SModelS

A tool for interpreting simplified model results from the LHC

http://smodels.hephy.at

Sabine Kraml LPSC Grenoble

University of Durham

MC4BSM 18-21 April 2018, IPPP Durham

Introduction

- It has become standard that ATLAS and CMS present the results of their BSM searches in terms of "simplified model" constraints.
- Simplified models (SMS) reduce full models with a plethora of particles and parameters to subsets with just 2-3 new states and a simple decay pattern.
- Concept used by SUSY, Exotics, DM searches
- Very convenient for optimising analyses that look for a particular final state, as well as for comparing the reach of different strategies.
- Understanding how SMS results constrain a realistic model with a multitude of parameters, relevant production channels and decay modes is, however, a non-trivial task.

Introduction

- It has become standard that ATLAS and CMS present the results of their BSM searches in terms of "simplified model" constraints.
- Simplified models (SMS) reduce full models with a plethora of particles and parameters to subsets with just 2-3 new states and a simple decay pattern.
- Concept used by SUSY, Exotics, DM searches
- Very convenient for optimising analyses that look for a particular final state, as well as for comparing the reach of different strategies.
- Understanding how SMS results constrain a realistic model with a multitude of parameters, relevant production channels and decay modes is, however, a non-trivial task.

what do these mean for my model?

(Re)interpretation methods

<u>Plus</u>

- Fast, suitable for scans and model surveys
- Easy classification of uncovered signatures

<u>Minus</u>

- Only simple topologies
- Availability of reusable results (useful format)
- Validity of SMS assumptions

[SModelS, Fastlim, XQCUT]

Use Simplified Model results SModelS

Machine learning techniques

-train an algorithm onto relation btw theory parameters and data

Fast and precise, but so far model-specific [SUSY-AI, SCINet]

Reproduce exp. analyses in MC event simulation

<u>Plus</u>

- More general, more precise - Can test prospects of improving an analysis

Minus - Need detailed information from experiment about each analysis - Need emulation of detector effects - Very CPU time consuming - So far only cut&count analyses

[CheckMATE, MadAnalysis5,

MadAnalysis5, Rivet, Gambit]

Sabine Kraml

- SModelS -

3

Simplified model idea : origins

- "MARMOSET: The Path from LHC Data to the New Standard Model via On-Shell Effective Theories" Arkani-Hamed et al., hep-ph/0703088
- "Simplified Models for a First Characterization of New Physics at the LHC" Alval, Toro, Schuster, 0810.3921

We propose a specific approach to characterizing the first robust evidence for new physics seen at the LHC. We present four "simplified models", each with a small set of unambiguous parameters, based on the phenomenology typical of SUSY but stripped of much of the complexity possible in the full parameter space of supersymmetry [....] use these models as a basis for comparison of data with theoretical models such as the MSSM.

The simplified models are expected to reproduce kinematics and multiplicities of observed particles remarkably well in a wide variety of SUSY-like new physics models — even when the spectrum of unstable particles in the full model is far more complex than the simplified model permits. The simplified model fits can then be used as a representation of the data, and can be compared to any full model by simulating both in a simple detector simulator. This last process of comparison can be done by phenomenologists outside the LHC collaborations.

- "Simplified Models for LHC New Physics Searches"

Alves et al., 1105.2838

Simplified model idea : origins

- "MARMOSET: The Path from LHC Data to the New Standard Model via On-Shell Effective Theories" Arkani-Hamed et al., hep-ph/0703088
- "Simplified Models for a First Characterization of New Physics at the LHC"

Alval, Toro, Schuster, 0810.3921

- "Simplified Models for LHC New Physics Searches"

Alves et al., 1105.2838

A model of new physics is defined by a TeV-scale effective Lagrangian describing its particle content and interactions. A simplified model is specifically designed to involve only a few new particles and interactions. Many simplified models are limits of more general new-physics scenarios, where all but a few particles are integrated out. Simplified models can equally well be described by a small number of parameters directly related to collider physics observables: particle masses (and their decay widths, which can sometimes be neglected), production cross-sections, and branching fractions.

Simplified models are clearly not model-independent, but they do avoid some pitfalls of model-dependence. The sensitivity of any new-physics search to a few-parameter simplified model can be studied and presented as a function of these parameters and in particular over the full range of new particle masses. Though defined within a simplified model, these topology-based limits also apply to more general models giving rise to the same topologies.

fixed stop decay mode, BR=100%

Interesting to compare reach of different analyses, but what if the stop has (a mix of) different decay modes?

gluino-pair production, both gluinos assumed to decay the same way, BR=100%

Necessary information

Numbers give 95% CL excluded model cross-section [fb]

Federico Ambrogi, SK, Suchita Kulkarni, Ursula Laa, Andre Lessa, Veronika Magerl, Jory Sonneveld, Michael Traub, Wolfgang Waltenberger

http://smodels.hephy.at

in a nutshell:

SModelS employs a general procedure to decompose the collider signatures of BSM models presenting a Z_2 symmetry into SMS topologies, which are then confronted with the relevant experimental constraints.

Also identifies the most important 'missing topologies' for which no experimental result is available.

Large database of experimental results: cross section upper limit maps and efficiency maps.

