Hepdata: My ATLAS perspective

Bill Murray STFC-RAL / University of Warwick bill.murray@stfc.ac.uk 24th November 2017

What works well?What could be better?

HepData uage

ATLAS is a big user

See table right

And a satisfied customer

- At the `ATLAS new physics search reinterpretation workshop' in July the talk 'What to we already do for SUSY' has the word 'hepdata' in large font in top left on 13/19 slides.
 - And argues the approach works
 - "Everyone agrees hepdata is fantastic and we should use it for everything under the sun"
- Exotics and Higgs less developed, but same idea
- Desire to make publishing analysis easier
 But SUSY seem happy with code use
- Debate on full/simplified likelihoods

ATLAS	346
CMS	220
CDF	209
ZEUS	169
ALICE	164
H1	146
OPAL	145
D0	127
L3	112
DELPHI	101
ALEPH	83
CLEO	67
TASSO	65
LHCB	59
THE ATLAS	1

Data entry: much improved

- Personal comment: some of the support tables uploaded to hepdata are not so well scrutinised
 - They are not well scrutinised in experiment review
 - Mistakes do happen
 - The visualisation tools are very useful
- But this is much improved.

New ATLAS results page: HepData

	ExoticsPut	olicResults < AtlasPublic < TWiki -	Mozilla Firefox			×		
<u>E</u> dit <u>V</u> iew History	<u>B</u> ookmarks <u>T</u> ools <u>H</u> elp							
ExoticsPublicResults < At \times	Search for dark matter produce × +							
→ C' û	https://twiki.cern.ch/twiki/bin/view/AtlasPublic/ExoticsPublicResults			🛡 🟠 🔍 Sear	ch	<u>↓</u> III\ 🗊 ≡		
	re 🔊 Telegraph science 🦉 Gnome Extensions 🔊 BBC Science						THE STA	
Summary Plots [Link to ft	full list of EXOT summary plots]							
Summary Plots								
-ilter Documents								
Select the desired keywords to filte	ar the results.							
	e combined with a logical OR, while selections among different section rows are co	nbined with a logical AND.						
Global Selections	Show All Deselect All Show Latest 20							
CM Energy	7 TeV 8 TeV 13 TeV							
Exotic physics	BSM resonance Contact interactions Dark matter	Dark sector Vector-like quarks	Strong gravity	eptoquarks Heavy	vector triplets	Compositness		
1.2	Other new particle searches Heavy neutrinos						Lets	
	W Z Photon WW WZ ZZ D	i-photon Vphoton VH	VVV Single top	Top pair >=3	tops Higgs	Di-Higgs	19.55 / 4	
ignature IR' logic within row	0 lepton 1 lepton 2 leptons 2 leptons (same cha	explore						
ND' between rows	MET Taus Photons Charged tracks							
	0 jets 1 jet 2 jets >=3 jets All hadronic	c-jets b-jets					this	
analysis characteristics		y upgrade studies Statistical combin	ation VBF E	SM reinterpretation	Long-lived massive p	particles	one	
lin luminosity :	0 fb y ⁻¹ Filter by minimum integra	ed luminosity						
ate :	YYYY-MM-DD Filter by date: ≤ ≥							
Filtered results: [Papers Confinotes	s Pubnotes]							
Papers: (11)								
Short Title		Journal reference	Date	√s (TeV)	L	Links		
MET + jet search 13 TeV 201	.6	Submitted to JHEP	09-NOV-17	13	36 fb ⁻¹	Documents 1711.03301 Inspire		
WIMP DM pair + HF quarks; (0. 2 leptons	Submitted to EPJC	31-OCT-17	13	36 fb ⁻¹	Documents 1710.11412 Instre	Sec. 38	
						HepData Linternal		
Search Zh(125), h(125)->invi	visible and Z+MET	Submitted to PLB	31-AUG-17	13	36 fb ⁻¹	Documents 1708.096244 Inspire		
et+MET cross section 13 Te\	V 2015	Eur. Phys. J. C 77	11-JUL-17	13	3.2 fb ⁻¹	Documents 1707.03263 Inspire	HepData	
	. 2010	(2017) 765	11 002-17	13	0.2 10	Rivet HepData Reging Internal	🚽 Link clea	
MET + H->bb search 13 TeV	2016	Phys. Rev. Lett. 119 (2017) 181804	05-JUL-17	13	36.1 fb ⁻¹	Documents 1707.01302 Inspire HepData - nai		
						Documents 1706.03948 IDepire	(usually)	

