Hunting relaxions

in the lab, in the sky and at colliders .

Elina Fuchs

Weizmann Institute of Science, Israel

[1610:02025] Flacke, Frugiuele, EF, Gupta, Perez [1804:XXXXX] Frugiuele, EF, Perez, Schlaffer

MC4BSM, IPPP Durham April 21, 2018

Challenges for naturalness at the TeV-scale

- ► symmetry-based theories of naturalness: NP ~ TeV
 - e.g. SUSY, composite Higgsvarious other models
- under pressure by null-results at LHC
 - how much tuning acceptable?
 - still some blind spots survive
- novel ideas for naturalness with light NP
 - instead of symmetry protection of Higgs mass: dynamical evolution ~ Relaxion

ATLAS EXOLICS S	earche	9S" -	95%	S CL	Jpper Excli	usion Limits		ATL	4S Prelimina
status: July 2017							∫£ dt = (3.2 - 37.0) fb ⁻¹	√s = 8, 13 Te
Model	l, γ	Jets†	Erita	jc en	1	Limit			Reference
$\begin{array}{l} ADD \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \$	0 A, F 2 T 2 1 A, J 2 T 1 A, J 1 A, J	1-4 23 23 23 21 21 21 21 21 21 21 21 21 21 21 21 21	Nos - - - - - - - - - - - - - - - - 	05.1 36.7 37.8 0.2 38 36.7 36.1 13.2	Mg Mg Mg Mg Mg Oue HAN Oue HAN Oue HAN Oue HAN Oue HAN	535 36E 565 36E	ESTAV ESTAV ESTAV OSTAV OSTAV	$\begin{array}{l} n-2 \\ n=1HI2HeO \\ n=8 \\ n=6,dy=3.56(nef(0)) \\ n=0,dy=1.36(nef(0)) \\ I_{1}(\overline{U}_{10}=3.1) \\ I_{2}(\overline{U}_{10}=1.1) \\ I_{2}(\overline{U}_{10}=1.1) \\ I_{2}(\overline{U}_{10}=1.0) \\ I_{2}($	ALAS-COM 2019 CERNALP 2019 IN TREASES IN LODIE CERNALP 2019 IN ALAS-COM 2019 ALAS-COM 2019
$\begin{array}{l} SSM(Z' \rightarrow H)\\ IRM(Z' \rightarrow rr)\\ Leptopholic (Z' \rightarrow h)\\ Leptopholic (Z' \rightarrow h)\\ IRM(M' \rightarrow rr)\\ STT(Y' \rightarrow HW) \rightarrow q_{000} \mbox{ model}\\ STT(Y' \rightarrow HW) \rightarrow q_{000} \mbox{ model}\\ IRT(Y' \rightarrow HW) \rightarrow q$	11.3 27 11.3 2 11.3 11.3 11.3 11.3 11.3 11.3 11	28 10(2)340 23 23 21(0)1) 11(0)13		36.1 30.1 0.2 32 36.1 96.7 36.1 20.3 20.3	E maa. E maa E ma	4 24 300 25 700 28 700 23 700 20 500 20 500 20 500		1/m = 25 $g_F = 3$ $g_F = 3$	ALML COMPARING ALMS COMPARING MEMORY ALML COMPARING COMPARING COMPARING ALML COMPARING ALML COMPARING MILLION MILLION
Clever Cliffer Clavel	1 v.a 2550/10 v.a	2) 	16	87.8 36.1 20.3			UF SVE	25.8 TeV < 40.5 TeV < (Gal = 1	CN84-06617 ATLAS COMP (2017) 1204.04900
Axial rendor mediator (Dirac DM) Tector mediator (Dirac DM) VVI22 DFT (Dirac DM)	14,4 14,417 14,4	1-4] ≤1j (J,=3)	No. No. No.	96.1 36.1 3.2	~~ ~~	1.5 TeV 1.2 TeV 700 DeV		$\begin{array}{l} g_{0}\!$	ATLAS-COMF-2010-4 CTLLCIMAN NOL-COTT
Scolar LO 11º gan Scolar LO 21º gan Busilar LO 21º gan	2+ 2,1 1+,2	≥2j ≥2j 218,23j		0.2 0.2 20.3	LO Pasa LO Pasa LO Pasa	LA BAR Las Tav.		μ = 1 μ = 1 μ = 9	1005.00005 1005.00005 11056.04130
$\begin{array}{c} 0.0\ T7 \rightarrow 0. + X \\ 0.0\ T7 \rightarrow 22 + X \\ 0.0\ T7 \rightarrow 0. + X \\ 0.0\ 0.0 \rightarrow 0. + X \end{array}$	101 (0 100 (0 100 (0 100 (0 100 (0 100 (0 100 (0)	(2 k, (; 3) (1 k, ≥ 1) (1 k, ≥ 1) (2 k, (; 3) (2 k, (; 3)) (2 k, (; 3)) (2 k, (; 4)) (2 k, (90 90 90 90 90 90 90 90	13.3 16.1 36.1 20.3 (0.3 36.1 20.3	T mass T mass T mass O mass O mass O mass O mass O mass	1.2 Tel 1.45 Tel 1.35 Tel 700 Tel/V 700 Tel/V 1.28 TeV 1.28 TeV		$\begin{array}{l} \theta(T \to P\theta) = 1 \\ \theta(T \to 20) = 1 \\ \theta(T \to M\theta) = 1 \\ \theta(0 \to M\theta) = 1 \\ \theta(0 \to 2\theta) = 1 \\ \theta(0 \to 2\theta) = 1 \\ \theta(0 \to 2\theta) = 1 \\ \theta(0 \to 100) = 1 \end{array}$	ABJAS CONFIDENCE ORIGINAL CENTER-SECTION TODATES TAILONG CENTER-SECTION TODATES