Any BSM model with a Z2 symmetry 17 ATLAS and 16 CMS SUSY analyses from Run 1 *) 20 CMS SUSY analyses for 36/fb from Run 2 **)

> *) plus Fastlim-1.0 efficiency maps **) also 4 ATLAS analyses for 3.2/fb

arXiv:1312.4175 (v1.0) arXiv:1701.06586 (v1.1)

Federico Ambrogi, SK, Suchita Kulkarni, Ursula Laa, Andre Lessa, Veronika Magerl, Jory Sonneveld, Michael Traub, Wolfgang Waltenberger

 \tilde{q} production; $\tilde{q} \rightarrow q \tilde{\chi}^0$, $\tilde{q} \rightarrow q q \tilde{\chi}$ ATLAS 1600 dt = 20.3 fb⁻¹, s=8 Te 1200 1000 800 600 400 200 1800 1400 1600 m_ã [GeV] CMS 35.9 fb⁻¹ (13 TeV) m_{⊼°} [GeV] 1800 pp $\rightarrow \tilde{g} \ \tilde{g}, \tilde{g} \rightarrow b \ \bar{b} \ \tilde{\chi}^0_{.}$ NLO+NLL exclusion [d \equiv Observed ± 1 σ_{the} ч simulation 19.3 fb⁻¹ (8 TeV) 1600 Expected ± 1 σ j̃ĝ, ĝ→bbχ̃ Signal selection efficiency 1400 or MultiJet box 1200 10 1000 800 600 400 5 200 600 800 1000 1200 1400 1600 1800 2000 2200 m_ã [GeV] 800 1000 1200 1400 1600 0 m_{gluino} [GeV]

220 ATLAS200 $L_{t} = 20.3 f$

Decompose signatures of full model into SMS elements Compare with experimental constraints in SModelS database

http://smodels.hephy.at

Decomposition procedure

SModelS takes an SLHA spectrum (with decay table and cross section information) or particle level MC events as input and determines from this all relevant **SMS topologies** ("elements") and their weights ($\sigma \times BR$).

Working assumption: Z_2 symmetry; i.e. new particles are produced in pairs (2-branch structure) and cascade-decay promptly to the lightest one, which is stable and leads to missing energy.

Decomposition procedure

SModelS takes an SLHA spectrum (with decay table and cross section information) or particle level MC events as input and determines from this all relevant **SMS topologies** ("elements") and their weights ($\sigma \times BR$).

Working assumption: Z_2 symmetry; i.e. new particles are produced in pairs (2-branch structure) and cascade-decay promptly to the lightest one, which is stable and leads to missing energy.

Topology description

An SMS topology is then entirely defined by the **number of vertices in each branch** together with **SM particles originating from each vertex** (final states) and a **mass array** containing the ordered Z₂-odd masses

Topology description

An SMS topology is then entirely defined by the **number of vertices in each branch** together with **SM particles originating from each vertex** (final states) and a **mass array** containing the ordered Z₂-odd masses

Mass compression: decays of almost degenerate BSM particles into each other are treated as invisible. Invisible compression: several inv. final-state particles at the end of the decay chain are combined into one.

Assumptions

- BSM particles are described only by their masses, production cross sections and branching ratios.
- Underlying assumption is that differences in the event kinematics from, e.g., different production mechanisms or the spins of the BSM particles, do not significantly affect the signal selection efficiencies.

Arkani-Hamed et al., hep-ph/0703088 Alves et al., arXiv:1105.2838

- Procedure applicable to any model with a Z₂ symmetry
- Tested for and successfully applied to minimal and non-minimal SUSY (NMSSM, UMSSM, sneutrino LSP), as well as extra quark, UED models ...

SK et al, 1312.4175; Belanger et al, 1308.3735; Barducci et al., 1510.00246; Arina et al., 1503.02960; Edelhauser et al., 1501.03942; Belanger et al, 1506.00665; SK et al,1607.02050 and 1707.09036.

Information used to classify topologies

Experimental constraints

Upper Limit maps give the 95% CL upper limit on cross section x branching ratio for a specific SMS.

The UL values can be based on the best SR (for each point in parameter space), a combination of SRs or more involved limits from other methods.

Limit on $\sigma \times BR$

Efficiency maps correspond to a grid of simulated acceptance x efficiency values for a specific signal region for a specific simplified model.

Together with the observed and expected #events in each SR, this allows to compute a likelihood.

Limit on $\Sigma \epsilon \times \sigma \times BR$

NB: the 95%CL exclusion curve is not used, cannot be re-interpreted

- SModelS -

Database of experimental results

http://smodels.hephy.at/wiki/ListOfAnalysesv112

CMS 36/fb results from Run 2 in SModelS

J. Dutta, SK, A. Lessa, W. Waltenberger arXiv:1803.02204

Summer Conferences 2017 (36 fb⁻¹)

channel	PAS/arXiv	webpage	conference	
0L + top tag	SUS-16-050 🖉	link 🕜	LHCP 🖉	\checkmark
1L compressed stop	SUS-16-052	link 🕜	EPS 🗗	\checkmark
Hadronic staus	SUS-17-003	link 🕜	EPS 🗗	\checkmark
Ewkino combination	SUS-17-004	link 🕜	EPS 🗗	\checkmark
1L RPV	SUS-16-040	link 🗗	LP	X

