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C. Degrande The new FeynRules interface

• FeynRules comes with a set of interfaces, that allow to 
export the Feynman rules to various matrix element 
generators.

• Interfaces coming with current public version 

! CalcHep / CompHep

! FeynArts / FormCalc

! MadGraph 4

! Sherpa

! Whizard / Omega
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Input : model.fr

Output : vertices
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UFO
• Generator independent output with full model 

information

• Contains the list of particles, parameters,  
vertices, decays (1to 2), coupling orders

• vertices are split into Lorentz structures, colours 
and couplings and all are included in the model!

�igs T a
ij �µ

• Used in MG5, Herwig, Gosam, Sherpa, …
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Madgraph5_aMC@NLO

• Computation of the born

• Computation of the real

• Computation of the loop

• Matching with parton 
shower ‘à la’ MC@NLO

Automated NLO computation
MG5

MadFKS (IR)

MadLoop
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MadLoop

• Box, Triangle, Bubble and Tadpole are known 
scalar integrals

• Loop computation = find the coefficients

• Tensor reduction (OPP)

• R : rational terms should be partially provided

• UV counterterm vertices have to be provided

Prelims History Present

Tensor Reduction 2

A1−loop =
∑

i

di Boxi +
∑

i

ci Trianglei +
∑

i

bi Bubblei

+
∑

i

ai Tadpolei + R

where

Tadpolei =
∫

dnq̄ 1

D̄0
Bubblei =

∫

dnq̄ 1

D̄0D̄1

Trianglei =
∫

dnq̄ 1

D̄0D̄1D̄2

Boxi =
∫

dnq̄ 1

D̄0D̄1D̄2D̄3

analytic work is necessary

Roberto Pittau Automatizing 1-loop multi-leg calculations for LHC (and ILC)
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To be provided : R2 

Finite set of vertices that can be computed once 
for all

What are the R2 rational terms?

Ā (q̄) =
1

(2⇥)4

�
dd q̄

N̄ (q̄)
D̄0D̄1 . . . D̄m�1

, D̄i = (q̄ + pi)
2 � m2

i

N̄ (q̄) = N (q) + ⇥N (q̃, q, �)

where X̄ lives in d dimension, X in 4, ⇥X in �.

R2 definition

R2 ⇥ lim
�⇥0

1
(2⇥)4

�
dd q̄

⇥N (q̃, q, �)
D̄0D̄1 . . . D̄m�1

Finite (⇤ 4 legs) set of vertices computed once for all!

C. Degrande (UIUC) 5 October 2012 18 / 30
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d 4 ε

in MadLoop [4] available in the MadGraph5 aMC@NLO framework leading to a complete
automated tool for NLO computation. So far only the SM model has been implemented despite
that MadLoop is based on MadGraph5[5] for which many BSM models are available. As a
matter of fact, the evaluation of the loop corrections requires two extra ingredients that so far
have been added by hand in the model. The first one is the counterterms introduced by the
renormalization procedure to absorb all the UV divergences arising at the one-loop level. While
the divergences can be extracted from the scalar integrals, any renormalization scheme with a
non-trivial finite part in the counterterms requires a careful redefinition of the fields and of the
independent parameters of the model and the resolution of the renormalization conditions. The
second missing element depends on the actual method used to perform the tensor decomposition
of the loop amplitudes. In the case of OPP, it is a part of the rational term. In d dimensions,
any one-loop amplitude can be written as

A (q) =
1

(2⇡)4

Z
d
d
q

N (q)

D0D1 . . . Dm�1
, (2)

with the propagator denominators given by Di ⌘ (q + pi)
2 �m

2
i
and where mi are the masses

of the particles in the loop, q is the loop momentum and pi are linear combinations of external
momenta. All the quantities written with a bar live in d dimensions and can therefore be split in
a four dimensional part x and a d�4 dimensional part x̃ as follow x ⌘ x+ x̃. Rational terms are
finite contributions generated by the part of the integrand linear in d � 4. One then organizes
the rational part in two terms, R1 and R2. The rational term R1 is due to the d� 4 component
of the integrand denominators and can be computed as the four-dimensional piece but using a
di↵erent set of scalar integrals [6]. The R2 terms are defined as the finite part due to the d� 4
component of the numerator

R2 ⌘ lim
✏�0

1

(2⇡)4

Z
d
d
q

Ñ (q̃, q, ✏)

D0D1 . . . Dm�1
, (3)

where ✏ is defined by d ⌘ 4 � 2✏. We use here the ’t Hooft-Veltman scheme [7] such that all
the quantities in the loop, i.e. the loop momentum, the metric and the Dirac matrices live in d

dimensions:

⌘
µ ⌫

⌘
µ ⌫

= d, (4)

�
µ
�
µ
= d 1, (5)

where 1 is the identity matrix in Dirac space. The external momenta and polarization vectors
have only four dimensional components. The Dirac matrices in d dimensions �

u
are chosen to

anti-commute with �5 [8, 9, 10]. Therefore, the cyclic property of Dirac trace has to be dropped
to avoid algebraic inconsistency. The result of the evaluation of the integral in (3) is a set of
process independent Feynman rules. As a consequence, they should only be computed once for
each model. The R2 term are the second missing ingredient as they had to be computed so far by
hand for each model. The R2 terms are known for the full SM [11][12] and for QCD corrections
to the MSSM [13]. A package for the automatic computation of the R2 terms for the SM has
also been developed [14].

The purpose of this paper is to show that the procedure of determining the UV counterterms
and the R2 terms can be automated for any Lagrangian. The computation of the missing ele-
ments is done by three Mathematica packages, FeynRules [15], NLOCT and FeynArts [16].
NLOCT is a completely new package, new functionalities have been added to FeynRules to
renormalize models and output the NLO vertices in the UFO format [17] while FeynArts has
not been altered. The only requirement is that the model should be written in the Feynman
gauge. At this stage, the package is restricted to renormalizable theories. Renormalizability
is here understood strictly and not order by order like for e↵ective field theories. Namely, the
dimension of the operators in the Lagrangian should be equal to or lower than four. Although
the R2 terms are not always required, the UV counterterms are needed for any one-loop com-
putation. Therefore, the automatically generated models can be used to provide the necessary

2
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Computed in MadLoop :R1

R1

q̃2

d, c, b, a

n R1

R1

q̃2 d, c, b

q̃2

m2
i → m2

i − q̃2 .

n

n

q̃2

q̃2 d, c, b

∫

dnq̄
q̃2

D̄iD̄j

= −
iπ2

2

[

m2
i + m2

j −
(pi − pj)2

3

]

+ O(ϵ) ,

∫

dnq̄
q̃2

D̄iD̄jD̄k

= −
iπ2

2
+ O(ϵ) ,

∫

dnq̄
q̃4

D̄iD̄jD̄kD̄l

= −
iπ2

6
+ O(ϵ) .

b(ij; q̃2) = b(ij) + q̃2b(2)(ij) ,

c(ijk; q̃2) = c(ijk) + q̃2c(2)(ijk) .

Z̄i

Like for the 4 dimensional part but with a different set of 
integrals

Due to the ℇ dimensional parts of the denominators 

Only R = R1+R2 is gauge invariant Check
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UV
What are the UV counterterms?

Ā (q̄) =
1

(2⇥)4

⌥
dd q̄

N̄ (q̄)
D̄0D̄1 . . . D̄m�1

= K
1
�
+O

⇤
�0
⌅

m ⇥ m
⇧

1 + cm
1
�

⌃
, � ⇥

⇧
1 + c�

1
�

⌃
�, g ⇥ g

⇧
1 + cg

1
�

⌃

. . . . . . = 01
� +O

�
�0⇥

Finite (� 4 legs) set of vertices computed once for all!

C. Degrande (UIUC) 5 October 2012 21 / 30

What are the UV counterterms?

Ā (q̄) =
1

(2⇥)4

⌥
dd q̄

N̄ (q̄)
D̄0D̄1 . . . D̄m�1

= K
1
�
+O

⇤
�0
⌅

m ⇥ m
⇧

1 + cm
1
�

⌃
, � ⇥

⇧
1 + c�

1
�

⌃
�, g ⇥ g

⇧
1 + cg

1
�

⌃

. . . . . . = 01
� +O

�
�0⇥

Finite (� 4 legs) set of vertices computed once for all!

C. Degrande (UIUC) 5 October 2012 21 / 30Finite set of vertices that can be computed once 
for all

Relations fixed by the Lagrangian (finite part)
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Renormalization
External parameters

Same for the conjugate field

Internal parameters are renormalised by replacing the 
external parameters in their expressions

one-loop ingredients for other NLO tools than MadGraph5 aMC@NLO like GoSam [18] for
example which is already using the UFO format. As an explicit example, we consider the Two
Higgs Doublet Model (2DHM). The 2HDM is a simple but important extension of the SM since
it provides a well defined model to search for extra scalar particles.

The paper is organized as follows. The second section focuses on the renormalization of the
Lagrangian and introduces the renormalization conditions for the on-shell scheme. This scheme
is easily extended to complex mass scheme to provide an appropriate treatment of the widths.
The main advantage of those schemes is to avoid the evaluation of the loops on the external legs
and it is used, for example, in MadLoop to make the computation faster. The third section
discusses the algorithm for the computation of the counterterms from the amplitudes. This
section ends with the validation of the algorithm. The 2HDM is briefly introduced in Sect. 4 to
fix the notation. The R2 and UV counterterm vertices for the 2HDM are given in Sect. 5 and 6
respectively. Finally, the conclusion is given in the last section.

2 Renormalization

2.1 The renormalization constants

In dimensional regularization UV-divergences appear as poles in 1/✏ where d ⌘ 4 � 2✏. In a
renormalizable theory, they can absorbed by a redefinition of the free parameters and of the
fields

x0 � x+ �x,

�0 � (1 +
1

2
�Z��)�+

X

�

1

2
�Z���, (6)

where x is an external parameter and � and � are fields with the same quantum numbers, the
bare quantities are denoted by an additional zero subscript compared to the renormalized fields or
parameters, the renormalization constant are preceded by a �. For the fermions, each chirality is
renormalized independently. The external parameters are independent parameters which values
should be fixed by experiments. On the contrary, internal parameters are functions of the external
parameters. Internal parameters are also renormalized. However, their renormalization does not
require the introduction of new renormalization constants and is fixed by their dependence on
the external parameters. The same self renormalization constants Z�� are used for both the
fields and their hermitian conjugates and not its conjugate as required by the complex mass
scheme [19]. Their imaginary parts would otherwise disappear form the hermitian Lagrangian.
For example, the kinetic term of a scalar has an imaginary part if

�0 � (1 + 1
2�Z��)�

�
†
0 � (1 + 1

2�Z��)�†

�
) @

µ
�0@µ�

†
0 � (1 + �Z��)@

µ
�@µ�

† (7)

to absorb the imaginary part coming from the corresponding term of the two point loop ampli-
tude. On the contrary, they would be no imaginary part if the conjugated field is renormalized
with the conjugate of the renormalization constant, i.e.

�0 � (1 + 1
2�Z��)�

�
†
0 � (1 + 1

2�Z
⇤
��

)�†

�
) @

µ
�0@µ�

†
0 � (1 + <�Z��)@

µ
�@µ�

†
. (8)

In the on-shell scheme, those constants are real and therefore also identical for both the fields
and their conjugates. Similarly, external parameters in FeynRules are real and therefore renor-
malized by the same constants as their conjugates. Again, this is valid for both schemes even if
the external parameters have complex renormalization constants as in the complex mass scheme.
The renormalization is therefore identical for those two renormalization schemes but only the
bare Lagrangian is hermitian in the complex mass scheme since the renormalization constants
are complex in this scheme. The bare Lagrangian can also be split into the renormalized one

3

gg (1 + �Zgg)TL
ggg

�
1 + 1

2�↵s +
3
2�Zgg

�
TL

gggg (1 + �↵s + 2�Zgg)TL
Fixed by
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Renormalization conditionsThe renormalization conditions should be chosen to ease as much as possible the problem at
hand or to make the physics transparent. In this respect, the renormalized mass is identified to
the physical one, the real part of the pole of the propagator in the on-shell scheme such that its
value is given by the mass measurement. Furthermore it allows to get rid of the corrections on
the external legs of the amplitudes by forcing the two-point functions to vanish on-shell. More
details on the on-shell scheme can be found in Ref. [21]. In the following, we will given the
renormalization conditions as they are implemented in the NLOCT package.

First, the tadpole counterterms are chosen to cancel the loop corrections such that no tadpole
should be included in any computation. Secondly, the mass and the wave functions renormaliza-
tion constants are fixed by the conditions on the two-point functions. Writing the renormalized
fermion two-point function as

i�ij (�p�mi) + i
⇥
f
L

ij

�
p
2
�
�p�� + f

R

ij

�
p
2
�
�p�+ + f

SL

ij

�
p
2
�
�� + f

SR

ij

�
p
2
�
�+

⇤
, (10)

where �± = 1±�5

2 and the f functions contain both the loop and counterterm contributions, the
renormalization conditions in the on-shell scheme for the fermions are

<̃
⇥
f
L

ij

�
p
2
�
mi + f

SR

ij

�
p
2
�⇤ ���

p2=m
2
i

= 0,

<̃
⇥
f
R

ij

�
p
2
�
mi + f

SL

ij

�
p
2
�⇤ ���

p2=m
2
i

= 0,

<̃

2mi

@

@p2

⇥�
f
L

ii

�
p
2
�
+ f

R

ii

�
p
2
��

mi + f
SL

ii

�
p
2
�
+ f

SR

ii

�
p
2
�⇤

+ f
L

ii

�
p
2
�
+ f

R

ii

�
p
2
�� ���

p2=m
2
i

= 0.