Declard quark of the sp Excited quark of the optimizer Declard quark of the log Declard quark of the log Excited legister of Excited legister of Excited legister of	19 19 19 19 19 19 19 19 19 19 19 19 19 1	2) 1) 18,1) 18,24) -		97.8 36.7 13.3 20.3 20.3 20.3	q" man q" man V" man V" man " man " man	23 TeV 53 TeV 14 TeV	Sa hv	$ \begin{aligned} & \cos[q, q^*] \cot[q^*] \\ & \cos[q, q^*] \cot[q^*] \\ & \sin[q, q^*] \cot[q^*] \\ & \delta_{1} = \delta_{1} = \delta_{1} = 1 \\ & \delta_{1} = \delta_{1} = \delta_{1} \\ & \delta_{1} = \delta_{1} \\ & \delta_{2} = \delta_{1} \\ & \delta_{1} = \delta_{1} \\ & \delta_{2} = \delta_{1} \\ & \delta_{1} = \delta_{1} \\ & \delta_{2} = \delta_{1} \\ & \delta_{1} = \delta_{1} \\ & \delta_{2} = \delta_{1} \\ & \delta_{1} = \delta_{1} \\ & \delta_{1} = \delta_{1} \\ & \delta_{1} = \delta_{1} \\ & \delta_{2} = \delta_{1} \\ & \delta_{1} = \delta_{1} \\ & \delta_{1} = \delta_{1} \\ & \delta_{1} = \delta_{1} \\ & \delta_{2} = \delta_{1} \\ & \delta_{1} = \delta_{1} \\ & \delta_{2} = \delta_{1} \\ & \delta_{1} = \delta_{1} \\ & \delta_{2} = \delta_{1} \\ & \delta_{1} = \delta_{1} \\ & \delta_{2} = \delta_{1} \\ & \delta_{1} = \delta_{1} \\ & \delta_{2} = \delta_{1} \\ & \delta_{1} = \delta_{1} \\ & \delta_{2} = \delta_{1} \\ & \delta_{1} = \delta_{1} \\ & \delta_{2} = \delta_{1} \\ & \delta_{1} = \delta_{1} \\ & \delta_{2} = \delta_{1} \\ & \delta_{1} = \delta_{1} \\ & \delta_{2} = \delta_{1} \\ & \delta_{1} = \delta_{1} \\ & \delta_{2} = \delta_{1} \\ & \delta_{1} = \delta_{1} \\ & \delta_{2} = \delta_{1} \\ & \delta_{1} = \delta_{1} \\ & \delta_{2} = \delta_{1} \\ & \delta_{1} = \delta_{1} \\ & \delta_{2} = \delta_{2} \\ & \delta_{2} = \delta_{1} \\ & \delta_{2} = \delta_{1} \\ & \delta_{2} = \delta_{2} \\ & \delta_{1} = \delta_{1} \\ & \delta_{2} = \delta_{2} \\ & \delta_{1} = \delta_{2} \\ & \delta_{2} = \delta_{1} \\ & \delta_{2} = \delta_{2} \\ & \delta_{1} = \delta_{2} \\ & \delta_{2} = \delta_{1} \\ & \delta_{2} = \delta_{2} \\ & \delta_{1} = \delta_{2} \\ & \delta_{2} = \delta_{1} \\ & \delta_{2} = \delta_{2} \\ & \delta_{1} = \delta_{2} \\ & \delta_{2} = \delta_{2} \\ & \delta_{2} = \delta_{2} \\ & \delta_{2} = \delta_{2} \\ & \delta_{1} = \delta_{2} \\ & \delta_{2} = \delta_{2} \\ & \delta_{2} = \delta_{2} \\ & \delta_{2} = \delta_{2} \\ & \delta_{1} = \delta_{2} \\ & \delta_{2} = \delta_$	1762-09427 CERN-EP-2017, 148 AE-AB-COMP-2019-0 TERCEDER 1411-2011 HT12821
LPEAL Magement v Higgs Fight H ⁺⁺ → A ⁺ Higgs Fight H ⁺⁺ → A ⁺ Monotop ince-ras prod Multi-integral particles Magnetic manopoles	24.3 23.4 e.4 (99) 3 e.4.7 14.3	2) 		20.3 16.1 20.3 20.3 20.3 20.3 7.8	N ⁴ maa H ⁴⁴ maa H ⁴⁴ maa Niji 1 hvisike portick mees milit charged portick mees mangale mees	2.8 YW CPE Gen MO OVZ MYY DWY NY DWY Y JAL DVZ		$\begin{split} &n(R_0)=2.4~\text{Spic co-mixing}\\ &27~\text{persistation}\\ &27~\text{persistation}\\ &27~\text{persistation}\\ &27~\text{persistation}\\ &37~\text{persistation}\\ &37~persistati$	100.000 0-015 3600-84,0 100.000 100.000 000.000