Moriond 2017 (36 fb⁻¹)

channel	PAS/arXiv	webpag	e	channel	PAS/arXiv	webpage
0L + jets with MHT	SUS-16-033	link 🗗	\checkmark	Photon + MET	SUS-16-046	link 🖉 🗸
0L + jets with MT2	SUS-16-036	link 🖉	\checkmark	Photon + HT	SUS-16-047	link 🖉 🗸
1L + jets + MET with MJ	SUS-16-037 🗗	link 🖉	\checkmark	Stop 0L	SUS-16-049	link 🖉 🗸
1L + jets + MET with $\Delta \Phi$	SUS-16-042	link 🖉	\checkmark	Stop 1L	SUS-16-051	link 🖉 🗸
2SS Leptons	SUS-16-035	link 🛛	\checkmark	Stop 2L	SUS-17-001	link 🖉 🗸
multilepton EWK	SUS-16-039 🖉	link 🕜	\checkmark	Sbottom and compressed stop	SUS-16-032	link 🖉 🗸
multileptons + jets	SUS-16-041 🗗	link 🖉	\checkmark	GMSB Higgsinos in 4b	SUS-16-044	link 🖉 🗡
2L soft	SUS-16-048	link 🖉	X	2OS leptons	SUS-16-034	link 🖉 🗸
Razor + Higgs->gg	SUS-16-045 🖉	link 🖉	\checkmark	EWK WH(bb)	SUS-16-043	link 🖉 🗸

Implementation of ATLAS Run 2 results ongoing

J. Dutta, SK, A. Lessa, W. Waltenberger arXiv:1803.02204

Impact on pMSSM

19 free parameters; using ATLAS pMSSM scan from arXiv:1508.06608

Installing SModelS

Requirements, dependencies

SModelS is a Python library that requires Python version 2.6 or later (including version 3) with the following external Python libraries:

- unum >= 4.0.0
- numpy >= 1.13.0
- argparse
- requests >= 2.0.0
- docutils >= 0.3
- scipy >= 1.0.0
- pyslha >= 3.1.0

In addition, the MSSM cross section computer provided by smodelsTools.py requires:

- Pythia 8.2 (requires a C++ compiler) or Pythia 6.4.27 (requires gfortran)
- NLL-fast 1.2 (7 TeV), 2.1 (8 TeV), and 3.1 (13 TeV) (requires a fortran compiler)

These tools need not be installed separately, as the SModelS build system takes care of that. The current default is that both Pythia6 and Pythia8 are installed together with NLLfast. However, the user can easily adapt the Makefile in the lib/ directory to fit his or her needs. Finally, the database browser provided by smodelsTools.py requires IPython.

http://smodels.readthedocs.io/en/latest/Installation.html

Download and installation

Download:

from SModelS homepage: <u>http://smodels.hephy.at/wiki/SModelS</u> or clone from GitHub <u>https://github.com/SModelS/smodels</u>

Installation using Python setup tools :

If Python's setuptools is installed in your machine, SModelS and its dependencies can be installed with:

python setup.py install

If the python libraries are installed in a system folder (as is the default behavior), it will be necessary to run the install command with superuser privilege. Alternatively, one can run setup.py with the "–user" flag:

```
python setup.py install --user
```

If setuptools is not installed, you can try to install the external libraries manually and then rerun setup.py.

Detailed instructions on http://smodels.readthedocs.io/en/latest/Installation.html

Installation via pip

https://pypi.org/project/smodels/1.1.1.post2

If pip is installed in your machine, you can do:

pip install smodels

In this case, gfortran and g++ need to be installed separately, if one wishes to compute cross sections with pythia6 and pythia8, respectively. Also, it might be necessary to perform:

sudo smodelsTools.py fixpermissions

in case of system-wide installs. User-specific installations on the other hand:

pip install --user smodels

will install SModelS into the user's ~/.local directory.

Depending on your platform, the environment variables \$PATH, \$PYTHONPATH, \$LD_LIBRARY_PATH (or \$DYLD_LIBRARY_PATH) might have to be set appropriately.

http://smodels.readthedocs.io/en/latest/Installation.html

Using SModelS

Basic input

The main input for SModelS consists of masses, cross sections and branching ratios for the BSM states, which can be given in the two following forms:

• SLHA (SUSY Les Houches Accord) input: needs BLOCK MASS, decay tables and cross sections in SLHA format

For MSSM particles, cross sections can be appended to an existing SLHA file with smodelsTools.py xseccomputer (-h for usage help)

• LHE (Les Houches Event) file containing parton level events; these can be generated for any BSM model through the use of your favorite MC generator. Note that in this case the precision of the results is limited to the MC statistics used to generate the file.

http://smodels.readthedocs.io/en/latest/BasicInput.html

runSmodels.py

runSModelS.py covers several different applications of the SModelS functionality, with the option of turning various features on or off, as well as setting the basic parameters

To show all arguments:

./runSModelS.py -h

<u>Usage example:</u>

./runSModelS.py -f inputFiles/slha/simplyGluino.slha

Default: screen output and summary in results/simplyGluino.slha.smodels

http://smodels.readthedocs.io/en/latest/RunningSModelS.html

```
# Input File: inputFiles/slha/simplyGluino.slha
\# maxcond = 0.2
\# minmassgap = 5
\# ncpus = 1
# sigmacut = 0.03
# Database version: 1.1.2
#Analysis Sqrts Cond_Violation Theory_Value(fb) Exp_limit(fb) r r_expected
  CMS-SUS-16-033 1.30E+01 0.0 4.309E+03 1.990E+01 2.165E+02 N/A
Signal Region: (UL)
Txnames: T1
  CMS-SUS-16-036 1.30E+01 0.0 4.309E+03 2.786E+01 1.547E+02 N/A
Signal Region: (UL)
Txnames: T1
ATLAS-SUSY-2015-06 1.30E+01 0.0 3.545E+01 1.790E+00 1.981E+01 1.162E+01
Signal Region: SR5j
Txnames: T1
Chi2, Likelihood = 3.025E+01 2.885E-08
[....]
The highest r value is = 216.503897171
                                          SModelS reports it's results in the form of "r-values"
                                          r = (theory prediction) / (95\%CL upper limit)
```

The parameters file

The basic options and parameters used by runSModelS.py are defined in the parameters file. An example, including all available parameters together with a short description, is provided in the parameters.ini file.