Search h(125)->gamgam + Missing-ET

MET + photon search 13 TeV 2016

MET+Higgs search 13 TeV 2015

Science & Technology Facilities Council Rutherford Appleton Laboratory w.wurray

Submitted to PRD

Eur. Phys. J. C 77

Phys. Lett. B 763

(2017) 393 Phys. Lett. B 765

(2016) 11

13-JUN-17

12-APR-17

15-SEP-16

Documents I 1608.02372 Linspire

Documents | 1609.04572 | Inspire

704.03848 | Inspire

THE UNIVERSITY OF

WARWICK

Docume

HepData Internal

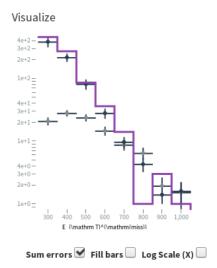
36.1 fb⁻¹

36.1 fb⁻¹

3.3 fb⁻¹

13

13


13

4

www.hepdata.net/record/80080

- "Search for dark matter produced in association with bottom or top quarks in √s = 13 TeV pp collisions with the ATLAS detector"
- Record clear, well laid out
- G3 data tables in this example
 - Cut flows
 - Efficiencies
 - Results plots
 - (I am used to errors on data but that's philosophy)
- Very nice
- Someties WWW hangs when a table is requested
 OK, ask again

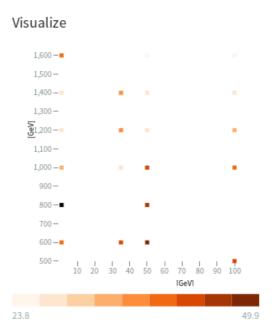
\sqrt{s}	13000.0 G	ieV	
	Data	Total Bkg	(1000,35)
$E_{\rm T}^{\rm miss}$	Events / 1	L00 GeV	
250 - 350	456	383.6 ±70.8 stat+syst	20.805 ±3.00816
350 - 450	271	216.2 ±32.8 stat+syst	27.8835 ±3.1619
450 - 550	86	81.2 ±15 stat+syst	23.6675 ±3.10245
550 - 650	36	27.9 ±5.2 stat+syst	14.6047 ±2.41529
650 - 750	14	9.7 ±1.9 stat+syst	8.7116 ±1.62698
750 - 850	1	4.3 ±1.1 stat+syst	6.43781 ±1.46634
850 - 950	3	1.4 ±0.4 stat+syst	1.9378 ±0.703358
950 - 1050	1	1.6 ±0.6 stat+syst	1.52518 ±0.703185

Log Scale (Y) 🗹

Example: poor table

- Sometimes automatic binning of tabular data makes unhelpful choice
 - Here it would be nice to be able to separate the columns
 - This is nit-picking

Cmene	rgies				Reacti	ons		
	13000.0					🗣 P P> DM tt	♥ P →> DM bb	
\sqrt{s}		13000 GeV				Visualiz	ze	
m(a) [GeV]	$\begin{array}{c} m(\chi) \\ \text{[GeV]} \end{array}$	Acceptance SRb2-bin1 [x10 ⁻⁵]	Acceptance SRb2-bin2 [x10 ⁻⁵]	Acceptance SRb2-bin3 $[x10^{-5}]$	Acceptance SRb2-bin4 [x10 ⁻⁵]	1,000 - 900 - 800 -	-	
10	1	0.24	0.246	0.345	0.391	- 700 - 5 600 -		
20	1	0.38	0.36	0.559	0.534		•	
50	1	0.906	0.831	1.6	1.95	400 - 300 -		
100	1	1.71	2.56	3.98	4.96			
200	1	5.1	7.8	11.8	16.1	100 -		
300	1	7.55	9.86	20.3	38.4			IGeVI
500	1	13.2	18.3	45.3	71.7	0.2		
1000	1	40	30.3	63.6	114	0.2		