(Small-radius (arge-radius) jets are denoted by the letter ((J).

1 Introduction: relaxion for naturalness

2 Relaxion phenomenology

3 Relaxion searches

1. relaxion ϕ slowly rolls down potential, μ^2 evolves

1. relaxion ϕ slowly rolls down potential, μ^2 evolves

2. backreaction switched on for $\mu^2 < 0$, relaxion oscillates

1. relaxion ϕ slowly rolls down potential, μ^2 evolves

2. backreaction switched on for $\mu^2 < 0$, relaxion oscillates

3. relaxion stopped \sim Higgs mass $m_h = 125 \,\text{GeV}$

$$\begin{split} V(H) &= \mu^2(\phi) H^\dagger H + \lambda (H^\dagger H)^2 \\ V(\phi) &= rg\Lambda^3 \phi + \dots \end{split}$$

 $\mu^2(\phi) = -\Lambda^2 + g\Lambda\phi$ scans m_h during inflation

- 1. $\phi \geq \Lambda/g \; \Rightarrow \mu^2 > 0$, no vev
- 2. $\phi < \Lambda/g \ \Rightarrow \mu^2 < 0$, sign flip, EWSB

$$\begin{split} V(H) &= \mu^2(\phi) H^\dagger H + \lambda (H^\dagger H)^2 \\ V(\phi) &= rg\Lambda^3 \phi + \dots \end{split}$$

 $\mu^2(\phi) = -\Lambda^2 + g\Lambda\phi$ scans m_h during inflation

Relaxion models (examples)

- minimal model: QCD (rel)axion, $\Lambda_{br}^4 = 4\pi f_{\pi}^3 y_u v / \sqrt{2}$, challenge to achieve small QCD phase
- ▶ non-QCD strong sector, $\Lambda_{\rm br}^4 \simeq y v'^3 v_H / \sqrt{2}$
- double-field mechanism (ϕ, σ)

[Espinosa, Grojean, Panico, Pomarol, Pujolas, Servant '15]

 familon (PNGB of spontaneously broken flavour symmetry) with vector-like leptons in the backreaction sector [Gupta,

Komargodski, Perez, Ubaldi '15]

friction via particle production

[Hook, Marques-Tavares '16]

backreaction sector and scale Λ_{br} model-dependent

considering
$$\Lambda_{\rm br}^4 = \tilde{M}^{4-j} v^j / \sqrt{2}^j \equiv r_{\rm br}^4 v^4$$
, here $j = 2$ (non-QCD)

minimum of $V(\phi, h)$: $(\phi_0, v = 246 \text{ GeV})$, ϕ_0 : endpoint of rolling, $s_0 \equiv \sin(\phi_0/f)$ can be $\mathcal{O}(1)$ or smaller

Mixing term in the relaxion-Higgs potential

$$V(\phi,h) \supset rac{ ilde{M}^{4-j}v^{j-1}}{\sqrt{2}^{j}f} \sin\left(rac{\phi_{0}}{f}
ight) oldsymbol{h} \phi o \mathsf{diagonalise}$$

 $V(h,\phi) \supset h\phi$: Measurable consequences of relaxion-Higgs mixing?