(11)

The function <̃ takes the real part of the loop function but not of the couplings or of the mixing
parameters. The o↵-diagonal conditions allow to absorb the corrections that mix di↵erent flavors
in the wave function renormalizations. The renormalized fields are therefore mass eigenstates. If
the two fermion flavors are massless, the first two conditions are trivially satisfied and therefore
are replaced by <̃fL

ij
(0) = 0 and <̃fR

ij
(0) = 0 to fix the renormalization constants. For a

Majorana fermions  , the left and right renormalization constant for the wave function should
be complex conjugate of each other since the left and right handed fermion fields are related by

 R = e
i↵ ( L)

c (12)

where ↵ is the Majorana phase. The two first conditions should therefore be equivalent for a
Majorana fermion if only one renormalization constant is used. Similarly, if the renormalized
two-point function for a scalar is

i�ij

�
p
2 �m

2
i

�
+ if

S

ij

�
p
2
�
, (13)

and the renormalization conditions read

<̃
⇥
f
S

ij

�
p
2
�⇤ ���

p2=m
2
i

= 0

<̃
⇥
f
S

ij

�
p
2
�⇤ ���

p2=m
2
j

= 0

<̃


@

@p2
f
S

ii

�
p
2
�� ���

p2=m
2
i

= 0. (14)

Finally, if the renormalized two-point function of a vector is written as

�i�ij⌘µ⌫

�
p
2 �m

2
i

�
� if

T

ij

�
p
2
�✓

⌘µ⌫ � pµp⌫

p2

◆
� if

V L

ij

�
p
2
� pµp⌫

p2
, (15)
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�
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⇥
f
L
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p
2
�
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SR

ij

�
p
2
�⇤ ���

p2=m
2
i
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f
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�
p
2
�
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�
p
2
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2
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<̃

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@

@p2

⇥�
f
L
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�
p
2
�
+ f

R
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�
p
2
��
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SL
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�
p
2
�
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�
p
2
�⇤

+ f
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�
p
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p
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2
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�
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2
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⇥
f
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ij

�
p
2
�⇤ ���

p2=m
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<̃
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f
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ij

�
p
2
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S
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Finally, if the renormalized two-point function of a vector is written as

�i�ij⌘µ⌫

�
p
2 �m

2
i

�
� if

T

ij

�
p
2
�✓

⌘µ⌫ � pµp⌫

p2

◆
� if

V L

ij

�
p
2
� pµp⌫

p2
, (15)

6

On-shell scheme (or complex mass scheme):

Similar for the vectors and scalars

Renormalized mass = Physical mass
Two-point function vanishes on-shell (No external 
bubbles)
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Renormalization conditionsThe renormalization conditions should be chosen to ease as much as possible the problem at
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be complex conjugate of each other since the left and right handed fermion fields are related by
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where ↵ is the Majorana phase. The two first conditions should therefore be equivalent for a
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The renormalization conditions should be chosen to ease as much as possible the problem at
hand or to make the physics transparent. In this respect, the renormalized mass is identified to
the physical one, the real part of the pole of the propagator in the on-shell scheme such that its
value is given by the mass measurement. Furthermore it allows to get rid of the corrections on
the external legs of the amplitudes by forcing the two-point functions to vanish on-shell. More
details on the on-shell scheme can be found in Ref. [21]. In the following, we will given the
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The function <̃ takes the real part of the loop function but not of the couplings or of the mixing
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On-shell scheme (or complex mass scheme):

Similar for the vectors and scalars

Renormalized mass = Physical mass
Two-point function vanishes on-shell (No external 
bubbles)



C. Degrande

4

mH± tanβ = 1 tanβ = 8 tan β = 30
[GeV] σLO σNLO K σLO σNLO K σLO σNLO K

145 47.8+31
−22 ± 2.4 71.6+7

−9 ± 2.4 1.50 2.17+39
−26 ± 2.4 3.26+8

−11 ± 2.4 1.50 13.5+46
−29 ± 2.4 21.0+10

−14 ± 2.5 1.55

150 35.7+31
−22 ± 2.4 53.1+7

−9 ± 2.4 1.49 1.57+39
−26 ± 2.4 2.38+8

−12 ± 2.4 1.52 9.81+46
−29 ± 2.4 15.1+10

−14 ± 2.4 1.54

155 24.1+31
−22 ± 2.4 36.3+7

−10 ± 2.4 1.51 1.04+39
−26 ± 2.4 1.61+8

−12 ± 2.4 1.54 6.34+46
−29 ± 2.4 9.99+10

−14 ± 2.4 1.58

160 14.1+31
−22 ± 2.5 21.6+8

−10 ± 2.5 1.53 0.609+39
−26 ± 2.4 0.943+9

−12 ± 2.5 1.55 3.64+47
−29 ± 2.5 5.85+11

−15 ± 2.5 1.60

165 6.50+32
−23 ± 2.6 10.1+9

−11 ± 2.6 1.56 0.274+40
−26 ± 2.5 0.442+11

−14 ± 2.5 1.61 1.68+48
−30 ± 2.6 2.72+13

−16 ± 2.6 1.62

170 2.95+34
−23 ± 2.9 4.51+10

−12 ± 3.0 1.53 0.095+43
−27 ± 2.9 0.149+13

−15 ± 3.0 1.56 0.763+50
−31 ± 3.0 1.20+14

−17 ± 3.0 1.58

175 2.60+34
−24 ± 3.0 3.98+10

−12 ± 3.0 1.53 0.083+43
−28 ± 3.0 0.131+13

−15 ± 3.0 1.58 0.674+51
−31 ± 3.1 1.07+14

−17 ± 3.1 1.59

180 2.41+34
−24 ± 3.1 3.71+10

−12 ± 3.1 1.54 0.077+44
−28 ± 3.1 0.121+13

−15 ± 3.2 1.59 0.627+51
−31 ± 3.1 0.998+14

−17 ± 3.2 1.59

185 2.27+35
−24 ± 3.1 3.51+10

−12 ± 3.1 1.55 0.073+44
−28 ± 3.1 0.115+13

−15 ± 3.1 1.59 0.591+51
−31 ± 3.2 0.947+15

−17 ± 3.2 1.60

190 2.15+35
−24 ± 3.1 3.32+10

−12 ± 3.2 1.54 0.069+44
−28 ± 3.2 0.109+13

−15 ± 3.2 1.58 0.561+51
−31 ± 3.2 0.896+14

−17 ± 3.3 1.60

195 2.05+35
−24 ± 3.2 3.18+11

−12 ± 3.2 1.56 0.066+44
−28 ± 3.2 0.105+13

−15 ± 3.2 1.60 0.536+52
−32 ± 3.2 0.850+14

−17 ± 3.2 1.59

200 1.95+35
−24 ± 3.2 3.02+10

−12 ± 3.3 1.55 0.063+44
−28 ± 3.2 0.100+13

−15 ± 3.3 1.58 0.510+52
−32 ± 3.3 0.812+14

−17 ± 3.3 1.59

TABLE I. LO and NLO total cross sections (in pb) and K-factors for the pp → H+W−bb̄ process, for tan β = 1, 8, 30 at the 13
TeV LHC. The first quoted uncertainties are from scale variations, the second from PDFs (both in per cent of the total cross
section). The statistical uncertainty from the numerical phase-space integration is of the order of 1% or below.

for light and heavy charged Higgs production. The input
parameters have been chosen consistently across all the
mass range, in particular all cross sections are computed
in the 4FS, the central scale for low-mass range is also set
to µ = 125 GeV, while the scale µ = (mt+mH± +mb)/3
is used for the heavy charged Higgs case. The central
predictions in the main frame develop a prominent struc-
ture with a kink at the threshold mH± ≃ mt −mb. The
effect of the single-resonant contributions (pp → tW−

and pp → t̄H+) is visible when comparing our results in
the intermediate-mass range with the low-mass predic-
tion. Indeed, the single-resonant contributions are miss-
ing in the low-mass prediction and amount to 10%−15%
of the pp → tt̄ cross section depending on the specific
value of tanβ. In contrast, looking at the matching of
the intermediate-mass predictions to the heavy charged
Higgs cross section, we observe a 5% − 10% gap for
tanβ = 8 and tanβ = 30, while there is essentially no
gap for tanβ = 1. Such a gap originates from the non-
resonant part of the pp → H±W∓bb̄ amplitude, which,
because of the chiral structure of the H+tb and Wtb ver-
tices, is enhanced (suppressed) for large (small) values
of tanβ. At 145 and 200 GeV, the size of the scale un-
certainty in the intermediate region and the side-bands
is slightly different. These discontinuities are related to
missing subleading terms in the predictions used in the
low and high-mass regions, i.e. mostly single-resonant
and non-resonant, respectively, although it is difficult to
pin down exactly the origin of the discontinuities because
of the non-trivial seperation of these contributions be-
yond leading order. Finally, we note that the K-factor
in the intermediate region interpolates very well the ones
in the low and high-mass range.

We now discuss how to generalise our results at a sin-
gle tanβ value in order to obtain the charged Higgs bo-

FIG. 3. NLO total cross sections, K-factors and uncertainties
for charged Higgs boson production at the 13 TeV LHC.
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FIG. 1. Sample LO diagrams for (a) light and (b) heavy
charged Higgs production.

by the product of the top-pair production cross section
and the branching ratio of a top quark into a charged
Higgs boson, see Fig. 1 (a). Since the largest theoreti-
cal uncertainties stem from the top-pair production cross
section, which is currently known up to next-to-next-to-
leading order in perturbative QCD [2], the same theoret-
ical accuracy can be claimed for the production of a light
charged Higgs boson. The model-independent bounds on
the branching ratio of a light charged Higgs boson [3] are
transformed into limits in the (mH± , tanβ) plane, with
tanβ being the ratio of the vacuum expectation values of
the two Higgs doublets. Direct searches at the LHC, with
a centre-of-mass energy of 7 TeV [4–7] and 8 TeV [8, 9]
set stringent constraints on the parameter space with a
light charged Higgs boson.

Heavy charged Higgs boson scenarios, on the other
hand, correspond to charged Higgs masses larger than the
top-quark mass (typicallymH± ! 200GeV). In this case,
the dominant charged Higgs production channel is the as-
sociated production with a top quark [10], see Fig. 1 (b).
Theoretical predictions at NLO(+PS) have been com-
puted both at the inclusive and fully-differential level in
the five-flavour scheme (5FS) [11–18] and in the four-
flavour scheme (4FS) [18–20]. Charged Higgs searches
at 7 TeV [4], 8 TeV [9, 21, 22] and 13 TeV [23] have
set upper limits on the cross section for heavy charged
Higgs production times branching ratio BR(H± → τντ )
for charged Higgs boson masses ranging from 200 to 2000
GeV. In fact, the search in the H± → tb channel reveals
an excess of events above the background-only hypothe-
sis across a wide H± mass range, with up to 2.4 sigma
deviation [21].

The intermediate-mass range is associated with
charged Higgs masses close to the top-quark mass (145 "
mH± " 200GeV). In this region, finite top-width ef-
fects as well as the interplay between top-quark reso-
nant and non-resonant diagrams cannot be neglected.
Therefore, the full process pp → H±W∓bb̄ (with mas-
sive bottom quarks), see Fig. 2, including non-resonant,
single-resonant and double-resonant contributions, has
to be considered, to perform a reliable perturbative
computation of the charged Higgs cross section. The
intermediate-mass range has not been studied at the LHC
to date, mostly due to the lack of sufficiently accurate
and precise theoretical predictions. With this work we

close this gap, and provide an essential ingredient for
H± searches at Run II of the LHC.
Our computation employs a chain of automatic tools

in the MadGraph5 aMC@NLO+NLOCT frame-
work [24, 25], developed to study the phenomenology of
new physics models at NLO accuracy. In this framework,
NLOCT automatically computes the R2 rational terms
and the ultraviolet counterterms used in the virtual am-
plitudes, and relies internally upon FeynRules [26] and
FeynArts [27]. The one-loop matrix elements are com-
puted using the MadLoop module [28], which employs
CutTools [29] and Ninja [30, 31] for loop reduction
at the integrand level and IREGI [32] for tensor inte-
gral reduction. All methods are complemented by an
in-house implementation of the OpenLoops [33] algo-
rithm. For the factorisation of the IR poles in the
real-emission phase-space integrals, the resonance-aware
MadFKS [34, 35] module is used.
We work in the four-flavour scheme, where the bottom-

quark mass regulates any soft or collinear divergence re-
lated to final-state bottom-quark emissions, making it
possible to compute the total cross section without hav-
ing to impose artificial cuts on the final state particles. In
a 5FS version of this computation (bb̄ → H±W∓), non-,
single- and double-resonant contributions are included at
different accuracies. In particular the double-resonant
contributions only enter at NNLO (and beyond). Even
in that case, these contributions would be effectively in-
cluded only at lowest order, hampering the formal accu-
racy of the computation in the region mH± < mt, where
they are dominant. On the other hand, in our 4FS cal-
culation all contributions are included at NLO accuracy.
Moreover, the 4FS has been shown to provide reliable
predictions for the heavy-Higgs case [18, 19], without be-
ing spoiled by large logarithms. For consistency, we use
the four-flavour set of the PDF4LHC15 parton distribu-
tions [36–39], and the corresponding running of αs with
αs(mZ) = 0.1126.
The identification of the hard scales in a complex pro-

cess, such as the one at hand, is not necessarily a trivial
task. One has to bear in mind, however, that in the inter-
mediate region it is desirable to have a matching to the
scale in the pp → tt̄ cross section for light charged Higgs
masses, where the natural choice is of the order of the
top-quark mass (or below [40]), and for larger masses to
the scale in the heavy charged Higgs cross section, where
the scale µ = (mt +mH± +mb)/3 is typically applied in
4FS computations. We therefore fix our renormalisation
and factorisation scales (µr and µf ) to µ = 125 GeV,
which matches the numerical value used for the heavy
charged Higgs production at mH± = 200 GeV, while it
satisfies the requirement of being in between mt/2 and
mt for the light charged-Higgs case.
The top-quark mass and Yukawa coupling are renor-

malized on-shell, while we use a hybrid scheme for the
bottom-quark mass: kinematical bottom-quark masses
are treated with an on-shell renormalization, but the MS
renormalisation scheme is employed for the bottom-quark

2

b̄

b

H−

W+

t̄

t

t̄

t
H−

t

b̄

(a) (b)

FIG. 1. Sample LO diagrams for (a) light and (b) heavy
charged Higgs production.

by the product of the top-pair production cross section
and the branching ratio of a top quark into a charged
Higgs boson, see Fig. 1 (a). Since the largest theoreti-
cal uncertainties stem from the top-pair production cross
section, which is currently known up to next-to-next-to-
leading order in perturbative QCD [2], the same theoret-
ical accuracy can be claimed for the production of a light
charged Higgs boson. The model-independent bounds on
the branching ratio of a light charged Higgs boson [3] are
transformed into limits in the (mH± , tanβ) plane, with
tanβ being the ratio of the vacuum expectation values of
the two Higgs doublets. Direct searches at the LHC, with
a centre-of-mass energy of 7 TeV [4–7] and 8 TeV [8, 9]
set stringent constraints on the parameter space with a
light charged Higgs boson.