If no parameter file is specified, the default parameters stored in smodels/etc/parameters_default.ini are used.

-> show parameters.ini file

Adding cross sections

For MSSM particles, cross sections can be appended to an existing SLHA file with smodelsTools.py xseccomputer (-h for usage help)

Example: download slha files from Indico page and put them in the inputFiles/slha directory

then type:

./smodelsTools.py xseccomputer -f inputFiles/slha/3989872XS.slha -s 13 -e 25000 -p -8 -N

This will generate 25K events with Pythia 8 for the tree-level cross sections and add K-factors for colored particles from NLLfast.

http://smodels.readthedocs.io/en/latest/Tools.html

Check the SLHA file before/after, then run

./runSModelS.py -f inputFiles/slha/3989872XS.slha -p parameters.ini
Beyond the MSSM

SModelS can be used for any BSM model presenting a Z₂ symmetry. All you need to do *(besides providing the model input, see "basic input", p. 26)* is to specify the particle content in the particles.py file in the smodels directory.

rOdd = {1000021 : "gluino",	rEven = {25 : "higgs",	
1000022 : "N1",	-25 : "higgs",	
1000023 : "N2",	35 : "H0",	
1000025 : "N3",	-35 : "H0",	
1000035 : "N4",	36 : "A0",	This works the same way for
1000024 : "C1",	-36 : "A0",	SUSY and non-SUSY models
1000037 : "C2",	37 : "H+",	
1000039 : "gravitino",	-37 : "H-",	
1000001 : "squark",	23 : "Z",	
1000002 : "squark",	-23 : "Z",	
1000003 : "squark",	22 : "photon",	
1000004 : "squark",	-22 : "photon",	
2000001 : "squark",	24 : "W+",	
2000002 : "squark",	-24 : "W-",	
2000003 : "squark",	16 : "nu",	
2000004 : "squark",	-16 : "nu",	
1000005 : "sbottom",	15 : "ta-",	
2000005 : "sbottom",	-15 : "ta+",	
1000006 : "stop",	14 : "nu",	
2000006 : "stop",	-14 : "nu",	

Running SModelS in micrOMEGAs

micrOMEGAs 4.3 onwards has an interface to SModelS which provides a convenient way to generate SModelS input for any model. By calling the function

```
smodels(Pcm, nf, csMinFb, fileName, wrt)
```

micrOMEGAs generates

- an SLHA-type input file, containing the mass spectrum, decay tables and production cross sections for the parameter point under investigation;
- particles.py defining the particle content of the model.

Pcm is the proton beam energy in GeV	BLOCK SModelS_Exclusion
nf is the number of parton flavors used to compute the production cross sections	0 0 1 #output stat 1 0 T2
csMinFb defines the minimum production cross section in pb for Z ₂ -odd particles	1 1 6.161E+00 1 2 N/A 1 3 0.00
fileName is the name of the SLHA file for the parameter point under investigation	1 4 CMS-SUS-13-019 1 5 (UL) 1 6 N/A
wrt is a steering flag for the screen output; if wrt.neq.0 the computed cross sections will be also written on the screen.	1 7 N/A

```
BLOCK SModelS_Exclusion0 0 1#output status (-1 not tested, 0 not excluded, 1 excluded)1 0 T2#txname1 1 6.161E+00#r value1 2 N/A#expected r value1 3 0.00#condition violation1 4 CMS-SUS-13-019#analysis1 5 (UL)#signal region1 6 N/A#Chi21 7 N/A#Likelihood
```

NB currently only SModelSv1.0; update to SModelSv1.1.1 in preparation

Outlook to v1.1.2

- Database path allows URLs —> automatic update
- More convenient selection of analyses via wildcards, e.g. ATLAS*
- Path to particles.py as an (optional) input
- Use of **covariances** for combination of signal regions
- Better installation support, updated documentation, etc.

Full models can easily be decomposed into simplified model components.

But: to what extent do the available SMS results actually map a full model?

ATLAS pMSSM study

In 1508.06608, ATLAS interpreted the results from 22 separate ATLAS searches in the context of the 19-parameter phenomenological MSSM (pMSSM) [vast scan]