Relaxion properties I: mass & mixing

$$m_{\phi} \simeq \frac{r_{\rm br}^2 v^2}{f} \sqrt{c_0 - 16r_{\rm br}^4 s_0^2}$$
$$\sin \theta \simeq 8r_{\rm br}^4 s_0 \frac{v}{f} \le 2\frac{m_{\phi}}{v}$$
or $f \gg r_{\rm br}^2 v$, $16r_{\rm br}^4 s_0^2 \ll c_0$)

[Flacke, Frugiuele, EF, Gupta, Perez '16]

Relaxion properties I: mass & mixing

[Flacke, Frugiuele, EF, Gupta, Perez '16]

Relaxion properties II: lifetime

[Clarke, Foot, Volkas '13] [Flacke, Frugiuele, EF, Gupta, Perez '16]

threshold effects

$$\triangleright c\tau_{\phi} \propto (\sin\theta)^{-2}$$

▷ displaced vertex?

decay outside detector?

▷ cosmological time scales?

 ϕ possibly long-lived

 $\mathcal{CP}\text{-}\text{even}$

$$g_{hX} = \sin\theta \, g_{hX}, X = f\bar{f}, VV$$

$\mathcal{CP}\text{-}\text{odd}$

$$\mathcal{L} \supset \frac{\phi}{4\pi f} \left[\tilde{c}_{\gamma\gamma} F_{\mu\nu} \widetilde{F}^{\mu\nu} + \tilde{c}_{Z\gamma} Z_{\mu\nu} \widetilde{F}^{\mu\nu} + \tilde{c}_{ZZ} Z_{\mu\nu} \widetilde{Z}^{\mu\nu} + \tilde{c}_{WW} W_{\mu\nu} \widetilde{W}^{\mu\nu} \right]$$

 \tilde{c} model-dependent: backreaction sector

Status (CP-even interaction)

[Frugiuele, EF, Schlaffer, Perez '18 (in preparation)] [Flacke, Frugiuele, EF, Gupta, Perez '16]

Relaxion mass and mixing span many orders of magnitude

Untagged Higgs decays

- ▶ Higgs coupling fits allow (under model assumptions) to bound the BR $(h \rightarrow NP)$, in particular $h \rightarrow untagged$
- interpret as $h \to \phi \phi \implies$ bound on $g_{h\phi\phi}$, which contains term $\propto \cos^3 \theta \rightarrow 0$
- \blacktriangleright stronger bound than direct searches for $h \to \phi \phi \to 4f, 2f2\gamma$ $_{\rm [ATLAS, CMS]}$

Untagged Higgs decays

- ▶ Higgs coupling fits allow (under model assumptions) to bound the BR $(h \rightarrow NP)$, in particular $h \rightarrow untagged$
- interpret as $h \to \phi \phi \implies$ bound on $g_{h\phi\phi}$, which contains term $\propto \cos^3 \theta \rightarrow 0$
- \blacktriangleright stronger bound than direct searches for $h \to \phi \phi \to 4f, 2f2\gamma$ $_{\rm [ATLAS, CMS]}$

Higgs self-coupling λ

- ► HL-LHC, FCCee, CLIC, ILC may reach a sensitivity of 10 50% [Di Vita et al '17, Abramowicz et al '16]
- ▶ relaxion-induced deviations from SM prediction < 10% for $\sin^2 \theta < 0.1$ ⇒ too small to be resolved

Precision measurements at the Z-pole

- ▶ relaxion opens NP contribution: $\Gamma_Z^{\rm NP} = \Gamma(Z \to \phi f \bar{f})$
- ► bounded by $\delta\Gamma_Z^{\text{LEP1}} = 2.3 \text{ MeV} \rightarrow \delta\Gamma_Z^{\text{TeraZ}} = 0.1 \text{ MeV}$ [Bicer et al '14] \sim theory improvement needed: $\delta\Gamma_Z^{\text{th}} = 0.5 \text{ MeV} \rightarrow \delta\Gamma_Z^{\text{th},3\text{loop}} = 0.2 \text{ MeV}$ [Freitas '14]