Heavy charged Higgs boson scenarios, on the other
hand, correspond to charged Higgs masses larger than the
top-quark mass (typicallymH± ! 200GeV). In this case,
the dominant charged Higgs production channel is the as-
sociated production with a top quark [10], see Fig. 1 (b).
Theoretical predictions at NLO(+PS) have been com-
puted both at the inclusive and fully-differential level in
the five-flavour scheme (5FS) [11–18] and in the four-
flavour scheme (4FS) [18–20]. Charged Higgs searches
at 7 TeV [4], 8 TeV [9, 21, 22] and 13 TeV [23] have
set upper limits on the cross section for heavy charged
Higgs production times branching ratio BR(H± → τντ )
for charged Higgs boson masses ranging from 200 to 2000
GeV. In fact, the search in the H± → tb channel reveals
an excess of events above the background-only hypothe-
sis across a wide H± mass range, with up to 2.4 sigma
deviation [21].

The intermediate-mass range is associated with
charged Higgs masses close to the top-quark mass (145 "
mH± " 200GeV). In this region, finite top-width ef-
fects as well as the interplay between top-quark reso-
nant and non-resonant diagrams cannot be neglected.
Therefore, the full process pp → H±W∓bb̄ (with mas-
sive bottom quarks), see Fig. 2, including non-resonant,
single-resonant and double-resonant contributions, has
to be considered, to perform a reliable perturbative
computation of the charged Higgs cross section. The
intermediate-mass range has not been studied at the LHC
to date, mostly due to the lack of sufficiently accurate
and precise theoretical predictions. With this work we

close this gap, and provide an essential ingredient for
H± searches at Run II of the LHC.
Our computation employs a chain of automatic tools

in the MadGraph5 aMC@NLO+NLOCT frame-
work [24, 25], developed to study the phenomenology of
new physics models at NLO accuracy. In this framework,
NLOCT automatically computes the R2 rational terms
and the ultraviolet counterterms used in the virtual am-
plitudes, and relies internally upon FeynRules [26] and
FeynArts [27]. The one-loop matrix elements are com-
puted using the MadLoop module [28], which employs
CutTools [29] and Ninja [30, 31] for loop reduction
at the integrand level and IREGI [32] for tensor inte-
gral reduction. All methods are complemented by an
in-house implementation of the OpenLoops [33] algo-
rithm. For the factorisation of the IR poles in the
real-emission phase-space integrals, the resonance-aware
MadFKS [34, 35] module is used.
We work in the four-flavour scheme, where the bottom-

quark mass regulates any soft or collinear divergence re-
lated to final-state bottom-quark emissions, making it
possible to compute the total cross section without hav-
ing to impose artificial cuts on the final state particles. In
a 5FS version of this computation (bb̄ → H±W∓), non-,
single- and double-resonant contributions are included at
different accuracies. In particular the double-resonant
contributions only enter at NNLO (and beyond). Even
in that case, these contributions would be effectively in-
cluded only at lowest order, hampering the formal accu-
racy of the computation in the region mH± < mt, where
they are dominant. On the other hand, in our 4FS cal-
culation all contributions are included at NLO accuracy.
Moreover, the 4FS has been shown to provide reliable
predictions for the heavy-Higgs case [18, 19], without be-
ing spoiled by large logarithms. For consistency, we use
the four-flavour set of the PDF4LHC15 parton distribu-
tions [36–39], and the corresponding running of αs with
αs(mZ) = 0.1126.
The identification of the hard scales in a complex pro-

cess, such as the one at hand, is not necessarily a trivial
task. One has to bear in mind, however, that in the inter-
mediate region it is desirable to have a matching to the
scale in the pp → tt̄ cross section for light charged Higgs
masses, where the natural choice is of the order of the
top-quark mass (or below [40]), and for larger masses to
the scale in the heavy charged Higgs cross section, where
the scale µ = (mt +mH± +mb)/3 is typically applied in
4FS computations. We therefore fix our renormalisation
and factorisation scales (µr and µf ) to µ = 125 GeV,
which matches the numerical value used for the heavy
charged Higgs production at mH± = 200 GeV, while it
satisfies the requirement of being in between mt/2 and
mt for the light charged-Higgs case.
The top-quark mass and Yukawa coupling are renor-

malized on-shell, while we use a hybrid scheme for the
bottom-quark mass: kinematical bottom-quark masses
are treated with an on-shell renormalization, but the MS
renormalisation scheme is employed for the bottom-quark
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by the product of the top-pair production cross section
and the branching ratio of a top quark into a charged
Higgs boson, see Fig. 1 (a). Since the largest theoreti-
cal uncertainties stem from the top-pair production cross
section, which is currently known up to next-to-next-to-
leading order in perturbative QCD [2], the same theoret-
ical accuracy can be claimed for the production of a light
charged Higgs boson. The model-independent bounds on
the branching ratio of a light charged Higgs boson [3] are
transformed into limits in the (mH± , tanβ) plane, with
tanβ being the ratio of the vacuum expectation values of
the two Higgs doublets. Direct searches at the LHC, with
a centre-of-mass energy of 7 TeV [4–7] and 8 TeV [8, 9]
set stringent constraints on the parameter space with a
light charged Higgs boson.

Heavy charged Higgs boson scenarios, on the other
hand, correspond to charged Higgs masses larger than the
top-quark mass (typicallymH± ! 200GeV). In this case,
the dominant charged Higgs production channel is the as-
sociated production with a top quark [10], see Fig. 1 (b).
Theoretical predictions at NLO(+PS) have been com-
puted both at the inclusive and fully-differential level in
the five-flavour scheme (5FS) [11–18] and in the four-
flavour scheme (4FS) [18–20]. Charged Higgs searches
at 7 TeV [4], 8 TeV [9, 21, 22] and 13 TeV [23] have
set upper limits on the cross section for heavy charged
Higgs production times branching ratio BR(H± → τντ )
for charged Higgs boson masses ranging from 200 to 2000
GeV. In fact, the search in the H± → tb channel reveals
an excess of events above the background-only hypothe-
sis across a wide H± mass range, with up to 2.4 sigma
deviation [21].

The intermediate-mass range is associated with
charged Higgs masses close to the top-quark mass (145 "
mH± " 200GeV). In this region, finite top-width ef-
fects as well as the interplay between top-quark reso-
nant and non-resonant diagrams cannot be neglected.
Therefore, the full process pp → H±W∓bb̄ (with mas-
sive bottom quarks), see Fig. 2, including non-resonant,
single-resonant and double-resonant contributions, has
to be considered, to perform a reliable perturbative
computation of the charged Higgs cross section. The
intermediate-mass range has not been studied at the LHC
to date, mostly due to the lack of sufficiently accurate
and precise theoretical predictions. With this work we

close this gap, and provide an essential ingredient for
H± searches at Run II of the LHC.
Our computation employs a chain of automatic tools

in the MadGraph5 aMC@NLO+NLOCT frame-
work [24, 25], developed to study the phenomenology of
new physics models at NLO accuracy. In this framework,
NLOCT automatically computes the R2 rational terms
and the ultraviolet counterterms used in the virtual am-
plitudes, and relies internally upon FeynRules [26] and
FeynArts [27]. The one-loop matrix elements are com-
puted using the MadLoop module [28], which employs
CutTools [29] and Ninja [30, 31] for loop reduction
at the integrand level and IREGI [32] for tensor inte-
gral reduction. All methods are complemented by an
in-house implementation of the OpenLoops [33] algo-
rithm. For the factorisation of the IR poles in the
real-emission phase-space integrals, the resonance-aware
MadFKS [34, 35] module is used.
We work in the four-flavour scheme, where the bottom-

quark mass regulates any soft or collinear divergence re-
lated to final-state bottom-quark emissions, making it
possible to compute the total cross section without hav-
ing to impose artificial cuts on the final state particles. In
a 5FS version of this computation (bb̄ → H±W∓), non-,
single- and double-resonant contributions are included at
different accuracies. In particular the double-resonant
contributions only enter at NNLO (and beyond). Even
in that case, these contributions would be effectively in-
cluded only at lowest order, hampering the formal accu-
racy of the computation in the region mH± < mt, where
they are dominant. On the other hand, in our 4FS cal-
culation all contributions are included at NLO accuracy.
Moreover, the 4FS has been shown to provide reliable
predictions for the heavy-Higgs case [18, 19], without be-
ing spoiled by large logarithms. For consistency, we use
the four-flavour set of the PDF4LHC15 parton distribu-
tions [36–39], and the corresponding running of αs with
αs(mZ) = 0.1126.
The identification of the hard scales in a complex pro-

cess, such as the one at hand, is not necessarily a trivial
task. One has to bear in mind, however, that in the inter-
mediate region it is desirable to have a matching to the
scale in the pp → tt̄ cross section for light charged Higgs
masses, where the natural choice is of the order of the
top-quark mass (or below [40]), and for larger masses to
the scale in the heavy charged Higgs cross section, where
the scale µ = (mt +mH± +mb)/3 is typically applied in
4FS computations. We therefore fix our renormalisation
and factorisation scales (µr and µf ) to µ = 125 GeV,
which matches the numerical value used for the heavy
charged Higgs production at mH± = 200 GeV, while it
satisfies the requirement of being in between mt/2 and
mt for the light charged-Higgs case.
The top-quark mass and Yukawa coupling are renor-

malized on-shell, while we use a hybrid scheme for the
bottom-quark mass: kinematical bottom-quark masses
are treated with an on-shell renormalization, but the MS
renormalisation scheme is employed for the bottom-quark

Errors are 
reduced by a 

factor ~2

4

mH± tanβ = 1 tanβ = 8 tan β = 30
[GeV] σLO σNLO K σLO σNLO K σLO σNLO K

145 47.8+31
−22 ± 2.4 71.6+7

−9 ± 2.4 1.50 2.17+39
−26 ± 2.4 3.26+8

−11 ± 2.4 1.50 13.5+46
−29 ± 2.4 21.0+10

−14 ± 2.5 1.55

150 35.7+31
−22 ± 2.4 53.1+7

−9 ± 2.4 1.49 1.57+39
−26 ± 2.4 2.38+8

−12 ± 2.4 1.52 9.81+46
−29 ± 2.4 15.1+10

−14 ± 2.4 1.54

155 24.1+31
−22 ± 2.4 36.3+7

−10 ± 2.4 1.51 1.04+39
−26 ± 2.4 1.61+8

−12 ± 2.4 1.54 6.34+46
−29 ± 2.4 9.99+10

−14 ± 2.4 1.58

160 14.1+31
−22 ± 2.5 21.6+8

−10 ± 2.5 1.53 0.609+39
−26 ± 2.4 0.943+9

−12 ± 2.5 1.55 3.64+47
−29 ± 2.5 5.85+11

−15 ± 2.5 1.60

165 6.50+32
−23 ± 2.6 10.1+9

−11 ± 2.6 1.56 0.274+40
−26 ± 2.5 0.442+11

−14 ± 2.5 1.61 1.68+48
−30 ± 2.6 2.72+13

−16 ± 2.6 1.62

170 2.95+34
−23 ± 2.9 4.51+10

−12 ± 3.0 1.53 0.095+43
−27 ± 2.9 0.149+13

−15 ± 3.0 1.56 0.763+50
−31 ± 3.0 1.20+14

−17 ± 3.0 1.58

175 2.60+34
−24 ± 3.0 3.98+10

−12 ± 3.0 1.53 0.083+43
−28 ± 3.0 0.131+13

−15 ± 3.0 1.58 0.674+51
−31 ± 3.1 1.07+14

−17 ± 3.1 1.59

180 2.41+34
−24 ± 3.1 3.71+10

−12 ± 3.1 1.54 0.077+44
−28 ± 3.1 0.121+13

−15 ± 3.2 1.59 0.627+51
−31 ± 3.1 0.998+14

−17 ± 3.2 1.59

185 2.27+35
−24 ± 3.1 3.51+10

−12 ± 3.1 1.55 0.073+44
−28 ± 3.1 0.115+13

−15 ± 3.1 1.59 0.591+51
−31 ± 3.2 0.947+15

−17 ± 3.2 1.60

190 2.15+35
−24 ± 3.1 3.32+10

−12 ± 3.2 1.54 0.069+44
−28 ± 3.2 0.109+13

−15 ± 3.2 1.58 0.561+51
−31 ± 3.2 0.896+14

−17 ± 3.3 1.60

195 2.05+35
−24 ± 3.2 3.18+11

−12 ± 3.2 1.56 0.066+44
−28 ± 3.2 0.105+13

−15 ± 3.2 1.60 0.536+52
−32 ± 3.2 0.850+14

−17 ± 3.2 1.59

200 1.95+35
−24 ± 3.2 3.02+10

−12 ± 3.3 1.55 0.063+44
−28 ± 3.2 0.100+13

−15 ± 3.3 1.58 0.510+52
−32 ± 3.3 0.812+14

−17 ± 3.3 1.59

TABLE I. LO and NLO total cross sections (in pb) and K-factors for the pp → H+W−bb̄ process, for tan β = 1, 8, 30 at the 13
TeV LHC. The first quoted uncertainties are from scale variations, the second from PDFs (both in per cent of the total cross
section). The statistical uncertainty from the numerical phase-space integration is of the order of 1% or below.