8 TeV results in SModelS v1.1.1 database

ATLAS

CMS

SModelS database

Analysis	ID	SModelS database		Analysis	ID	SModelS datab
0 -lepton + 2–6 jets + E_T^{miss}	SUSY-2013-02*	6 UL, 2 EM		jets + E_T^{miss} , α_T	SUS-12-028	4 UL
0-lepton + 7–10 jets + E_T^{miss}	SUSY-2013-04*	1 UL, 10 EM [‡]		$3(1b-)$ jets + E_T^{miss}	SUS-12-024	2 UL, 3 EM
1-lepton + jets + E_T^{miss}	SUSY-2013-20*	1 UL from CONF-2013-089	ark	jet multiplicity + H_T^{miss}	SUS-13-012	4 UL, 20 EM [‡]
$\tau(\tau/\ell) + \text{jets} + E_T^{\text{miss}}$	SUSY-2013-10	_	anb	≥ 2 jets + E_T^{miss} , M_{T2}	SUS-13-019	8 UL
$SS/3$ -leptons + jets + E_T^{miss}	SUSY-2013-09	1 UL (+5 UL, CONF-2013-007)	Š.	$\geq 1b + E_T^{\text{miss}}$, Razor	SUS-13-004	5 UL
$0/1$ -lepton + $3b$ -jets + E_T^{miss}	SUSY-2013-18*	2 UL, 2 EM	ino	1 lepton $+ \geq 2b$ -jets $+ E_T^{\text{miss}}$	SUS-13-007	3 UL, 2 EM
Monojet	—	 (but monojet stop, see below) 	llu	2 OS lept. $+ \geq 4(2b)$ jets $+ E_T^{\text{miss}}$	PAS-SUS-13-016	2 UL
0-lepton stop	SUSY-2013-16*	1 UL, 1 EM	0	2 SS leptons + b-jets + E_T^{miss}	SUS-13-013	4 UL, 2 EM
1-lepton stop	SUSY-2013-15*	1 UL, 1 EM		b -jets + 4 W s + E_T^{miss}	SUS-14-010	2 UL
2-leptons stop	SUSY-2013-19*	2 UL		$0 \text{ lepton} + \geq 5(1b) \text{ jets} + E_T^{\text{miss}}$	PAS-SUS-13-015	2 EM
Monojet stop	SUSY-2013-21	4 EM	gen	$0 \text{ lepton} + \geq 6(1b\text{-})\text{jets} + E_T^{\text{miss}}$	PAS-SUS-13-023	4 UL
Stop with Z boson	SUSY-2013-08	1 UL	ñ	1 lepton $+ \ge 4(1b)$ jets $+ E_T^{\text{miss}}$	SUS-13-011	4 UL, 2 EM
$2b$ -jets + $E_T^{ m miss}$	SUSY-2013-05*	3 UL, 1 EM [‡]	lid	b -jets + $E_T^{\rm miss}$	PAS-SUS-13-018	1 UL
$tb+E_T^{\text{miss}}$, stop	SUSY-2014-07	_	Г	soft leptons, few jets + E_T^{miss}	SUS-14-021	2 UL
ℓh	SUSY-2013-23*	1 UL	N	multi-leptons + E_{T}^{miss}	SUS-13-006	6 UL
2-leptons	SUSY-2013-11	$4 \text{ UL}, 4 \text{ EM}^{\ddagger}$	포			
$2-\tau$	SUSY-2013-14	—	in	cl. 'home-grown' EMs produced with l	MadAnalysis5 or Ch	eckMATE recasting.
3-leptons	SUSY-2013-12	5 UL				
4-leptons	SUSY-2013-13	—				
Disappearing Track	SUSY-2013-01	n.a. in current framework				
Long-lived particle	_	n.a. in current framework				
$H/A \to \tau^+ \tau^-$	_	n.a. in current framework				
	$\begin{array}{l} \textbf{Analysis} \\ \hline 0\mbox{-lepton} + 2\mbox{-}6\mbox{ jets} + E_T^{miss} \\ \hline 0\mbox{-lepton} + 7\mbox{-}10\mbox{ jets} + E_T^{miss} \\ \hline 1\mbox{-}lepton + \mbox{ jets} + E_T^{miss} \\ \hline \tau(\tau/\ell) + \mbox{ jets} + E_T^{miss} \\ \hline \tau(\tau/\ell) + \mbox{ jets} + E_T^{miss} \\ \hline SS/3\mbox{-}leptons + \mbox{ jets} + E_T^{miss} \\ \hline 0\mbox{-}lepton + 3b\mbox{-}jets + E_T^{miss} \\ \hline 0\mbox{-}lepton \mbox{ stop} \\ \hline 1\mbox{-}lepton \mbox{ stop} \\ \hline 2\mbox{-}lepton \mbox{ stop} \\ \hline 2\mbox{-}jets + E_T^{miss} \\ \hline tb\mbox{+}E_T^{miss}, \mbox{ stop} \\ \hline \ell h \\ \hline 2\mbox{-}leptons \\ \hline 2\mbox{-}r \\ \hline 3\mbox{-}leptons \\ \hline 2\mbox{-}r \\ \hline 1\mbox{-}leptons \\ \hline 1\mbox{-}leptons \\ \hline 2\mbox{-}r \\ \hline 1\mbox{-}leptons \\ \hline 2\mbox{-}r \\ \hline 1\mbox{-}leptons \\ \hline 2\mbox{-}r \\ \hline 1\mbox{-}leptons \\ \hline 1\mb$	$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	$\begin{array}{ c c c c c c } \hline Analysis & ID & SModelS database \\ \hline O-lepton + 2-6 jets + E_T^{miss} & SUSY-2013-02* & 6 UL, 2 EM \\ \hline O-lepton + 7-10 jets + E_T^{miss} & SUSY-2013-04* & 1 UL, 10 EM^{\ddagger} \\ \hline 1-lepton + jets + E_T^{miss} & SUSY-2013-00* & 1 UL from CONF-2013-089 \\ \hline \tau(\tau/\ell) + jets + E_T^{miss} & SUSY-2013-10 & - \\ SS/3-leptons + jets + E_T^{miss} & SUSY-2013-09 & 1 UL (+5 UL, CONF-2013-007) \\ O/1-lepton + 3b-jets + E_T^{miss} & SUSY-2013-18* & 2 UL, 2 EM \\ \hline Monojet & - & - (but monojet stop, see below) \\ \hline 0-lepton stop & SUSY-2013-16* & 1 UL, 1 EM \\ 1-lepton stop & SUSY-2013-16* & 1 UL, 1 EM \\ 2-leptons stop & SUSY-2013-19* & 2 UL \\ \hline Monojet stop & SUSY-2013-19* & 2 UL \\ \hline Monojet stop & SUSY-2013-19* & 1 UL \\ 2-leptons & SUSY-2013-21* & 4 EM \\ 2-leptons & SUSY-2013-21* & 4 EM \\ 2-leptons & SUSY-2013-11* & 4 UL, 4 EM^{\ddagger} \\ 2-\tau & SUSY-2013-12* & 1 UL \\ 2-leptons & SUSY-2013-14 & - \\ - & SUSY-2013-14 & - \\ - & Jaeptons & SUSY-2013-14 & - \\ - & n.a. in current framework \\ \hline Long-lived particle & - & n.a. in current framework \\ H/A \to \tau^+\tau^- & - & n.a. in current framework \\ \hline H/A \to \tau^+\tau^- & - & n.a. in current framework \\ \hline H/A \to \tau^+\tau^- & - & n.a. in current framework \\ \hline \end{array}$	$\begin{array}{ c c c c c c c c c c c c c c c c c c c$

