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Introduction & Disclaimers

• It appears that there is something odd about 
spontaneously broken phi^4 theory.


• Namely amplitudes of 1* -> n grow like n! which seems to 
violate unitarity. Turns out this may be a feature rather 
than a bug.


• Disclaimer 1: I am confused. So will be you.


• Disclaimer 2: I took a lot of slides from Valya’s talks
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Compute 1 -> n amplitudes @LO with non-relativistic final-state momenta:         Off-threshold in phi^4 with SSB (Higgs-like)
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Away from the multi-particle threshold, the external particles 3-momenta ~pi are
non-vanishing. In the non-relativistic limit, the leading momentum-dependent
contribution to the amplitudes is proportional to E kin

n (Galilean Symmetry),
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In the non-relativistic limit we have " ⌧ 1.

Tree-level 1⇤ ! n amplitudes in the limit " ! 0 for any n are given by
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In the large-n-non-relativistic limit the result is
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amplitude on the n-particle threshold

see classic 1992-1994 papers: 
Brown; Voloshin; 
Argyres, Kleiss, Papodopoulos 
Libanov, Rubakov, Son, Troitski 

more recently: Khoze 
1411.2925 
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Can now integrate over the n-particle phase-space

The cross-section and/or the n-particle partial decay �n
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Libanov, Rubakov, Troitskii 1997;     more recently: Khoze 1411.2925 



Problems?

• This looks like a perturbation theory breakdown


• Growing Amplitude seems to violate unitarity
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Contrast asymptotic growth of higher-order corrections in  
perturbation theory with the ~n! contributions to Gamma_n(s)

Not the same types of beasts

It is the decay width Gamma_n(s) which is the central object of interest 
and the driving force of Higgsplosion.
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Semi-classical approach for computing the rate R(1->n,E)
• DT Son1995

Multi-particle decay rates �n can also be computed using an alternative semi-
classical method. This is an intrinsically non-perturbative approach, with no
reference in its outset made to perturbation theory.

The path integral is computed in the steepest descent method, controlled by
two large parameters, 1/� ! 1 and n ! 1.

� ! 0 , n ! 1 , with �n = fixed , " = fixed .

The semi-classical computation in the regime where,

�n = fixed ⌧ 1 , " = fixed ⌧ 1 ,

reproduces the tree-level perturbative results for non-relativistic final states.

Remarkably, this semi-classical calculation also reproduces the leading-order
quantum corrections arising from resumming one-loop e↵ects.
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Semi-classical approach for computing the rate R(1->n,E)

• Khoze 1705.04365

The semiclassical approach is equally applicable and more relevant to the real-

isation of the non-perturbative Higgsplosion case where,

�n = fixed � 1 , " = fixed ⌧ 1 .

This calculation was carried out for the spontaneously broken theory with the

result given by,
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Higher order corrections are suppressed by O(1/
p
�n) and powers of ".

the characteristic exponential expression for the 1 ! n particles rate R in the high-energy,
high-multiplicity limit:

R(�;n, ") = exp


n

✓
log

�n

4
� 1

◆
+

3n

2

⇣
log

"

3⇡
+ 1

⌘
�

25

12
n"

�
, (3.9)

�n(s) / R(�;n, ") , and �n(s) / R(�;n, ") .

In particular, note that the ubiquitous factorial growth of the large-n amplitudes translates into
the 1

n! |Mn|
2
⇠ n!�n

⇠ en log(�n) factor in the rate R above.
To summarise our discussion so far, let us consider the multi-particle limit n � 1 and scale

the center-of-mass energy
p
s = E linearly with n, E / n, keeping the copupling constant small

at the same time, � ⌧ 1. It was pointed out first in Refs. [7, 8], and then argued for extensively
in the literature, that in this limit the multi-particle rates have a characteristic exponential
form,

R = enF (�n, ") , for n ! 1 , � ! 0 , " = fixed , (3.10)

where it is assumed that the high-multiplicity, weak-coupling limit above, the factor �n is
held fixed, while the fixed value can be small or large (with the former case allowing for a
perturbative treatment, while the latter one requiring a large �n resummation of perturbation
theory, somewhat reminiscent to the large g2Nc ’t Hooft coupling limit in gauge theories). The
quantity " is the average kinetic energy per particle per mass in the final state of Eq. (3.5), and
F (�n, ") is a certain a priori unknown function of two arguments. At tree-level, the dependence
on �n and ", factorises into individual functions of each argument,

F tree(�n, ") = f0(�n) + f(") , (3.11)

and the two independent functions are given by the following expressions in the Higgs model of
Eq. (3.1), in complete agreement with the expression Eq. (3.9),
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One can further come up with various improvements in the understanding and control of
the exponential behaviour of the multi-particle rate. In particular, at tree-level the function
f0(�n) is fully determined, but the second function, f("), characterising the energy-dependence
of the final state, is determined by Eq. (3.13) only at small ", i.e. near the multi-particle
threshold. This point was addressed recently in Ref. [10] where the function f(") was computed
numerically in the entire range 0  " < 1.