for light and heavy charged Higgs production. The input
parameters have been chosen consistently across all the
mass range, in particular all cross sections are computed
in the 4FS, the central scale for low-mass range is also set
to µ = 125 GeV, while the scale µ = (mt+mH± +mb)/3
is used for the heavy charged Higgs case. The central
predictions in the main frame develop a prominent struc-
ture with a kink at the threshold mH± ≃ mt −mb. The
effect of the single-resonant contributions (pp → tW−

and pp → t̄H+) is visible when comparing our results in
the intermediate-mass range with the low-mass predic-
tion. Indeed, the single-resonant contributions are miss-
ing in the low-mass prediction and amount to 10%−15%
of the pp → tt̄ cross section depending on the specific
value of tanβ. In contrast, looking at the matching of
the intermediate-mass predictions to the heavy charged
Higgs cross section, we observe a 5% − 10% gap for
tanβ = 8 and tanβ = 30, while there is essentially no
gap for tanβ = 1. Such a gap originates from the non-
resonant part of the pp → H±W∓bb̄ amplitude, which,
because of the chiral structure of the H+tb and Wtb ver-
tices, is enhanced (suppressed) for large (small) values
of tanβ. At 145 and 200 GeV, the size of the scale un-
certainty in the intermediate region and the side-bands
is slightly different. These discontinuities are related to
missing subleading terms in the predictions used in the
low and high-mass regions, i.e. mostly single-resonant
and non-resonant, respectively, although it is difficult to
pin down exactly the origin of the discontinuities because
of the non-trivial seperation of these contributions be-
yond leading order. Finally, we note that the K-factor
in the intermediate region interpolates very well the ones
in the low and high-mass range.

We now discuss how to generalise our results at a sin-
gle tanβ value in order to obtain the charged Higgs bo-

FIG. 3. NLO total cross sections, K-factors and uncertainties
for charged Higgs boson production at the 13 TeV LHC.
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2
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C. Degrande

• Goal : Automate the one-loop computation 
for BSM models 

• Required ingredients : 

• Tree-level vertices

• R2 vertices (OPP)

• UV counterterm vertices

• Solution : UFO at NLO

BSM@NLO

Missing

Done(FeynRules)



C. Degrande

How does it work?

FeynRules
Renormalize the Lagrangian

NLOCT.m
Compute the NLO vertices

FeynArts
Write the amplitudes

model.mod
model.gen model.nlo

CD, Comput.Phys.Commun. 197 
(2015) 239-262



C. Degrande

R2 : Validation

• tested* on the SM (QCD:P. Draggiotis et al.
+QED:M.V. Garzelli et al) 

• tested* on MSSM (QCD:H.-S. Shao, Y.-J. 
Zhang) : test the Majorana

*Analytic comparison of the expressions



C. Degrande

UV Validation

• SM QCD : tested* (W. Beenakker, S. Dittmaier, 
M. Kramer, B. Plumper)

• SM EW : tested* (expressions given by H.-S. 
Shao from A. Denner)

*Analytic comparison of the expressions



C. Degrande

Tests in event generators
• aMC@NLO 

• The SM QCD has been tested by V. Hirschi 
(Comparison with the built-in version)

• SM EW (MZ scheme): comparison to published 
results for ME by H.-S. Shao and V. Hirschi

• Various BSM

• gauge invariance

• pole cancelation



C. Degrande

Test EW
== a a > t t~ ['QED'] == 
== a a > t t~ a ['QED'] == 
== a a > w+ w- ['QED'] == 
== a b > t w- ['QED'] == 
== d~ d > w+ w- ['QCD'] == 
== d~ d > w+ w- ['QED'] == 
== d~ d > z z ['QCD'] == 
== d~ d > z z ['QED'] == 
== e+ e- > t t~ a ['QED'] == 
== e+ e- > t t~ g ['QED'] == 
== g b > t w- ['QED'] == 
== g g > h h ['QCD'] == 
== g g > t t~ ['QED'] == 
== g g > t t~ g ['QED'] == 
== g g > t t~ h ['QCD'] == 
== g g > t t~ h ['QED'] == 
== h h > h h ['QED'] == 
== h h > h h h ['QED'] == 
== t t~ > w+ w- ['QED'] ==

== u b > t d ['QED'] ==  
== u d~ > t b~ ['QED'] == 
== u g > t d b~ ['QED'] == 
== u u~ > a a ['QED'] == 
== u u~ > e+ e- ['QED'] == 
== u u~ > g a ['QCD QED'] == 
== u u~ > u u~ ['QCD QED'] == 
== u u~ > u u~ a ['QCD QED'] == 
== u u~ > u u~ g ['QCD QED'] == 
== u u~ > w+ w- ['QED'] == 
== u u~ > z a ['QED'] == 
== u u~ > z z ['QED'] == 
== u~ d > w- z ['QCD'] == 
== u~ d > w- z ['QED'] == 
== u~ u > w+ w- ['QCD'] == 
== u~ u > w+ w- ['QED'] == 
== u~ u > z z ['QCD'] == 
== u~ u > z z ['QED'] == 
== ve ve~ > e+ e- ['QED'] == 
== w+ w- > h h ['QED'] ==

Massive and massless b



C. Degrande

Restrictions/Assumptions
• Renormalizable Lagrangian, maximum dimension of 

the operators is 4

• Feynman Gauge

•  

• ‘t Hooft-Veltman scheme

• On-shell scheme for the masses and wave 
functions

• MS by default for everything else (zero-momentum 
possible for fermion gauge boson interaction)

{�µ, �5} = 0



C. Degrande

EFT at NLO

X3 ϕ6 and ϕ4D2 ψ2ϕ3

QG fABCGAν
µ GBρ

ν GCµ
ρ Qϕ (ϕ†ϕ)3 Qeϕ (ϕ†ϕ)(l̄perϕ)

QG̃ fABCG̃Aν
µ GBρ

ν GCµ
ρ Qϕ! (ϕ†ϕ)!(ϕ†ϕ) Quϕ (ϕ†ϕ)(q̄purϕ̃)

QW εIJKW Iν
µ W Jρ

ν WKµ
ρ QϕD

(
ϕ†Dµϕ

)⋆ (
ϕ†Dµϕ

)
Qdϕ (ϕ†ϕ)(q̄pdrϕ)

QW̃ εIJKW̃ Iν
µ W Jρ

ν WKµ
ρ

X2ϕ2 ψ2Xϕ ψ2ϕ2D

QϕG ϕ†ϕGA
µνG

Aµν QeW (l̄pσµνer)τ IϕW I
µν Q(1)

ϕl (ϕ†i
↔

Dµ ϕ)(l̄pγµlr)

QϕG̃ ϕ†ϕ G̃A
µνG

Aµν QeB (l̄pσµνer)ϕBµν Q(3)
ϕl (ϕ†i

↔

D I
µ ϕ)(l̄pτ

Iγµlr)

QϕW ϕ†ϕW I
µνW

Iµν QuG (q̄pσµνTAur)ϕ̃GA
µν Qϕe (ϕ†i

↔

Dµ ϕ)(ēpγµer)

Q
ϕW̃

ϕ†ϕ W̃ I
µνW

Iµν QuW (q̄pσµνur)τ I ϕ̃W I
µν Q(1)

ϕq (ϕ†i
↔

Dµ ϕ)(q̄pγµqr)

QϕB ϕ†ϕBµνBµν QuB (q̄pσµνur)ϕ̃Bµν Q(3)
ϕq (ϕ†i

↔

D I
µ ϕ)(q̄pτ

Iγµqr)

QϕB̃ ϕ†ϕ B̃µνBµν QdG (q̄pσµνTAdr)ϕGA
µν Qϕu (ϕ†i

↔

Dµ ϕ)(ūpγµur)

QϕWB ϕ†τ IϕW I
µνB

µν QdW (q̄pσµνdr)τ IϕW I
µν Qϕd (ϕ†i

↔

Dµ ϕ)(d̄pγµdr)

QϕW̃B ϕ†τ Iϕ W̃ I
µνB

µν QdB (q̄pσµνdr)ϕBµν Qϕud i(ϕ̃†Dµϕ)(ūpγµdr)

Table 2: Dimension-six operators other than the four-fermion ones.

3 The complete set of dimension-five and -six operators

This Section is devoted to presenting our final results (derived in Secs. 5, 6 and 7) for the basis

of independent operators Q(5)
n and Q(6)

n . Their independence means that no linear combination
of them and their Hermitian conjugates is EOM-vanishing up to total derivatives.

Imposing the SM gauge symmetry constraints on Q(5)
n leaves out just a single operator [20],

up to Hermitian conjugation and flavour assignments. It reads

Qνν = εjkεmnϕ
jϕm(lkp)

TClnr ≡ (ϕ̃†lp)
TC(ϕ̃†lr), (3.1)

where C is the charge conjugation matrix.2 Qνν violates the lepton number L. After the
electroweak symmetry breaking, it generates neutrino masses and mixings. Neither L(4)

SM nor
the dimension-six terms can do the job. Thus, consistency of the SM (as defined by Eq. (1.1)
and Tab. 1) with observations crucially depends on this dimension-five term.

All the independent dimension-six operators that are allowed by the SM gauge symmetries
are listed in Tabs. 2 and 3. Their names in the left column of each block should be supplemented
with generation indices of the fermion fields whenever necessary, e.g., Q(1)

lq → Q(1)prst
lq . Dirac

indices are always contracted within the brackets, and not displayed. The same is true for the

2 In the Dirac representation C = iγ2γ0, with Bjorken and Drell [21] phase conventions.
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Aµν QeB (l̄pσµνer)ϕBµν Q(3)
ϕl (ϕ†i

↔

D I
µ ϕ)(l̄pτ

Iγµlr)

QϕW ϕ†ϕW I
µνW
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Dµ ϕ)(ūpγµur)

QϕWB ϕ†τ IϕW I
µνB

µν QdW (q̄pσµνdr)τ IϕW I
µν Qϕd (ϕ†i

↔

Dµ ϕ)(d̄pγµdr)

QϕW̃B ϕ†τ Iϕ W̃ I
µνB

µν QdB (q̄pσµνdr)ϕBµν Qϕud i(ϕ̃†Dµϕ)(ūpγµdr)

Table 2: Dimension-six operators other than the four-fermion ones.

3 The complete set of dimension-five and -six operators

This Section is devoted to presenting our final results (derived in Secs. 5, 6 and 7) for the basis

of independent operators Q(5)
n and Q(6)

n . Their independence means that no linear combination
of them and their Hermitian conjugates is EOM-vanishing up to total derivatives.

Imposing the SM gauge symmetry constraints on Q(5)
n leaves out just a single operator [20],

up to Hermitian conjugation and flavour assignments. It reads

Qνν = εjkεmnϕ
jϕm(lkp)

TClnr ≡ (ϕ̃†lp)
TC(ϕ̃†lr), (3.1)

where C is the charge conjugation matrix.2 Qνν violates the lepton number L. After the
electroweak symmetry breaking, it generates neutrino masses and mixings. Neither L(4)

SM nor
the dimension-six terms can do the job. Thus, consistency of the SM (as defined by Eq. (1.1)
and Tab. 1) with observations crucially depends on this dimension-five term.

All the independent dimension-six operators that are allowed by the SM gauge symmetries
are listed in Tabs. 2 and 3. Their names in the left column of each block should be supplemented
with generation indices of the fermion fields whenever necessary, e.g., Q(1)

lq → Q(1)prst
lq . Dirac

indices are always contracted within the brackets, and not displayed. The same is true for the

2 In the Dirac representation C = iγ2γ0, with Bjorken and Drell [21] phase conventions.

3

In the loop: 
same as SM

More momenta: higher rank 
of the integral numerator

Additional gamma algebra
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compute eq. (8) in 4-dimension (as in MadLoop), we would get:
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Extra R2 (gauge invariant)
Change the UV matching
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2

a proof of principle that fully automatic computation of
cross sections at NLO in QCD is possible in the context
of the full dimension-six Lagrangian of the SM. Higher
order computations in effective field theories, which are
renormalizable only order by order in 1/Λ, Λ being the
scale of new physics, present novel technical challenges.
In general, UV divergences generated by one operator
at a certain order of 1/Λ have to be absorbed also by
other effective operators. As a result, the full set of
relevant operators together with their operator mixing
effects need to be considered simultaneously, and appro-
priate UV counterterms have to be implemented in the
calculation. Our method and its implementation are fully
general and can cover arbitrary NLO calculations in the
complete dimension-six Lagrangian of the SM.