114.0

Example dubious data

- A table from this paper
 Table 40: "Data from table 19, Efficiency of the SRb1 selection of the b-FDM model signal samples
- This particular table seems to me either
 - Structure meaningful?
 - Insufficient granularity
 - Structure reflects MC stats?
 - Not given unhelpful
 - Wrong
- But it reflects perfectly what ATLAS supplied

Example wrong data

- A table from this paper
 Table 39: "Data from table 19, Efficiency of the SRb1 selection of the b-FDM model signal samples
- This table is simply wrong
- (600,50) is a factor 100 different between ATLAS and HepData table
 - And some others too

\sqrt{s}		13000 GeV	Visualize	
$m(\phi_b~[extsf{GeV}]$	$m(\chi)$ [GeV]	Acceptance. SRb1 [× 10^{-4}]	1,600	•
500	1	9.19	1,400 -	
300	1	9.17	<u>3</u> 1,200 –	
.000	1	5.32	1,100 - 1,000 -	
200	1	3.7	900 —	
400	1	2.71	800 700	
600	1	2.29	600 -	
00	50	0.265	10 20 30 4	1 1 1 1 1 1 40 50 60 70 80 90 100 IGeVI
00	50	0.527		
$m(\phi_l$	b) $[GeV]$	$m(\chi) \; [{ m GeV}]$	acc. SRb1	eff. SRb1
		1	0.10 10 - 4	1 01 10 1
	600	1	$9.19 \cdot 10^{-4}$	$4.01 \cdot 10^{-1}$
	600 800	1	$9.19 \cdot 10^{-4}$ $9.17 \cdot 10^{-4}$	$4.01 \cdot 10^{-1}$ $4.99 \cdot 10^{-1}$
		_		
	800	1	$9.17 \cdot 10^{-4}$	$4.99 \cdot 10^{-1}$
	$\begin{array}{c} 800 \\ 1000 \end{array}$	1 1	$9.17 \cdot 10^{-4}$ $5.32 \cdot 10^{-4}$	$\begin{array}{c} 4.99 \cdot 10^{-1} \\ 3.53 \cdot 10^{-1} \end{array}$
	$800 \\ 1000 \\ 1200 \\ 1400$	1 1 1	$\begin{array}{r} 9.17 \cdot 10^{-4} \\ 5.32 \cdot 10^{-4} \\ 3.70 \cdot 10^{-4} \\ 2.71 \cdot 10^{-4} \end{array}$	$\begin{array}{r} 4.99 \cdot 10^{-1} \\ 3.53 \cdot 10^{-1} \\ 3.06 \cdot 10^{-1} \\ 2.83 \cdot 10^{-1} \end{array}$
	$800 \\ 1000 \\ 1200 \\ 1400 \\ 1600$	1 1 1 1 1	$9.17 \cdot 10^{-4} 5.32 \cdot 10^{-4} 3.70 \cdot 10^{-4} 2.71 \cdot 10^{-4} 2.29 \cdot 10^{-4} $	$\begin{array}{r} 4.99 \cdot 10^{-1} \\ 3.53 \cdot 10^{-1} \\ 3.06 \cdot 10^{-1} \\ 2.83 \cdot 10^{-1} \\ 3.91 \cdot 10^{-1} \end{array}$
	$800 \\ 1000 \\ 1200 \\ 1400 \\ 1600 \\ 600$	1 1 1 1 1 50	$9.17 \cdot 10^{-4} 5.32 \cdot 10^{-4} 3.70 \cdot 10^{-4} 2.71 \cdot 10^{-4} 2.29 \cdot 10^{-4} 2.65 \cdot 10^{-3}$	$\begin{array}{r} 4.99 \cdot 10^{-1} \\ 3.53 \cdot 10^{-1} \\ 3.06 \cdot 10^{-1} \\ 2.83 \cdot 10^{-1} \\ 3.91 \cdot 10^{-1} \\ 4.70 \cdot 10^{-1} \end{array}$
	$ \begin{array}{r} 800 \\ 1000 \\ 1200 \\ 1400 \\ 1600 \\ 600 \\ 800 \\ \end{array} $	$ \begin{array}{c} 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 50 \\ $	$9.17 \cdot 10^{-4} 5.32 \cdot 10^{-4} 3.70 \cdot 10^{-4} 2.71 \cdot 10^{-4} 2.29 \cdot 10^{-4} 2.65 \cdot 10^{-3} 5.27 \cdot 10^{-3} $	$\begin{array}{r} 4.99 \cdot 10^{-1} \\ 3.53 \cdot 10^{-1} \\ 3.06 \cdot 10^{-1} \\ 2.83 \cdot 10^{-1} \\ 3.91 \cdot 10^{-1} \\ 4.70 \cdot 10^{-1} \\ 4.55 \cdot 10^{-1} \end{array}$
	$800 \\ 1000 \\ 1200 \\ 1400 \\ 1600 \\ 600$	1 1 1 1 1 50	$9.17 \cdot 10^{-4} 5.32 \cdot 10^{-4} 3.70 \cdot 10^{-4} 2.71 \cdot 10^{-4} 2.29 \cdot 10^{-4} 2.65 \cdot 10^{-3} 5.27 \cdot 10^{-3} $	$\begin{array}{r} 4.99 \cdot 10^{-1} \\ 3.53 \cdot 10^{-1} \\ 3.06 \cdot 10^{-1} \\ 2.83 \cdot 10^{-1} \\ 3.91 \cdot 10^{-1} \\ 4.70 \cdot 10^{-1} \end{array}$