* plus Fastlim EMs for preliminary version (conf note) of the analysis.

[‡] incl. 'home-grown' EMs produced with MadAnalysis5 or CheckMATE recasting.

Coverage in terms of gluino mass

Fraction of excluded points w.r.t. ATLAS (after filtering)

	bino LSP	higgsino LSP
m(gluino) < 600 GeV	80%	97%
m(gluino) < 1400 GeV	60%	74%

Gluino vs. neutralino mass plane

Bino-like LSP

Higgsino-like LSP

- Coverage drops for intermediate gluino masses, where a larger variety of decay channels becomes available; more pronounced for bino than for higgsino LSP.
- Coverage also drops in compressed region and for heavy LSP.
- Need results for asymmetric topologies to improve coverage

What about DM (mono-X) simplified model results?

- At the LHC, DM production is searched for in mono-X signatures, e.g. mono-jet, or in association with heavy flavour quarks.
- Interpreted in terms of EFT or simplified model with a **DM particle plus a mediator**.
- Primary presentation recommended [...] are plots of the experimental confidence level (CL) limits on the signal cross sections as a function of the two mass parameters m_{DM} and M_{med}.

LHC DM WG,1603.04156

 In practice, constraints are presented by ATLAS and CMS as 95%CL limits on σ/σ_{theory}, which is highly model dependent.

- At the LHC, DM production is searched for in mono-X signatures, e.g. mono-jet, or in association with heavy flavour quarks.
- Interpreted in terms of EFT or simplified model with a **DM particle plus a mediator**.
- Primary presentation recommended [...] are plots of the experimental confidence level (CL) limits on the signal cross sections as a function of the two mass parameters m_{DM} and M_{med}.

LHC DM WG,1603.04156

- In practice, constraints are presented by ATLAS and CMS as 95%CL limits on σ/σ_{theory}, which is highly model dependent.
 - Would need to unfold σ_{theory} to use these results, but reference cross section not provided. Source of systematic uncertainty.

- At the LHC, DM production is searched for in mono-X signatures, e.g. mono-jet, or in association with heavy flavour quarks.
- Interpreted in terms of EFT or simplified model with a **DM particle plus a mediator**.
- Primary presentation recommended [...] are plots of the experimental confidence level (CL) limits on the signal cross sections as a function of the two mass parameters m_{DM} and M_{med}.

LHC DM WG,1603.04156

- In practice, constraints are presented by ATLAS and CMS as 95%CL limits on σ/σ_{theory}, which is highly model dependent.
 - Would need to unfold σ_{theory} to use these results, but reference cross section not provided. Source of systematic uncertainty.

- When variety of signal topologies exists, efficiency maps would b useful.

ATLAS-EXOT-2016-27

- Big differences in the mass limits come to large extent from big differences in model cross sections
- How different are the • acceptances?

Observed $\sigma_{95\% \text{ CL}}/\sigma_{\text{th}}$

- Would want limits on absolute cross section, or efficiency maps to re-use these results
- Plots should be available in • numerical form (SUSY groups do)

"The theoretical cross section is calculated using $g_{Z'} = 0.8$ "

Good to have a numerical map in mass-mass plane.

If the limits were given without normalisation, they could be re-used w/o introducing additional uncertainties (provided NWA holds)

- SModelS -

BACKUP

Scalar versus fermionic top-partner interpretation of ttbar + MET searches

SK, Laa, Panizzi, Prager, 1607.02050

- Used ATLAS and CMS SUSY searches in ttbar+MET final state at Run 1 to constrain scenarios with a fermionic top partner and a dark matter candidate.
- Recasting with CheckMATE and MadAnalysis5
- Efficiencies in all-hadronic, 1-lepton and 2-lepton channels are very similar for scalar and fermionic top partners.
- SMS results for stop-neutralino simplified models can also be applied to fermionic top-partner models, provided the narrow width approximation holds in the latter.
- Official eff. maps don't extend to high enough masses, so we provide our own:

http://lpsc.in2p3.fr/projects-th/recasting/susy-vs-vlq/ttbarMET/

official ATLAS/CMS plots stop here

SMS results in the database

- Cross section upper limit (UL) maps -

• Upper Limit maps give the 95% CL upper limit on $\sigma \times BR(\times BR...)$ for a specific SMS.

- The UL values can be based on the best SR (for each point in parameter space), a combination of SRs or more involved limits from other methods.
- Comparison of predicted σ×BR to the UL tells whether a point is excluded or not.