II. FRAMEWORK

The FCN couplings of the top quark can be
parametrized using either fully gauge-symmetric
dimension-six operators [19, 20] or dimension-four and
dimension-five operators in the electroweak broken
phase [6, 21]. The latter approach has some intrinsic
limitations [22], and we will use the dimension-six op-
erators throughout the paper. The effective Lagrangian
can be written as

LEFT = LSM +
∑

i

Ci

Λ2
Oi +H.c. (1)

In this work we consider qtB couplings at the dimension-
six level. The relevant operators must involve one top
quark and one light quark. They are

O(3,i+3)
ϕq = i

(

ϕ†←→D I
µϕ

)

(q̄iγ
µτIQ)

O(1,i+3)
ϕq = i

(

ϕ†←→D µϕ
)

(q̄iγ
µQ)

O(i+3)
ϕu = i

(

ϕ†←→D µϕ
)

(ūiγ
µt)

O(i3)
uB = gY (q̄iσ

µνt)ϕ̃Bµν , O(i3)
uW = gW (q̄iσ

µντIt)ϕ̃W I
µν

O(i3)
uG = gs(q̄iσ

µνTAt)ϕ̃GA
µν , O(i3)

uϕ = (ϕ†ϕ)(q̄it)ϕ̃ ,

where the operator notation is consistent with Ref. [23],
with additional flavor indices. On the right hand side,
the subscript i = 1, 2 represents the generation of the
light quark fields. ui and qi are single and doublet quark
fields of the first two generations, respectively, while t
and Q are of the third generation. ϕ is the Higgs dou-
blet. A diagonal CKM matrix is assumed. The group
generators are normalized such that Tr

(

TATB
)

= δAB/2

and Tr
(

τIτJ
)

= 2δIJ , and ϕ†←→D µϕ ≡ ϕ†Dµϕ−Dµϕ†ϕ,

ϕ†←→D I
µϕ ≡ ϕ†τIDµϕ − Dµϕ†τIϕ. For operators with

(i3) superscript, a similar set of operators with (3i) fla-
vor structure can be obtained by interchanging (i3) ↔
(3i), t ↔ ui and Q ↔ qi. The first three operators

give rise to V/A couplings of Z to a flavor-changing cur-
rent, which were not considered in previous calculations

of Ref. [10]. The O(i3,3i)
uB , O(i3,3i)

uW and O(i3,3i)
uG operators

correspond to weak- and color-dipole couplings. In par-

ticular, O(i3,3i)
uG could induce the production pp → th,

and it was not included in [11]. The last operator gives
rise to flavor-changing Yukawa couplings. This operator

is actually implemented as O(i3)
uϕ = (ϕ†ϕ− v2/2)(q̄it)ϕ̃ to

avoid any need for a field redefinition in order to remove
the tree-level q − t mixing. It is interesting to note that
all qtB interactions receive contributions from operators
that involve the Higgs field, therefore they are also rel-
evant for constraining new physics in the Higgs sector.
Finally, we stress that four-fermion operators should also
be taken into account for a complete phenomenological
study of FCN interactions, see Ref. [? ]. Their implemen-
tation in the current framework is possible and is left for
future work.
In calculations at NLO in QCD, a renormalization

scheme needs to be specified, in particular for the
dimension-six operators. We adopt the MS scheme in
general, except for masses and wave functions that are
renormalized on shell. Specifically, this requires the in-
troduction of off-diagonal wave function counterterms to
cancel the u − t or c − t two-point functions generated

by O(i3,3i)
uG . We work in the five-flavor scheme where the

b-quark mass is neglected, and we subtract the massless
modes according to the MS scheme and the top at zero
momentum for the strong coupling constant renormaliza-
tion [24]. At order αS these operators will not mix with
the SM terms, but mix among themselves. The running
of these coefficients is given by the renormalization group
equations

dCi(µ)

dlnµ
= γijCj(µ) , (2)

where γij for C
(13)
uG , C(13)

uW , C(13)
uB and C(13)

uϕ can be written
as a matrix [17, 25]:

γ =
αS

π

⎛

⎜

⎜

⎝

1
3 0 0 0
2
3

2
3 0 0

10
9 0 2

3 0
4y2t 0 0 −2

⎞

⎟

⎟

⎠

, (3)

where yt is the top-quark Yukawa coupling. The same γij
matrix applies for the operators with either (i3) or (3i)

superscript. The operators O(3,i+3)
ϕq , O(1,i+3)

ϕq and O(i+3)
ϕu

do not have any anomalous dimension due to current
conservation and do not mix with other operators.

III. IMPLEMENTATION AND CHECKS

The operators are implemented in the UFO format
[26], using the FeynRules package [12]. The evaluation
of the loop corrections in MadGraph5 aMC@NLO re-
quires two additional elements, the UV counterterms and
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fields of the first two generations, respectively, while t
and Q are of the third generation. ϕ is the Higgs dou-
blet. A diagonal CKM matrix is assumed. The group
generators are normalized such that Tr

(

TATB
)

= δAB/2

and Tr
(

τIτJ
)

= 2δIJ , and ϕ†←→D µϕ ≡ ϕ†Dµϕ−Dµϕ†ϕ,

ϕ†←→D I
µϕ ≡ ϕ†τIDµϕ − Dµϕ†τIϕ. For operators with

(i3) superscript, a similar set of operators with (3i) fla-
vor structure can be obtained by interchanging (i3) ↔
(3i), t ↔ ui and Q ↔ qi. The first three operators

give rise to V/A couplings of Z to a flavor-changing cur-
rent, which were not considered in previous calculations

of Ref. [10]. The O(i3,3i)
uB , O(i3,3i)

uW and O(i3,3i)
uG operators

correspond to weak- and color-dipole couplings. In par-

ticular, O(i3,3i)
uG could induce the production pp → th,

and it was not included in [11]. The last operator gives
rise to flavor-changing Yukawa couplings. This operator

is actually implemented as O(i3)
uϕ = (ϕ†ϕ− v2/2)(q̄it)ϕ̃ to

avoid any need for a field redefinition in order to remove
the tree-level q − t mixing. It is interesting to note that
all qtB interactions receive contributions from operators
that involve the Higgs field, therefore they are also rel-
evant for constraining new physics in the Higgs sector.
Finally, we stress that four-fermion operators should also
be taken into account for a complete phenomenological
study of FCN interactions, see Ref. [? ]. Their implemen-
tation in the current framework is possible and is left for
future work.
In calculations at NLO in QCD, a renormalization

scheme needs to be specified, in particular for the
dimension-six operators. We adopt the MS scheme in
general, except for masses and wave functions that are
renormalized on shell. Specifically, this requires the in-
troduction of off-diagonal wave function counterterms to
cancel the u − t or c − t two-point functions generated

by O(i3,3i)
uG . We work in the five-flavor scheme where the

b-quark mass is neglected, and we subtract the massless
modes according to the MS scheme and the top at zero
momentum for the strong coupling constant renormaliza-
tion [24]. At order αS these operators will not mix with
the SM terms, but mix among themselves. The running
of these coefficients is given by the renormalization group
equations

dCi(µ)

dlnµ
= γijCj(µ) , (2)

where γij for C
(13)
uG , C(13)

uW , C(13)
uB and C(13)

uϕ can be written
as a matrix [17, 25]:

γ =
αS

π

⎛

⎜

⎜

⎝

1
3 0 0 0
2
3

2
3 0 0

10
9 0 2

3 0
4y2t 0 0 −2

⎞

⎟

⎟

⎠

, (3)

where yt is the top-quark Yukawa coupling. The same γij
matrix applies for the operators with either (i3) or (3i)

superscript. The operators O(3,i+3)
ϕq , O(1,i+3)

ϕq and O(i+3)
ϕu

do not have any anomalous dimension due to current
conservation and do not mix with other operators.

III. IMPLEMENTATION AND CHECKS

The operators are implemented in the UFO format
[26], using the FeynRules package [12]. The evaluation
of the loop corrections in MadGraph5 aMC@NLO re-
quires two additional elements, the UV counterterms and

4

LO NLO

Coefficient σ[fb] Scale uncertainty σ[fb] Scale uncertainty

C
(13)
uB = 1.0 546 +14.4% -11.8% 764 +6.9% -6.4%

C
(13)
uG = 0.04 1.00 +12.0% -10.2% 2.34 +15.2% -11.5%

C
(13)
uG , veto 0.739 +11.50% -9.8% 1.19 +7.7% -6.5%

C
(23)
uB = 1.9 152 +10.6% -9.6% 258 +6.8% -6.0%

C
(23)
uG = 0.09 0.590 +12.1% -11.1% 1.95 +16.4% -12.3%

C
(23)
uG , veto 0.457 +12.2% -11.2% 1.04 +10.3% -8.9%

TABLE I. Total cross sections for pp → tγ. Contributions
from operators with (31), (32) superscripts are not displayed,
but they are the same as their (13), (23) counterparts. Con-

tributions from O
(i3),(3i)
uW are equal to those from O

(i3),(3i)
uB .

LO NLO

Coefficient σ[fb] Scale uncertainty σ[fb] Scale uncertainty

C
(1+3)
ϕu = 1.0 905 +12.9% -10.9% 1163 +6.2% -5.6%

C
(13)
uW = 0.9 1737 +11.5% -9.8% 2270 +6.6% -6.2%

C
(13)
uG = 0.04 30.1 +17.5% -13.8% 36.0 +3.8% -5.2%

C
(31)
uG = 0.04 29.4 +17.7% -13.9% 34.9 +3.4% -5.1%

C
(2+3)
ϕu = 1.0 73.2 +10.4% -9.3% 107 +6.5% -5.9%

C
(23)
uW = 1.1 172 +7.5% -7.2% 255 +6.1% -5.2%

C
(23)
uG = 0.09 6.92 +11.3% -9.9% 10.6 +5.8% -5.4%

C
(32)
uG = 0.09 6.58 +11.5% -10.1% 10.0 +5.7% -5.3%

TABLE II. Total cross sections for pp → tZ. Contributions
from operators O(31),(32)

uW are the same as those from O
(13),(23)
uW .

Contributions from O
(i3),(3i)
uB are equal to those from O

(i3),(3i)
uW

times tan4 θW . Contributions from O
(j,i+3)
ϕq are the same as

those from O
(i+3)
ϕu .

To illustrate the importance of keeping all operators
possibly contributing to a given final state, we illustrate

in Fig. 3 the interference effect between O(23)
uW and O(23)

uG ,
in pp → tZ production. As a matter of fact, the inter-
ference between these two operators is large and gives
rise to a significant change in the rate as well as in the
distributions.
Finally, Fig. 4 shows an example where kinematic vari-

ables can be used to distinguish the contributions be-
tween different operators. The Higgs boson rapidity dis-
tribution in pp→ th for tuh coupling induced production

LO NLO

Coefficient σ[fb] Scale uncertainty σ[fb] Scale uncertainty

C
(13)
uϕ = 3.5 2603 +13.0% -11.0% 3858 +7.4% -6.7%

C
(13)
uG = 0.04 40.1 +16.5% -13.2% 50.7 +4.0% -5.2%

C
(23)
uϕ = 3.5 171 +9.7% -8.7% 310 +7.3% -6.3%

C
(23)
uG = 0.09 9.53 +11.0% -9.7% 16.6 +5.5% -5.1%

TABLE III. Total cross sections for pp → th. Contributions
from operators O

(3i)
uϕ and O

(3i)
uG are equal to those from O

(i3)
uϕ

and O
(i3)
uG , respectively.
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FIG. 2. The pT distribution of top quark in pp → tγ (top)
and in pp → th (bottom).

is more forward than that induced by the tug coupling.
The reason is that an incoming up quark, which is in
general more energetic than a gluon, can emit a forward
Higgs boson and turn into an off-shell top quark via a uth
vertex, while the same mechanism is not possible for the
utg mediated production. The same observable may also
be used to discriminate between uth and cth couplings,
as proposed in Ref. [39], because c and g have similar
PDFs.

VI. SUMMARY

Precision top-quark physics will be one of the priorities
at the next run of the LHC. The detection of new inter-
actions and in particular of FCN ones, will be among the
most promising searches for new physics. A consistent
framework to perform such searches is provided by the
dimension-six SM, i.e., the SM Lagrangian augmented
by all operators of dimension-six compatible with the
gauge symmetries of the SM. Bounding the coefficients
of such operators first (and possibly determining them
in case of deviations) requires accurate predictions for

Top FCNC

4

LO NLO

Coefficient σ[fb] Scale uncertainty σ[fb] Scale uncertainty

C
(13)
uB = 1.0 546 +14.4% -11.8% 764 +6.9% -6.4%

C
(13)
uG = 0.04 1.00 +12.0% -10.2% 2.34 +15.2% -11.5%

C
(13)
uG , veto 0.739 +11.50% -9.8% 1.19 +7.7% -6.5%

C
(23)
uB = 1.9 152 +10.6% -9.6% 258 +6.8% -6.0%

C
(23)
uG = 0.09 0.590 +12.1% -11.1% 1.95 +16.4% -12.3%

C
(23)
uG , veto 0.457 +12.2% -11.2% 1.04 +10.3% -8.9%

TABLE I. Total cross sections for pp → tγ. Contributions
from operators with (31), (32) superscripts are not displayed,
but they are the same as their (13), (23) counterparts. Con-

tributions from O
(i3),(3i)
uW are equal to those from O

(i3),(3i)
uB .