Indirect probes III: resulting bounds

[Frugiuele, EF, Schlaffer, Perez '18 (in preparation)]

Direct probes: ϕ production as a light Higgs

Production at the LHC

- ▶ $pp \rightarrow \phi$ (gg)
- $\blacktriangleright \ pp \to Z\phi, W\phi$
- $\blacktriangleright pp \to t\bar{t}\phi, b\bar{b}\phi$
- ▶ $pp \rightarrow \phi jj$ (VBF)

Production at lepton colliders

▶ $e^+e^- \rightarrow Z\phi$

$$\blacktriangleright \ Z \to Z^*\phi, \ Z^* \to ff$$

measurements at and above Z-pole

Hadronic cross sections at 13 TeV (solid) and leptonic ones at 240 GeV (dashed) for $\sin^2\theta=1.$

Comparison of direct and indirect bounds

- production at TeraZ, FCCee: rough estimate by rescaling LEP1,2
- ILC: light Higgs study applicable [Drechsel, Moortgat-Pick,

Weiglein '18]

• $\Delta\Gamma_Z$ not competitive

direct & indirect bounds complementary

future colliders probe relevant mixing

$\mathcal{CP}\text{-violating}$ nature of the relaxion

- so far: assumed dominating CP-even couplings $(\sin \theta)$
- ► constraints on *CP*-odd couplings:
 - $\blacksquare~f/\tilde{c}_{\gamma\gamma}>1800\,{\rm GeV}$ from Pb-Pb collisions $_{\rm [Knapen,\ Lin,\ Lou,\ Melia\ '17]}$
 - $f/\tilde{c}_{Z\gamma} > 650\,{
 m GeV}$ from rare Z decays [Bauer, Neubert, Thamm '17]
 - $\blacksquare~f/\tilde{c}_{\gamma\gamma}>10^5\sin\theta\,{\rm GeV}$ from e-EDM [Flacke, Frugiuele, EF, Gupta, Perez '16]

$\mathcal{CP}\text{-violating}$ nature of the relaxion

- ▶ so far: assumed dominating CP-even couplings (sin θ)
- ► constraints on *CP*-odd couplings:
 - $\blacksquare~f/\tilde{c}_{\gamma\gamma}>1800\,{\rm GeV}$ from Pb-Pb collisions $_{\rm [Knapen,\ Lin,\ Lou,\ Melia\ '17]}$
 - $f/\tilde{c}_{Z\gamma}>650\,{
 m GeV}$ from rare Z decays [Bauer, Neubert, Thamm '17]
 - $\blacksquare~f/\tilde{c}_{\gamma\gamma}>10^5\sin\theta\,{\rm GeV}$ from e-EDM [Flacke, Frugiuele, EF, Gupta, Perez '16]

Possible hints of $\mathcal{CP}\text{-violating}$ interaction

- \blacktriangleright observation of $\phi\gamma$ and ϕZ production
 - $\blacksquare \ \phi \gamma \ {\rm loop-suppressed} \ {\rm both} \ {\rm for} \ {\mathcal {CP}}{\rm -even} \ {\rm and} \ {\rm -odd} \ {\rm coupling}$
 - \rightsquigarrow possibly of similar order
- \blacktriangleright angular analyses of $\phi\to f\bar{f}$ decays which can be realised by $\mathcal{CP}\text{-even}$ and -odd couplings

goal: distinction between pure H portal, pure axion-like and genuine relaxion signatures

- relaxion attractive framework for naturalness without NP at TeV scale, different realisations of backreaction
- ▶ relaxion mass, mixing and lifetime: many orders of magnitude possible → searches via 5th force, astro, cosmo, flavour and colliders
- CP-violating relaxion-Higgs mixing \sim constraints/discovery
- \blacktriangleright $\mathcal{CP}\text{-}even$ and -odd couplings for model distinction
- ► LEP, LHC probe already "high-mass" region, (future) colliders such as HL-LHC, FCCee/TLEP, ILC, CLIC: promising sensitivity esp. via φ-strahlung and Higgs couplings

- background studies for the proposed processes
- higher-order corrections
- ▶ full implementation of couplings, option for various backreaction sectors
- \blacktriangleright systematic investigation of interplay of $\mathcal{CP}\text{-even}$ and -odd couplings
- \blacktriangleright further experimental searches for scalars of $5-35\,{
 m GeV}$ needed

- background studies for the proposed processes
- higher-order corrections
- ► full implementation of couplings, option for various backreaction sectors
- \blacktriangleright systematic investigation of interplay of $\mathcal{CP}\text{-even}$ and -odd couplings
- further experimental searches for scalars of $5 35 \,\mathrm{GeV}$ needed

THANK YOU!