SMS results in the database

— Efficiency maps (EM) —

v1.1 onwards:

- Efficiency maps correspond to a grid of simulated acceptance x efficiency values for a specific signal region (SR) for a given simplified model.
- Together with the observed and expected numbers of events in each SR, this allows to compute a likelihood.
- Advantage: allows to add up contributions from different topologies to the same SR
- Disadvantage: no combination of SRs (yet)

SMS results in the database

constraints and conditions —

Analyses considered (ATLAS)

U	sed by ATLAS	available in SModelS v1.1.1		
	Analysis	ID	SModelS database	
	0-lepton + 2–6 jets + E_T^{miss}	SUSY-2013-02*	6 UL, 2 EM	
	0-lepton + 7–10 jets + E_T^{miss}	SUSY-2013-04*	1 UL, 10 EM [‡]	
ive	1-lepton + jets + E_T^{miss}	SUSY-2013-20*	1 UL from CONF-2013-089	
lus	$ au(au/\ell) + ext{jets} + E_T^{ ext{miss}}$	SUSY-2013-10	_	
lnc	$SS/3$ -leptons + jets + E_T^{miss}	SUSY-2013-09	1 UL (+5 UL, CONF-2013-007)	
	$0/1$ -lepton + $3b$ -jets + E_T^{miss}	SUSY-2013-18*	2 UL, 2 EM	
	Monojet	—	 (but monojet stop, see below) 	
я	0-lepton stop	SUSY-2013-16*	1 UL, 1 EM	
tio	1-lepton stop	SUSY-2013-15*	1 UL, 1 EM	
era	2-leptons stop	SUSY-2013-19*	2 UL	
Gen	Monojet stop	SUSY-2013-21	4 EM	
d B	Stop with Z boson	SUSY-2013-08	1 UL	
hir	$2b$ -jets + E_T^{miss}	SUSY-2013-05*	3 UL, 1 EM [‡]	
Η	$tb+E_T^{\text{miss}}$, stop	SUSY-2014-07	<u> </u>	
	lh	SUSY-2013-23*	1 UL	
eak	2-leptons	SUSY-2013-11	$4 \text{ UL}, 4 \text{ EM}^{\ddagger}$	
OWG	$2-\tau$	SUSY-2013-14		
ctr	3-leptons	SUSY-2013-12	5 UL	
E.	4-leptons	SUSY-2013-13		
-	Disappearing Track	SUSY-2013-01	n.a. in current framework	
ler	Long-lived particle		n.a. in current framework	
E	$H/A \rightarrow \tau^+ \tau^-$	_	n.a. in current framework	

* plus Fastlim EMs for preliminary version (conf note) of the analysis.

[‡] incl. 'home-grown' EMs produced with MadAnalysis5 or CheckMATE recasting.

Analyses considered (ATLAS)

U	sed by ATLAS	a	vailable in SModelS v1.1.1	
	Analysis	ID	SModelS database	
	0-lepton + 2–6 jets + E_T^{miss}	SUSY-2013-02*	6 UL, 2 EM	
	0-lepton + 7–10 jets + E_T^{miss}	SUSY-2013-04*	1 UL, 10 EM [‡]	several EM produced by us with
ive	1 -lepton + jets + E_T^{miss}	SUSY-2013-20*	1 UL from CONF-2013-089	MadAnalysis5/CheckMATE
lus	$ au(au/\ell) + ext{jets} + E_T^{ ext{miss}}$	SUSY-2013-10	—	
Inc	$SS/3$ -leptons + jets + E_T^{miss}	SUSY-2013-09	1 UL (+5 UL, CONF-2013-007)	
	$0/1$ -lepton + $3b$ -jets + E_T^{miss}	SUSY-2013-18*	2 UL, 2 EM	A Deale was the second life allowed as the later
	Monojet	_	 (but monojet stop, see below) 	Dark matter simplified model
n	0-lepton stop	SUSY-2013-16*	1 UL, 1 EM	* results are very model dependent
utio	1-lepton stop	SUSY-2013-15*	1 UL, 1 EM	overlapping with multi-iet one)
era	2-leptons stop	SUSY-2013-19*	2 UL	
gen	Monojet stop	SUSY-2013-21	4 EM	
ğ	Stop with Z boson	SUSY-2013-08	1 UL	
'n	$2b$ -jets + E_T^{miss}	SUSY-2013-05*	$3 \text{ UL}, 1 \text{ EM}^{\ddagger}$	
F	$tb+E_T^{\text{miss}}$, stop	SUSY-2014-07		
4	ℓh	SUSY-2013-23*	1 UL	no SMS interpretation
eak	2-leptons	SUSY-2013-11	4 UL, 4 EM [‡]	available in exp. publication
MO	$2-\tau$	SUSY-2013-14	—	available in exp. publication
Electr	3-leptons	SUSY-2013-12	5 UL	
	4-leptons	SUSY-2013-13	—	
	Disappearing Track	SUSY-2013-01	n.a. in current framework	Current SModelS framework
her	Long-lived particle	_	n.a. in current framework	
0	$H/A \rightarrow \tau^+ \tau^-$	_	n.a. in current framework	J requires will i signature

* plus Fastlim EMs for preliminary version (conf note) of the analysis.

[‡] incl. 'home-grown' EMs produced with MadAnalysis5 or CheckMATE recasting.