LO NLO

Coefficient σ[fb] Scale uncertainty σ[fb] Scale uncertainty

C
(1+3)
ϕu = 1.0 905 +12.9% -10.9% 1163 +6.2% -5.6%

C
(13)
uW = 0.9 1737 +11.5% -9.8% 2270 +6.6% -6.2%

C
(13)
uG = 0.04 30.1 +17.5% -13.8% 36.0 +3.8% -5.2%

C
(31)
uG = 0.04 29.4 +17.7% -13.9% 34.9 +3.4% -5.1%

C
(2+3)
ϕu = 1.0 73.2 +10.4% -9.3% 107 +6.5% -5.9%

C
(23)
uW = 1.1 172 +7.5% -7.2% 255 +6.1% -5.2%

C
(23)
uG = 0.09 6.92 +11.3% -9.9% 10.6 +5.8% -5.4%

C
(32)
uG = 0.09 6.58 +11.5% -10.1% 10.0 +5.7% -5.3%

TABLE II. Total cross sections for pp → tZ. Contributions
from operators O(31),(32)

uW are the same as those from O
(13),(23)
uW .

Contributions from O
(i3),(3i)
uB are equal to those from O

(i3),(3i)
uW

times tan4 θW . Contributions from O
(j,i+3)
ϕq are the same as

those from O
(i+3)
ϕu .

To illustrate the importance of keeping all operators
possibly contributing to a given final state, we illustrate

in Fig. 3 the interference effect between O(23)
uW and O(23)

uG ,
in pp → tZ production. As a matter of fact, the inter-
ference between these two operators is large and gives
rise to a significant change in the rate as well as in the
distributions.
Finally, Fig. 4 shows an example where kinematic vari-

ables can be used to distinguish the contributions be-
tween different operators. The Higgs boson rapidity dis-
tribution in pp→ th for tuh coupling induced production

LO NLO

Coefficient σ[fb] Scale uncertainty σ[fb] Scale uncertainty

C
(13)
uϕ = 3.5 2603 +13.0% -11.0% 3858 +7.4% -6.7%

C
(13)
uG = 0.04 40.1 +16.5% -13.2% 50.7 +4.0% -5.2%

C
(23)
uϕ = 3.5 171 +9.7% -8.7% 310 +7.3% -6.3%

C
(23)
uG = 0.09 9.53 +11.0% -9.7% 16.6 +5.5% -5.1%

TABLE III. Total cross sections for pp → th. Contributions
from operators O

(3i)
uϕ and O

(3i)
uG are equal to those from O

(i3)
uϕ

and O
(i3)
uG , respectively.
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FIG. 2. The pT distribution of top quark in pp → tγ (top)
and in pp → th (bottom).

is more forward than that induced by the tug coupling.
The reason is that an incoming up quark, which is in
general more energetic than a gluon, can emit a forward
Higgs boson and turn into an off-shell top quark via a uth
vertex, while the same mechanism is not possible for the
utg mediated production. The same observable may also
be used to discriminate between uth and cth couplings,
as proposed in Ref. [39], because c and g have similar
PDFs.

VI. SUMMARY

Precision top-quark physics will be one of the priorities
at the next run of the LHC. The detection of new inter-
actions and in particular of FCN ones, will be among the
most promising searches for new physics. A consistent
framework to perform such searches is provided by the
dimension-six SM, i.e., the SM Lagrangian augmented
by all operators of dimension-six compatible with the
gauge symmetries of the SM. Bounding the coefficients
of such operators first (and possibly determining them
in case of deviations) requires accurate predictions for

3

FIG. 1. Tree-level diagrams for pp → tV and pp → th. The
black dots represent contributions from color dipole operators
O

(i3,3i)
uG , while the shaded squares represent other operators.

the rational R2 terms which are required by the OPP
technique [27]. These are computed fully automatically
by the NLOCT [28] package, which has been extended
to handle EFT’s i.e., to compute the R2 and UV diver-
gent parts of amplitudes with integrals of arbitrary high
ranks. Currently, such calculations are limited to opera-
tors with up to two fermion fields. The determination of
the UV divergent part of the counterterms is obtained by
simply changing the sign of the UV divergent part of the
corresponding amplitude. This avoids the translations of
the counterterms vertices in the operator renormalization
constants and the associated basis reduction. However, it
is only valid when the dimension-six operators are renor-
malized in the MS scheme.
We have extensively checked our implementation by

evaluating the virtual contributions of ug → t, uγ → t,
uZ → t, uh → t and ug → th (with uth coupling only)
and comparing them with corresponding known analyt-
ical expressions numerically. In each case the results
agree. In addition we have checked the gauge invari-
ance of all virtual contributions, as well as the pole can-
cellation when combining virtual and real contributions.
When possible, we have also made comparisons with the
results for total cross sections for pp → tγ, tZ, th at the
fixed order of Refs. [9–11], finding consistent results.

IV. CALCULATION

As an application of our general framework to the phe-
nomenology of the top quark FCN at the LHC, we con-
sider three processes, pp → tγ, pp → tZ and pp → th.
The LO diagrams are shown in Fig. 1. Each process re-
ceives contributions from two different interactions, one
from utg coupling and the other from utB coupling. At
NLO in QCD the utg operator will mix with other op-
erators, and as a result a NLO calculation needs to be
carried out with the full set of operators.
Our numerical results are obtained by employing the

following input parameters

mZ = 91.1876 GeV, α = 1/127.9,

GF = 1.166370× 10−5 GeV−2,

mt = 172.5 GeV, mh = 125 GeV, Λ = 1 TeV. (4)

We use CTEQ6M for NLO and CTEQ6L for LO calcula-
tions respectively, with their respective values of αS [29].

The renormalization scale µr and factorization scale µf

are chosen to be mt +mB for the pp→ tB process, and
are allowed to vary independently by a factor of 0.5 to
2. In pp → tγ, we require the photon pT > 50 GeV
and its pseudorapidity |η| < 2.5. For the photon, we em-
ploy the isolation criterium of Ref. [30] with a radius of
0.4. The events are then showered with PYTHIA6 [31] or
HERWIG6 [32]. Finally, we have checked that the dou-
bly resonant diagrams with the antitop decaying through
FCN interactions have a small impact, yet they have been
removed from the real contributions, see Ref. [33].
Currently the best limits on top FCN couplings are

from the decay searches of t → qZ [34], t → qh [35, 36],
and the production searches of qg → t [37] and qg → tγ
[38]. To make a viable choice for the operator coefficients
in our calculation, we exploit the results of Ref. [22] that
are based on a global fit on the full set of current limits

Coefficient Limit Coefficient Limit Relevant
production

C(j,i+3)
ϕq 1.05 C(i+3)

ϕu 1.05 tZ

C(13,31)
uG 0.041 C(23,32)

uG 0.093 tγ, tZ, th

C(13,31)
uW 0.92 C(23,32)

uW 1.1 tγ, tZ

C(13,31)
uB 1.0 C(23,32)

uB 1.9 tγ, tZ

C(13,31)
uϕ 3.5 C(23,32)

uϕ 3.5 th

where i = 1, 2, j = 1, 3, and the limits apply to the mod-
uli of the coefficients, assuming Λ = 1 TeV. Each limit
is obtained by marginalizing over all the other operator
coefficients. In this work, we choose real and positive val-
ues for the coefficients that do not exceed these bounds.
The total cross sections at the LHC at

√
s = 13 TeV cor-

responding to each operator are displayed in Tables I, II
and III. The scale uncertainties are also displayed. As ex-
pected the K factors are generally sizeable and the scale
uncertainties are significantly reduced at NLO. This is

the case for all operators except for O(i3,3i)
uG in tγ produc-

tion. This process has an unusually large K factor when

the flavor-changing coupling is coming from O(i3,3i)
uG . As

shown in Table I, vetoing any extra jet with pT > 50 GeV
reduces the K factor from 2.3 (3.3) to 1.6 (2.3) for utg
(ctg) coupling as well as the uncertainties for this pro-
duction mechanism. Note also that a jet veto can help
to improve the signal over the SM background ratio, for
all three processes.

V. DIFFERENTIAL CROSS SECTIONS

The pT distributions of the top quark in pp→ tγ and
pp→ th are shown in Fig. 2. Both LO and NLO signals
are displayed, together with the SM backgrounds from
pp→ tγj and thj, which are generated at NLO with the

same parameters. In all cases the O(13)
uG contributions

are very small due to the stringent limit from ug → t
production. Therefore, the pp → tX processes appear
more as confirmation than as a discovery channel for the
chromomagnetic operator.

Small when constraints from
              are taken into
 account
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Computations at next-to-leading order in the Standard Model offer new technical challenges in
the presence of higher dimensional operators. We introduce a framework that, starting from the
top-quark effective field theory at dimension six, allows one to make predictions for cross sections
as well as distributions in a fully automatic way. As an application, we present the first complete
results at next-to-leading order in QCD for flavor-changing neutral interactions including parton
shower effects, for tZ, th, tγ associated production at the LHC.
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I. INTRODUCTION

The millions of top quarks already produced at the
LHC together with the tens of millions expected in
the coming years will provide a unique opportunity to
search for interactions beyond the Standard Model (SM).
Among them flavor-changing neutral (FCN) interactions
are of special interest. In the SM, FCN interactions can
be generated at one loop, yet they turn out to be sup-
pressed by the Glashow-Iliopoulos-Maiani mechanism [1].
The resulting FCN decay modes of the top quark have
branching ratios of order 10−12–10−15 [2–4]. Thus, any
signal for top-quark FCN processes at a measurable rate
would immediately indicate new physics in the top-quark
sector. These processes have been searched for already
at different colliders, including LEP2, HERA, Tevatron
and more recently at the LHC [5]. So far no signal has
been observed and limits have been set on the coupling
strengths.

The most important top-quark FCN processes at the
LHC include decay processes such as t → qB and pro-
duction processes such as qg → t and qg → tB, where q is
a u or c quark and B is a neutral boson, i.e., B = γ, Z, h.
In general, the decay processes are equally sensitive to
utB and ctB couplings, while the production modes are
less sensitive to ctB, but may provide a better handle on
a certain class of utB couplings [6]. In addition, com-
pared to decay modes, single-top production can provide
more information. First, it makes a wider range of kine-
matic variables accessible, helping in the discrimination
of the light quark flavors involved and the structure of the
qtB couplings. Second, it probes interactions at higher
scales where new physics effects could be enhanced. In
general, being somewhat complementary, both decay and
production processes are used for setting the most strin-
gent constraints.

Leading order (LO) predictions for the production

processes suffer from large uncertainties due to miss-
ing higher order corrections. To curb such uncertainties,
next-to-leading order (NLO) predictions in QCD for this
class of processes have started to be calculated in re-
cent years [7–11], providing a much better, yet incom-
plete, picture of their relevance. In general, corrections
are found to be large, of order 30% to 80% and to lead
to considerable reductions of the residual theoretical un-
certainties. Both aspects are important in bounding and
possibly extracting top-quark FCN couplings at the LHC.

In this paper we present the first automatic computa-
tions for top-quark FCN production processes, qg → tB
with B = γ, Z, h, at NLO in QCD, by implementing all
flavor-changing dimension-six fully gauge-invariant oper-
ators in FeynRules [12] and then passing this informa-
tion into the MadGraph5 aMC@NLO framework [13].
Compared to previous works [9–11, 14–17], the salient
features of our results can be summarized as follows. Our
study is the first where all relevant dimension-six opera-
tors for this class of processes (associated production with
a boson) are consistently taken into account. In partic-
ular the vector-current like tqZ coupling in ug → tZ,
and the tug and tugh couplings in ug → th are included
here for the first time. Second, our results are obtained
via a fully automatic chain of tools that allows one to
go directly from the Lagrangian to the hard events by
performing its renormalization at one loop, and then
passing the corresponding Feynman rules to the Mad-

Graph5 aMC@NLO to generate all the elements nec-
essary for a computation at NLO in QCD. In particular,
other processes triggered by the same set of operators
can be seamlessly computed within the same framework.
Third, event generation is also automatically available
at NLO accuracy, by matching it to the parton shower
via the MC@NLO formalism [18] so that results can be
employed in realistic experimental simulations. Finally,
another important aspect of this work is that it provides
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I. INTRODUCTION

The millions of top quarks already produced at the
LHC together with the tens of millions expected in
the coming years will provide a unique opportunity to
search for interactions beyond the Standard Model (SM).
Among them flavor-changing neutral (FCN) interactions
are of special interest. In the SM, FCN interactions can
be generated at one loop, yet they turn out to be sup-
pressed by the Glashow-Iliopoulos-Maiani mechanism [1].
The resulting FCN decay modes of the top quark have
branching ratios of order 10−12–10−15 [2–4]. Thus, any
signal for top-quark FCN processes at a measurable rate
would immediately indicate new physics in the top-quark
sector. These processes have been searched for already
at different colliders, including LEP2, HERA, Tevatron
and more recently at the LHC [5]. So far no signal has
been observed and limits have been set on the coupling
strengths.