APPENDIX

Low-energy: 5th force

re-interpreted from [Eöt-Wash group (Adelberger et al.)] [Bordag, Mohideen, Mostepanenko '01] [Piazza, Pospelov '10] [...]

Elina Fuchs (Weizmann) | Relaxion phenomenology | 2

Cosmological and astrophysical bounds

Meson decays (mass range of MeV – few GeV)

some bounds re-interpreted from [Clarke, Foot, Volkas '13] [Schmidt-Hoberg, Staub, Winkler '13]] [Dolan, Kahlhoefer, McCabe, Schmidt-Hoberg '14] [Krnjaic '15] Elina Fuchs (Weizmann) | Relaxion phenomenology | 4

Relaxion parameter space

Elina Fuchs (Weizmann) | Relaxion phenomenology | 5

Collider	\sqrt{s}	$\mathcal{L}_{\mathrm{int}}$ [fb $^{-1}$]	BR($h \rightarrow \text{unt.}$) [%]	Ref.
LHC	$7,8\mathrm{TeV}$	22	20	[Bechtle et al '14, Belanger et al '13]
LHC	$7, 8, 14 \mathrm{TeV}$	300	8.9	[Bechtle et al]
HL-LHC	$7, 8, 14 \mathrm{TeV}$	3 000	5	[Bechtle et al]
CEPC	250 GeV	5 000	1.2	[Chen et al '16]
CLIC	380 GeV	500	0.97 at 90% C.L.	[Abramowicz et al '16, CLIC '16]
ILC	250 GeV	250	0.9	[Dawson et al '13]
ILC	250 GeV	2 000	0.3	[Fujii et al '17]
FCCee	240 GeV	10 000	0.19	[Dawson et al '13, Gomez-C. et al '13]

Current upper bound and projections on the branching ratio of $h \rightarrow$ untagged at various colliders running at the given centre-of-mass energies \sqrt{s} and assuming an integrated luminosity of \mathcal{L}_{int} . All bounds are given at the 95% C.L. apart from CLIC for which the limit is reported at the 90% C.L.

[Flacke, Frugiuele, EF, Gupta, Perez '16] [Frugiuele, EF, Schlaffer, Perez (in preparation)]

$$\begin{aligned} c_{\phi\phi h} &= \frac{r_{\rm br}^4 v^3}{f^2} c_0 c_{\theta}^3 - \frac{2r_{\rm br}^4 v^2}{f} s_0 c_{\theta}^2 s_{\theta} - \frac{r_{\rm br}^4 v^4}{2f^3} s_0 c_{\theta}^2 s_{\theta} - \frac{2r_{\rm br}^4 v^3}{f^2} c_0 c_{\theta} s_{\theta}^2 + 3v\lambda c_{\theta} s_{\theta}^2 + \frac{r_{\rm br}^4 v^2}{f} s_0 s_{\theta}^3 \\ &\stackrel{\theta \to 0}{\longrightarrow} \frac{r_{\rm br}^4 v^3}{f^2} c_0 c_{\theta}^3 \simeq \frac{m_{\phi}^2}{v} \\ \lambda &= \frac{-f^2 m_h^4 + c_0 m_h^2 r_{\rm br}^4 v^4 + 4r_{\rm br}^8 s_0^2 v^6}{-2f^2 m_h^2 v^2 + 2c_0 r_{\rm br}^4 v^6} \simeq \frac{f^2 - 4r_{\rm br}^4 \left(c_0 + 16r_{\rm br}^4 s_0^2\right) v^2}{8\left(f^2 - 4c_0 r_{\rm br}^4 v^2\right)} \end{aligned}$$

where $s_0, c_0 \equiv \sin, \cos{(\phi_0/f)}$

Branching ratios

Projections for Higgs coupling precision

[Di Vita, Durieux, Grojean, Gu, Liu, Panico, Riembau, Vantalon '17]

Exotic Higgs decays

