issues & extensions

- Need standard names, esp. to distinguish uncorr stat errors
- ► Also need groupings, e.g. to separate theory/MC errors from experimental/detector resolutions ⇒ future reinterpretations with theory improvements. Easier with explicit cov matrices?
- Error-sources are naturally usable in an asymmetric way. But current activity ^[2] on use of skew moments to implement asymm parametrisation: how to store this in HD?!

Logistical issues & extensions

- Need standard names, esp. to distinguish uncorr stat errors
- ► Also need groupings, e.g. to separate theory/MC errors from experimental/detector resolutions ⇒ future reinterpretations with theory improvements. Easier with explicit cov matrices?
- Error-sources are naturally usable in an asymmetric way. But current activity ¹² on use of skew moments to implement asymm parametrisation: how to store this in HD?!

Possibility for HD to have semantic understanding of correlations?

Andy Buckley

 Correlations are the most technically complex demand, since the data objects are semantically different from "normal" datasets

- Correlations are the most technically complex demand, since the data objects are semantically different from "normal" datasets
- Not the only requirement for scalable recasting, though: background estimates are also crucial

- Correlations are the most technically complex demand, since the data objects are semantically different from "normal" datasets
- Not the only requirement for scalable recasting, though: background estimates are also crucial
- Typical BSM reinterpretations only have the capacity to generate (maybe LO) signal events

- Correlations are the most technically complex demand, since the data objects are semantically different from "normal" datasets
- Not the only requirement for scalable recasting, though: background estimates are also crucial
- Typical BSM reinterpretations only have the capacity to generate (maybe LO) signal events
- Backgrounds computed by experiments using vast MC datasets with very complex and CPU-intensive high-sophistication modelling: not reproducible, so needs to be published

- Correlations are the most technically complex demand, since the data objects are semantically different from "normal" datasets
- Not the only requirement for scalable recasting, though: background estimates are also crucial
- Typical BSM reinterpretations only have the capacity to generate (maybe LO) signal events
- Backgrounds computed by experiments using vast MC datasets with very complex and CPU-intensive high-sophistication modelling: not reproducible, so needs to be published
- This has started, but again how to make HD (and its API) semantically aware of what is data and what's the corresponding MC?

And background process breakdown? And pre-/post-fit? ...