The most important top-quark FCN processes at the
LHC include decay processes such as t → qB and pro-
duction processes such as qg → t and qg → tB, where q is
a u or c quark and B is a neutral boson, i.e., B = γ, Z, h.
In general, the decay processes are equally sensitive to
utB and ctB couplings, while the production modes are
less sensitive to ctB, but may provide a better handle on
a certain class of utB couplings [6]. In addition, com-
pared to decay modes, single-top production can provide
more information. First, it makes a wider range of kine-
matic variables accessible, helping in the discrimination
of the light quark flavors involved and the structure of the
qtB couplings. Second, it probes interactions at higher
scales where new physics effects could be enhanced. In
general, being somewhat complementary, both decay and
production processes are used for setting the most strin-
gent constraints.

Leading order (LO) predictions for the production

processes suffer from large uncertainties due to miss-
ing higher order corrections. To curb such uncertainties,
next-to-leading order (NLO) predictions in QCD for this
class of processes have started to be calculated in re-
cent years [7–11], providing a much better, yet incom-
plete, picture of their relevance. In general, corrections
are found to be large, of order 30% to 80% and to lead
to considerable reductions of the residual theoretical un-
certainties. Both aspects are important in bounding and
possibly extracting top-quark FCN couplings at the LHC.

In this paper we present the first automatic computa-
tions for top-quark FCN production processes, qg → tB
with B = γ, Z, h, at NLO in QCD, by implementing all
flavor-changing dimension-six fully gauge-invariant oper-
ators in FeynRules [12] and then passing this informa-
tion into the MadGraph5 aMC@NLO framework [13].
Compared to previous works [9–11, 14–17], the salient
features of our results can be summarized as follows. Our
study is the first where all relevant dimension-six opera-
tors for this class of processes (associated production with
a boson) are consistently taken into account. In partic-
ular the vector-current like tqZ coupling in ug → tZ,
and the tug and tugh couplings in ug → th are included
here for the first time. Second, our results are obtained
via a fully automatic chain of tools that allows one to
go directly from the Lagrangian to the hard events by
performing its renormalization at one loop, and then
passing the corresponding Feynman rules to the Mad-

Graph5 aMC@NLO to generate all the elements nec-
essary for a computation at NLO in QCD. In particular,
other processes triggered by the same set of operators
can be seamlessly computed within the same framework.
Third, event generation is also automatically available
at NLO accuracy, by matching it to the parton shower
via the MC@NLO formalism [18] so that results can be
employed in realistic experimental simulations. Finally,
another important aspect of this work is that it provides
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a proof of principle that fully automatic computation of
cross sections at NLO in QCD is possible in the context
of the full dimension-six Lagrangian of the SM. Higher
order computations in effective field theories, which are
renormalizable only order by order in 1/Λ, Λ being the
scale of new physics, present novel technical challenges.
In general, UV divergences generated by one operator
at a certain order of 1/Λ have to be absorbed also by
other effective operators. As a result, the full set of
relevant operators together with their operator mixing
effects need to be considered simultaneously, and appro-
priate UV counterterms have to be implemented in the
calculation. Our method and its implementation are fully
general and can cover arbitrary NLO calculations in the
complete dimension-six Lagrangian of the SM.

II. FRAMEWORK

The FCN couplings of the top quark can be
parametrized using either fully gauge-symmetric
dimension-six operators [19, 20] or dimension-four and
dimension-five operators in the electroweak broken
phase [6, 21]. The latter approach has some intrinsic
limitations [22], and we will use the dimension-six op-
erators throughout the paper. The effective Lagrangian
can be written as

LEFT = LSM +
∑

i

Ci

Λ2
Oi +H.c. (1)

In this work we consider qtB couplings at the dimension-
six level. The relevant operators must involve one top
quark and one light quark. They are

O(3,i+3)
ϕq = i

(

ϕ†←→D I
µϕ

)

(q̄iγ
µτIQ)

O(1,i+3)
ϕq = i

(

ϕ†←→D µϕ
)

(q̄iγ
µQ)

O(i+3)
ϕu = i

(

ϕ†←→D µϕ
)

(ūiγ
µt)

O(i3)
uB = gY (q̄iσ

µνt)ϕ̃Bµν , O(i3)
uW = gW (q̄iσ

µντIt)ϕ̃W I
µν

O(i3)
uG = gs(q̄iσ

µνTAt)ϕ̃GA
µν , O(i3)

uϕ = (ϕ†ϕ)(q̄it)ϕ̃ ,

where the operator notation is consistent with Ref. [23],
with additional flavor indices. On the right hand side,
the subscript i = 1, 2 represents the generation of the
light quark fields. ui and qi are single and doublet quark
fields of the first two generations, respectively, while t
and Q are of the third generation. ϕ is the Higgs dou-
blet. A diagonal CKM matrix is assumed. The group
generators are normalized such that Tr

(

TATB
)

= δAB/2

and Tr
(

τIτJ
)

= 2δIJ , and ϕ†←→D µϕ ≡ ϕ†Dµϕ−Dµϕ†ϕ,

ϕ†←→D I
µϕ ≡ ϕ†τIDµϕ − Dµϕ†τIϕ. For operators with

(i3) superscript, a similar set of operators with (3i) fla-
vor structure can be obtained by interchanging (i3) ↔
(3i), t ↔ ui and Q ↔ qi. The first three operators

give rise to V/A couplings of Z to a flavor-changing cur-
rent, which were not considered in previous calculations

of Ref. [10]. The O(i3,3i)
uB , O(i3,3i)

uW and O(i3,3i)
uG operators

correspond to weak- and color-dipole couplings. In par-

ticular, O(i3,3i)
uG could induce the production pp → th,

and it was not included in [11]. The last operator gives
rise to flavor-changing Yukawa couplings. This operator

is actually implemented as O(i3)
uϕ = (ϕ†ϕ− v2/2)(q̄it)ϕ̃ to

avoid any need for a field redefinition in order to remove
the tree-level q − t mixing. It is interesting to note that
all qtB interactions receive contributions from operators
that involve the Higgs field, therefore they are also rel-
evant for constraining new physics in the Higgs sector.
Finally, we stress that four-fermion operators should also
be taken into account for a complete phenomenological
study of FCN interactions, see Ref. [? ]. Their implemen-
tation in the current framework is possible and is left for
future work.
In calculations at NLO in QCD, a renormalization

scheme needs to be specified, in particular for the
dimension-six operators. We adopt the MS scheme in
general, except for masses and wave functions that are
renormalized on shell. Specifically, this requires the in-
troduction of off-diagonal wave function counterterms to
cancel the u − t or c − t two-point functions generated

by O(i3,3i)
uG . We work in the five-flavor scheme where the

b-quark mass is neglected, and we subtract the massless
modes according to the MS scheme and the top at zero
momentum for the strong coupling constant renormaliza-
tion [24]. At order αS these operators will not mix with
the SM terms, but mix among themselves. The running
of these coefficients is given by the renormalization group
equations

dCi(µ)

dlnµ
= γijCj(µ) , (2)

where γij for C
(13)
uG , C(13)

uW , C(13)
uB and C(13)

uϕ can be written
as a matrix [17, 25]:

γ =
αS

π

⎛

⎜

⎜

⎝

1
3 0 0 0
2
3

2
3 0 0

10
9 0 2

3 0
4y2t 0 0 −2

⎞

⎟

⎟

⎠

, (3)

where yt is the top-quark Yukawa coupling. The same γij
matrix applies for the operators with either (i3) or (3i)

superscript. The operators O(3,i+3)
ϕq , O(1,i+3)

ϕq and O(i+3)
ϕu

do not have any anomalous dimension due to current
conservation and do not mix with other operators.

III. IMPLEMENTATION AND CHECKS

The operators are implemented in the UFO format
[26], using the FeynRules package [12]. The evaluation
of the loop corrections in MadGraph5 aMC@NLO re-
quires two additional elements, the UV counterterms and
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perform the matching between fixed-order NLO calcu-
lations and PS, hence making event generation possible.

3. Production at LHC

We now present predictions for the production of a
750 GeV spin-2 particle Y2 for a wide range of produc-
tion channels that could be relevant at the LHC with
a center-of-mass energy of

p
s =13 TeV. The (N)LO

total cross sections of various Y2 production processes
are given in Table 2 and summarised in Figure 1. We
consider a minimal “basis” of predictions, the univer-
sal couplings (( 1

⇤
, 2
⇤

) = (1, 1) TeV�1) and two non-
universal couplings cases (( 1

⇤
, 2
⇤

) = (1, 0), (0, 1) TeV�1)
where the definition of 1 and 2 are given in Table 1.

We have employed NLO PDF4LHC15 [52] set with
30+2 members to estimate the PDF and ↵s uncertainties.
Missing higher-order QCD corrections are estimated by
independently varying the renormalization scale µR and
factorization scale µF between 1/2µ0 to 2µ0, µ0 being
the sum of the transverse masses of the final states. In
Table 2, the quoted uncertainties come from scale vari-
ation, PDF and ↵s, respectively. The last entry gives the
parametric variation of the cross section when the res-
onance mass is varied between mY2 = 750 ⌥ 10 GeV.
Relevant SM parameters are the top mass mt = 173.3
GeV, the Z-boson mass mZ = 91.1876 GeV, the W

±

mass mW = 79.82436 GeV, the electromagnetic cou-
pling constant ↵�1(mZ) = 127.9, and zero widths for all
particles. For simplicity, we adopt the 5-flavour scheme
and the CKM mixing matrix set to unity.

Cross sections for i) pp ! Y2 + j, ii) pp ! Y2 + j j

and iii) pp ! Y2 + � require a jet (or photon) defini-
tion and kinematical cuts. The jets are defined by the

Process Couplings set
pp! Y2,Y2 + j,Y2 + j j 1 = g, 2 = q,t

pp! Y2 + tt̄ 1 = g,q, 2 = t
pp! Y2 + Z 1 = g,q,t, 2 = B,W,H

pp! Y2 +W
± 1 = g,q,t, 2 = B,W,H

pp! Y2 + � 1 = g,q,t, 2 = B,W,H
pp! Y2 + H 1 = g,q,t, 2 = B,W,H

Y2 ! j j 1 = g, 2 = q,t
Y2 ! tt̄ 1 = g, 2 = t

Table 1: Definition of the couplings 1,2 for different processes.

anti-kT algorithm [53] as implemented in FASTJET [54]
with R = 0.4. We also require cuts on the transverse
momentum pT ( j) and the pseudorapidity ⌘( j) of jets.
The photon is required to be isolated using Frixione’s
criterion [55], where the isolation parameters used in
Eq. (3.4) of Ref. [55] have been set to ✏� = 1, n = 1, �0 =
0.4. Cuts are chosen on a process-dependent basis: i)
pT ( j) > 100 GeV, ii) pT ( j) > 50 GeV and |⌘( j)| < 4.5
and M( j1, j2) > 400 GeV, iii) pT (�) > 50 GeV and
|⌘(�)| < 2.5.

Several sources of theoretical uncertainties have been
considered. As expected, the PDF and the paramet-
rical ↵s uncertainties strongly depend on the process.
�(pp ! Y2 + tt̄) suffers from the largest PDF uncer-
tainty, 7% � 10%, which is comparable in size to the
scale uncertainty and due to the relatively poor knowl-
edge of the gluon PDFs at large values of the Bjorken
x. �(pp ! Y2 + tt̄) and �(pp ! Y2 + j j), starting
at order ↵2

s
, are also sensitive to the ↵s parametric un-

certainty, while for all other processes it is negligible.
The cross section dependence on the mass of the reso-
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perform the matching between fixed-order NLO calcu-
lations and PS, hence making event generation possible.
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We now present predictions for the production of a
750 GeV spin-2 particle Y2 for a wide range of produc-
tion channels that could be relevant at the LHC with
a center-of-mass energy of
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total cross sections of various Y2 production processes
are given in Table 2 and summarised in Figure 1. We
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where the definition of 1 and 2 are given in Table 1.

We have employed NLO PDF4LHC15 [52] set with
30+2 members to estimate the PDF and ↵s uncertainties.
Missing higher-order QCD corrections are estimated by
independently varying the renormalization scale µR and
factorization scale µF between 1/2µ0 to 2µ0, µ0 being
the sum of the transverse masses of the final states. In
Table 2, the quoted uncertainties come from scale vari-
ation, PDF and ↵s, respectively. The last entry gives the
parametric variation of the cross section when the res-
onance mass is varied between mY2 = 750 ⌥ 10 GeV.
Relevant SM parameters are the top mass mt = 173.3
GeV, the Z-boson mass mZ = 91.1876 GeV, the W

±

mass mW = 79.82436 GeV, the electromagnetic cou-
pling constant ↵�1(mZ) = 127.9, and zero widths for all
particles. For simplicity, we adopt the 5-flavour scheme
and the CKM mixing matrix set to unity.

Cross sections for i) pp ! Y2 + j, ii) pp ! Y2 + j j

and iii) pp ! Y2 + � require a jet (or photon) defini-
tion and kinematical cuts. The jets are defined by the

Process Couplings set
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Y2 ! j j 1 = g, 2 = q,t
Y2 ! tt̄ 1 = g, 2 = t

Table 1: Definition of the couplings 1,2 for different processes.

anti-kT algorithm [53] as implemented in FASTJET [54]
with R = 0.4. We also require cuts on the transverse
momentum pT ( j) and the pseudorapidity ⌘( j) of jets.
The photon is required to be isolated using Frixione’s
criterion [55], where the isolation parameters used in
Eq. (3.4) of Ref. [55] have been set to ✏� = 1, n = 1, �0 =
0.4. Cuts are chosen on a process-dependent basis: i)
pT ( j) > 100 GeV, ii) pT ( j) > 50 GeV and |⌘( j)| < 4.5
and M( j1, j2) > 400 GeV, iii) pT (�) > 50 GeV and
|⌘(�)| < 2.5.