Science & Technology Facilities Council Rutherford Appleton Laboratory

ATLAS ongoing

- ATLAS task force
 - Reps from all physics groups
- New ATLAS guidlines/tips twiki
 - How to use
 - What to store
 - Pitfalls
- Currently Hepdata upload timing varies with physics group
 - Recommendation to to in parallel with submission to Archive
 Change after journal review if necessary
- HepData should go hand in hand with Rivet
 - Still in discussion

Preliminary Recommendations

 General: Everything that is useful for a theoretician, i.e. all final results (also tables which are already in the paper)

Measurements

- Fiducial Definition
- Measured values / cross-sections and uncertainties
- Correlations
 - Correlation matrices
 - Effect of each systematic separately
 - Measurement variations
- Correction factors between particle-level definitions

Searches

- model dependent limits (table of expected +/- 1, 2 sigma, observed limits vs mass)
- model independent limits (table of observed limits vs mass)
- acceptance / efficiency vs mass (or whatever other variable is relevant)
- final distribution if it is useful: data counts, total background yield, statistical error on the background, systematic error on the background

Science & Technology Facilities Council Rutherford Appleton Laboratory

ATLAS Request:

- HEPData is in pretty good shape.
- One thing bothers us:
 - Implementing a review process for the HEPData entries before the publication:
 - i.e. each ATLAS author can check what we put into HEPData before we publish the entry.
 - Could use CDS for this, where the HEPData tar-file could be stored. This requires that an ATLAS member downloads this file, and uploads it to his private HEPData Sandbox. There are two issues:
 - The Sandbox link can be seen by everybody, when known it would be better to have a "real" private version
 - The procedure is quite complicated, since it involves one download and one upload. It would be somehow good, if the HEPData access could be linked somehow to the CDS access rights...

Can HĔPData access use CERN CDS rights?