Analyses considered (ATLAS)

U	sed by ATLAS	a	vailable in SModelS v1.1.1	
	Analysis	ID	SModelS database	
	0-lepton + 2–6 jets + E_T^{miss}	SUSY-2013-02*	6 UL, 2 EM	
	0-lepton + 7–10 jets + E_T^{miss}	SUSY-2013-04*	1 UL, 10 EM [‡]	several EM produced by us with
ive	1 -lepton + jets + E_T^{miss}	SUSY-2013-20*	1 UL from CONF-2013-089	MadAnalysis5/CheckMATE
lus	$ au(au/\ell) + ext{jets} + E_T^{ ext{miss}}$	SUSY-2013-10	—	
Inc	$SS/3$ -leptons + jets + E_T^{miss}	SUSY-2013-09	1 UL (+5 UL, CONF-2013-007)	
	$0/1$ -lepton + $3b$ -jets + E_T^{miss}	SUSY-2013-18*	2 UL, 2 EM	
	Monojet	_	 (but monojet stop, see below) 	Dark matter simplified model
ц	0-lepton stop	SUSY-2013-16*	1 UL, 1 EM	* results are very model dependent
tio	1-lepton stop	SUSY-2013-15*	1 UL, 1 EM	overlapping with multi-iet one)
era	2-leptons stop	SUSY-2013-19*	2 UL	
gen	Monojet stop	SUSY-2013-21	4 EM	
p	Stop with Z boson	SUSY-2013-08	1 UL	
'hii	$2b$ -jets + E_T^{miss}	SUSY-2013-05*	$3 \text{ UL}, 1 \text{ EM}^{\ddagger}$	
н	$tb+E_T^{\text{miss}}$, stop	SUSY-2014-07		
ų	ℓh	SUSY-2013-23*	1 UL	no SMS interpretation
eal	2-leptons	SUSY-2013-11	$4 \text{ UL}, 4 \text{ EM}^{\ddagger}$	available in exp. publication
MO	$2-\tau$	SUSY-2013-14		available in exp. publication
Electr	3-leptons	SUSY-2013-12	5 UL	
	4-leptons	SUSY-2013-13	—	
	Disappearing Track	SUSY-2013-01	n.a. in current framework	Current SModelS framework
her	Long-lived particle	_	n.a. in current framework	
ð	$H/A \rightarrow \tau^+ \tau^-$	_	n.a. in current framework	J requires wici signature

* plus Fastlim EMs for preliminary version (conf note) of the analysis.

[‡] incl. Come-grown' EMs produced with MadAnalysis5 or CheckMATE recasting.

Fastlim-1.0 [arXiv:1402.0492] efficiency maps converted to SModelS format; target "natural SUSY" scenarios

Analyses considered (CMS)

CMS 8 TeV

available in SModelS v1.1.1

[‡] incl. 'home-grown' EMs produced with MadAnalysis5 or CheckMATE recasting.

Very similar to ATLAS analyses, comparable reach, but (in part) complementary SMS topologies in SModelS database

Number of points

	bino-like LSP	higgsino-like LSP
tested by ATLAS	103.410	126.684
excluded by ATLAS	41.570	48.266
of these, tested in SModelS*	38.575	45.594
excluded by SModelS	21,151 (55%)	28,669 (63%)

* discarded points which cannot be tested in SModelS: points with long-lived particles and points which are excluded only by searches for heavy Higgses

Number of points

	bino-like LSP	higgsino-like LSP
tested by ATLAS	103.410	126.684
excluded by ATLAS	41.570	48.266
of these, tested in SModelS*	38.575	45.594
excluded by SModelS	21,151 (55%)	28,669 (63%)

* discarded points which cannot be tested in SModelS: points with long-lived particles and points which are excluded only by searches for heavy Higgses

Why are SMS results missing light gluinos?

• Most SMS results assume pair production followed by the same simple cascade decay on either branch.

• Fastlim efficiency maps contain also some asymmetric topologies, e.g.

assumes decay products of chargino decay are too soft too be visible (very small mass difference of chargino-neutralino; typical higgsino-LSP case)

• In general much more variety possible, including mixed decays via heavy neutralinos, longer cascades, asymmetric branches from associated production, etc.

NB some ATLAS/CMS results available for long cascades, but not applicable in general because only one mass plane with fixed intermediate masses.

Asymmetric or long cascade decays?

Points excluded by ATLAS but not by SModelS: how much of the cross section goes into asymmetric branches or long cascade decays for which we have no SMS results?

Asymmetric topologies: short decays (max. one intermediate particle) but different final states from the two branches Long cascade decays: more than one intermediate SUSY particle in the decay chain (4 or more mass parameters).

Plots are for bino-like LSP case, but look similar for higgsino-like LSP.

Most important missing topologies

i.e. topologies for which no SMS results are available

Most important missing topologies

i.e. topologies for which no SMS results are available

Gluino-squark associated production

particularly important missing topology when one squark is lighter than the others

Gluino-squark associated production

particularly important missing topology when one squark is lighter than the others

Gluino-squark simplified model in AT

assumes 8 degenerate squarks

Coverage of 3rd generation

note small number of points in each bin

missing: SMS for decays via heavier EW-inos with visible decays to LSP

Coverage of 3rd generation

note small number of points in each bin

missing: SMS for decays via heavier EW-inos with visible decays to LSP

Coverage of 3rd generation

note small number of points in each bin

missing: SMS for decays via heavier EW-inos with visible decays to LSP

Coverage of light stops (1D)

curtesy Ursula Laa

Most important missing topologies

Bino-like LSP

Higgsino-like LSP

T2 upper limit ratio

> 2 jets + MET @ 8 TeV : for small mass differences, CMS excludes a bit more than ATLAS