Several sources of theoretical uncertainties have been
considered. As expected, the PDF and the paramet-
rical ↵s uncertainties strongly depend on the process.
�(pp ! Y2 + tt̄) suffers from the largest PDF uncer-
tainty, 7% � 10%, which is comparable in size to the
scale uncertainty and due to the relatively poor knowl-
edge of the gluon PDFs at large values of the Bjorken
x. �(pp ! Y2 + tt̄) and �(pp ! Y2 + j j), starting
at order ↵2

s
, are also sensitive to the ↵s parametric un-

certainty, while for all other processes it is negligible.
The cross section dependence on the mass of the reso-
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determination of its quantum numbers to the form and
strength of its couplings, will require the best predic-
tions to be available to the experimental community.

The aim of this Letter is to provide for the first time a
fully general and process independent implementation
of the Lagrangian of a generic spin-2 particle so that
all the relevant production channels for the LHC can
be accurately simulated at NLO in QCD and to present
results for cross sections and distributions for the pro-
duction of the 750 GeV spin-2 resonance at the LHC 13
TeV.

2. Theoretical framework

We consider the effective field theory of a massive
spin-2 particle Y2 interacting with the SM fields. The
kinetic term of Y2 can be described by the well-known
Fierz-Pauli Lagrangian, with the positive-energy condi-
tion @µY

µ⌫
2 = 0, and the interactions with SM fields are

(V is a gauge field, while f are matter fields )

LY2
V,f = �

V, f

⇤
T

V, f
µ⌫ Y

µ⌫
2 ,

where T
V

µ⌫ (T f

µ⌫) are the energy-momentum tensors of V

( f ), respectively, i.e.,

T
V

µ⌫ = �gµ⌫

"
�1

4
F
⇢�

F⇢� + �mV ,0

 
(@⇢@�V�) V⇢ +

1
2

⇣
@⇢V⇢

⌘2
!#

� F
⇢
µF⌫⇢ + �mV ,0

h⇣
@µ@

⇢
V⇢

⌘
V⌫ +

⇣
@⌫@

⇢
V⇢

⌘
Vµ

i
,

T
f

µ⌫ = �gµ⌫

"
 ̄ f

⇣
i�⇢D⇢ � mf

⌘
 f �

1
2
@⇢

⇣
 ̄ f i�⇢ f

⌘#

+

"
1
2
 ̄ f i�µD⌫ f �

1
4
@µ

⇣
 ̄ f i�⌫ f

⌘
+ (µ$ ⌫)

#
,

where the indices of other possible quantum numbers
(such as colour) are understood and Fµ⌫ is the field
strength of V . In the SM, the gauge fields V are
SU(2)L⇥U(1)Y ElectroWeak (EW) gauge bosons (W, B)
or the SU(3)C gluon g, while the matter fields f are
quarks, leptons and left-handed neutrinos. The gauge-
fixed term proportional to the Kronecker delta function
�mV ,0 in T

V

µ⌫ indicates that it is needed only when V is
massless mV = 0 (i.e., V = g, �). The Y2 can also inter-
act with the SM Higgs doublet � via

LY2
�
= �H

⇤
T
�
µ⌫Y
µ⌫
2 ,

where the energy-momentum tensor T
�
µ⌫ is

T
�
µ⌫ = Dµ�

†
D⌫� + D⌫�

†
Dµ� � gµ⌫(D⇢�†D⇢� � V(�)) .

After spontaneous symmetry breaking, one gets the
mass eigenstates of EW bosons (Z,W±, �) and SM
Higgs boson H. In addition, when working in the Feyn-
man gauge and at 1-loop level, the extra interaction of
Y2 and Fadeev-Popov (FP) ghost fields is necessary (e.g.
Refs. [35, 36]),

LY2
FP = �

V

⇤
T

FP
µ⌫ Y

µ⌫
2 ,

where

T
FP
µ⌫ = �gµ⌫

h
(@⇢!̄a)

⇣
@⇢!

a
⌘
� gs f

abc (@⇢!̄a)!b
V

c

⇢

i

+
h⇣
@µ!̄

a
⌘

(@⌫!a) � gs f
abc

⇣
@µ!̄

a
⌘
!b

V
c

⌫ + (µ$ ⌫)
i
,

! being the FP ghost of the gluon field V = g and gs the
strong coupling constant.

Our implementation builds upon the FEYNRULES
package [37, 38] and the NLOCT program [39] which
are used to generate the UFO model [40] as well as
the counterterms for the renormalization and the ratio-
nal term R2. Some extended functionalities have been
implemented in NLOCT to handle the effective La-
grangian of a spin-2 particle. A point worth of stress-
ing concerns the renormalisation. With universal cou-
plings, e.g, g = q no extra renormalisation procedure
is needed beyond the usual ones of the SM as the spin-2
current is conserved. On the contrary, for non-universal
couplings, the spin-2 current is not conserved and spe-
cific renormalisation constants need to be introduced to
cancel left-over ultraviolet divergences [23]. These ex-
tra couplings are renormalised as

�g =
↵s

3⇡
TF

X

q

⇣
g � q

⌘ 0BBBBB@
1
✏
� �E + log 4⇡ + log

µ2
R

m
2
Y2

1
CCCCCA ,

�q =
2↵s

3⇡
CF

⇣
q � g

⌘ 0BBBBB@
1
✏
� �E + log 4⇡ + log

µ2
R

m
2
Y2

1
CCCCCA ,

by NLOCT, where CF =
4
3 ,TF =

1
2 . Our implementa-

tion is general and allows for models with non-universal
couplings case to be studied at NLO accuracy.

The corresponding spin-2 UFO model [41] is di-
rectly employable in the MADGRAPH5 aMC@NLO
framework [42] to perform phenomenological studies
at NLO QCD accuracy including matching to PS. One-
loop contributions are calculated numerically by the
MADLOOP module [43] with the tensor integrand-level
reduction method [44, 45] that was implemented in
NINJA [46, 47]. The real emission contributions are cal-
culated with the Frixione-Kuntz-Signer (FKS) subtrac-
tion method [48, 49] implemented in MADFKS [50].
Finally, the MC@NLO formalism [51] is employed to

2
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Restrictions/Assumptions
• Renormalizable Lagrangian, maximum dimension of 

the operators is 4

• Feynman Gauge

•  

• ‘t Hooft-Veltman scheme

• On-shell scheme for the masses and wave 
functions

• MS by default for everything else (zero-momentum 
possible for fermion gauge boson interaction)

{�µ, �5} = 0

EFT with max 4F (Evanescent op.)

any gauge (any rank for EFT)

MZ scheme for EW coupling
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Plan

• FeynRules in a nutshell

• New in FeynRules : 

• NLO

• AllYourBases (Liam Moore)

• Final remarks
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Operators bases in the SMEFTOperator Bases in the SMEFT

LBSM({�SM}, {XNP}) ! LSM({�SM}) +
Ci

⇤2 Oi({�SM}) + ...

• Below heavy thresholds, UV states decouple $ local operators Oi

• BSM model determines pattern of effective couplings
Ci
⇤2 = f (gX )

m2
X

D � 6 operators exhibit nontrivial relationships - O
(6)
i = k�O

(6)
j :

e.g. : (ū�µTAu)(̄t�µTAt) = 1
2(ū�

µt)(̄t�µu)� 1
6(ū�

µu)(̄t�µt)

Redundancies eliminated by fixing an operator basis. Several options:

• Model-independent choice e.g. Warsaw [Grzadkowski++ 1008.4884]

• Choose for UV interpretation e.g. SILH [Giudice++ 0703164]

• Simplicity of relationship to observables e.g. Mass [Gupta++ 1405.0181]

Liam Moore SLAC
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The Warsaw procedureThe Warsaw Procedure

Warsaw - tackle problem systematically at D = 6. In a nutshell:

• Divide operators into classifications according to generic building

blocks: {X , ,',D}, e.g. ('†')GA
µ⌫GA µ⌫

2 X2'2

• Impose a hierarchy: fewer Dµ =) ‘lower’ classification

• For each classification with nD � 1, use identities (e.g. IBP) to

express operators as O
(6)({'}) / �S0

�'i
, the classical EoM

• Use EoM as far as possible, e.g. i 6Du ! �†
u e'†q to eliminate Dµ

Result: proof all operators expressible as a linear combination of 59,

spread over 12 classifications.

But - when decomposition of redundant operators is necessary (e.g. in

matching, NLO calculations) it must be done by hand.

Liam Moore SLAC
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AllYourBases-Automatic basis reduction in FeynRulesAllYourBases - Automatic Basis Reduction in FeynRules

AllYourBases - get FeynRules to derive explicit decomposition of any

operator onto the Warsaw basis automatically:

Leff � CjO
(6)
j , O

(6)
j =

59P
i=1

ki jO
Warsaw

i

. . . by directed application of necessary identities at Lagrangian level:

• EoMs: (D⇢G⇢µ)
A
! gs

P�
q̄�µTAq

�
, . . .

• Fierz identities: MI
�MI

kj !
P

cJMJ
il M

J
kj ,M

J
2 {�A, T , ⌧, � . . .}

• Integration-by-Parts: A
µ(DµB) ! �(DµA)Bµ + T

• Gamma matrix algebra: ⌘µ⌫�⇢ ! �⌫⌘µ⇢ + i�µ�⌫⇢ + i✏�⌫⇢µ���5

• Bianchi identities: (DµX⌫⇢)A + (D⇢Xµ⌫)A + (D⌫X⇢µ)A = 0 . . .

Liam Moore SLAC
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A simple example
A simple example

O = ('†')(Dµ'†Dµ') can be integrated-by-parts to use EoM('):

(DµDµ')
j = µ2'j

� �
�
'†'

�
'j

� ē �†
e lj + "jk q̄k �uu � d̄ �†

dqj

. . . and the coefficients in the EoM become those of the decomposition

of this operator onto the Warsaw basis classifications, represented as:

'4D2
! '4D2 + '3 2 + '6 + µ2 '4 + T + E

• AllYourBases identifies and applies the necessary algebraic steps (in

this case, just integration-by-parts) recursively.

• Returns a FeynRules expression for the operator’s decomposition

In FeynRules syntax:

O = (Phibar[i]Phi[i])(DC[Phibar[j],mu] DC[Phi[j],mu])

. . . returns:

Liam Moore SLAC

FeynRules 6/ 1
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Returns:
Decompose. . .

DC[Phi[j], μ] DC[Phi†[l], μ] IndexDelta[j, i] IndexDelta[l, k] Phi[k] Phi†[i] +
del[del[Phi[l] Phi†[k], mu], mu] IndexDelta[j, i] IndexDelta[l, k] Phi†[i] Phi†[j] +

lR
-
[s1, p].LL[s2, j, r] yl[p, r]† IndexDelta[s1, s2] IndexDelta[j, i] IndexDelta[l, k]

Phi[l] Phi†[i] Phi†[k] + dR
-
[s1, p, a].QL[s2, j, r, b] yd[p, r]† IndexDelta[a, b]

IndexDelta[s1, s2] IndexDelta[j, i] IndexDelta[l, k] Phi[l] Phi†[i] Phi†[k] -
μ2 IndexDelta[j, i] IndexDelta[l, k] Phi[j] Phi[l] Phi†[i] Phi†[k] -

uR
-
[s1, r, a].QL[s2, m, p, b] yu[p, r]† Eps[j, m] IndexDelta[a, b]
IndexDelta[s1, s2] IndexDelta[i, j] IndexDelta[k, l] Phi[i] Phi[k] Phi†[l] -

μ2 IndexDelta[i, j] IndexDelta[k, l] Phi[i] Phi[k] Phi†[j] Phi†[l] + lam IndexDelta[j, i]
IndexDelta[l, n] IndexDelta[m, k] Phi[j] Phi[l] Phi[m] Phi†[i] Phi†[k] Phi†[n] +

lam IndexDelta[i, j] IndexDelta[k, m] IndexDelta[l, n] Phi[i] Phi[k] Phi[l]

Phi†[j] Phi†[m] Phi†[n] + QL
-
[s1, j, r, a].dR[s2, p, b] IndexDelta[a, b]

IndexDelta[s1, s2] IndexDelta[i, j] IndexDelta[k, l] Phi[i] Phi[k] Phi†[l] yd[p, r] +

LL
-
[s1, j, r].lR[s2, p] IndexDelta[s1, s2] IndexDelta[i, j] IndexDelta[k, l] Phi[i]

Phi[k] Phi†[l] yl[p, r] - QL
-
[s1, m, p, a].uR[s2, r, b] Eps[j, m] IndexDelta[a, b]

IndexDelta[s1, s2] IndexDelta[j, i] IndexDelta[j, k] Phi[l] Phi†[i] Phi†[k] yu[p, r]

Liam Moore SLAC
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AYB-in short
Summary

AllYourBases automates laborious procedure prevalent in EFT

calculations.

• Explicit operator relationships in L
(6)
SMEFT

are derived by a symbolic

implementation of the Warsaw procedure in FeynRules

• Applications in aiding calculations involving redundant operators,

e.g. matching calculations, renormalization, translating limits. . .

• Algorithm only partially tied to D = 6 SM, very feasible to generalise

to D > 6, non-SM theories in future. . .

• Currently in testing and validation. . .

Liam Moore SLAC
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Summary
• BSM in HE tools made easy in FeynRules

• Automatic BSM@NLO 

• Renormalizable (Public)

• For EFT (Private)

• Automatic basis reduction for EFT (under validation)