What about the inclusion of loop corrections to the tree-level multi-particle rates above?
This has been achieved at the leading order in �n in Ref. [7] by resumming the one-loop
correction to the amplitude on the multi-particle mass threshold computed in Refs. [17, 18].
The result is that the 1-loop correction in the Higgs theory under consideration does not a↵ect
the factorial growth, but provides an exponential enhancement to the rate (though strictly
speaking it is valid only at small values of �n) and results in the modified expression for f0,
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using the semi-classical approach and the thin-wall approximation 

• Khoze 1705.04365

Thus we have computed the rate R in the large lambda n limit: 
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Figure 1: Partial decay widths (in units of mass Mh) of a highly-energetic single-particle state
into n Higgs bosons h plotted as function of n. The four lines correspond to the energies of the
initial state equal 190Mh, 195Mh, 200Mh and 205Mh, as indicated. There is a sharp exponential
dependence of the peak rate on the energy varying from R . 10�6 at E = 190Mh (red line) to
R & 107 at E = 205Mh (black line). The peak multiplicities n? ⇠ 150 in these examples are
not far from the maximally allowed values at the edge of the phase space nmax ⇠ E/Mh.

Of phenomenological interest is whether the multi-particle rates can become observable
at certain energy scales and, at even higher energies, exponentially large – in the limit of
near maximal kinematically allowed multiplicities. To answer this, it is required to resum
the perturbation theory and address the large �n limit. Very recently, we have computed
the exponential rate in the �n � 1 limit using the Landau WKB-based formalism, following
the approach of Ref. [8]. These results will be reported in a forthcoming publication [19].
The correction to the tree-level rate in the non-relativistic regime is found to be of the form
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As a result, the non-perturbatively corrected multi-particle rate in Eq. (3.9) becomes [19]
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This expression is derived at small " and thus is supposed to hold in the non-relativistic limit.
The resulting rates have a sharp exponential dependence on n and, consequently, on energy.

In order to be able to probe su�ciently high multiplicities, they have to be kinematically
allowed, i.e. in our single-field example, n < nmax = E/Mh. The amplitudes grow with n,
as exp[n log �n], reaching their maximal values in the soft limit where n is maximal, but this
e↵ect is counter-acted by the diminishing phase-space volume near the edge of the kinematically
accessible region. The competition between the two e↵ects is clearly seen in the expressions
for R already at tree-level in Eq. (3.9) and similarly in the re-summed perturbation theory
expression in Eq. (3.15). The growth of the exponent in R with increasing �n is counteracted
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Higgsplosion realised 
at large lambda n 

Khoze & Spannowsky 1704.0344



HIGGSPLOSION and HIGGSPERSION

Extreme energy dependence for 1  ->  n cross section

[Khoze ’15]
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including 1-loop result reduces ‘ignition’ scale
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The first step in our programme is to determine the multi-particle amplitudes describing the
1⇤ ! n transitions of the highly virtual Higgs boson into n non-relativistic Higgses at the
leading order (i.e. tree-level) in perturbation theory. We take the bosons in the final state
to be non-relativistic because we are interested in keeping the number of particles n in the
final state as large as possible, that is, near the maximum number allowed by the phase space,
n . nmax = E/Mh. Such n-point amplitudes were studied in detail in scalar QFT in [5, 7] and
were derived for the theory of Eq. (3.1) with spontaneous symmetry breaking in Ref. [9],

A1⇤!n(p1 . . . pn) = n! (2v)1�n exp
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7

6
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�
, n ! 1 , " ! 0 , n" = fixed . (3.3)

Note that the expression above is for the 1⇤ ! n current, and the conventionally-normalised
amplitude A1⇤!n is obtained from it by the LSZ amputation of the single o↵-shell incoming
line,

M1!n := (s�M2
h) · A1⇤!n(p1 . . . pn) . (3.4)

As indicated, these tree-level amplitudes are computed in the double-scaling limit with large
multiplicities n � 1 and small non-relativistic energies of each individual particle, " ⌧ 1, where
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so that the total kinetic energy per particle mass n" in the final state is fixed. The first factor
on the right-hand side of Eq. (3.3) corresponds to the tree-level amplitude (or more precisely a
current with one incoming o↵-shell leg) computed on the n-particle threshold,

A
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1!n = n! (2v)1�n = n!

✓
�

M2
h

◆n�1
2

, (3.6)

or, equivalently, after the LSZ reduction of the incoming line,
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2
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h

, (3.7)

which is an exact expression for tree-level amplitudes valid for any value of n [5]. The kinematic
dependence in Eq. (3.3) then produces in the non-relativistic limit an exponential form-factor
which has an analytic dependence on the kinetic energy of the final state n". But, importantly,
the factorial growth ⇠ �n/2 n! characteristic to the multi-particle amplitude on mass threshold
remains. Its occurrence can be traced back to the factorially growing number of Feynman
diagrams at large n [14, 15, 16] and the lack of destructive interference between the diagrams in
the scalar theory. We refer the reader to Refs. [5, 7, 9] for more detail about these amplitudes.

The next step is to integrate the amplitudes in Eq. (3.3) over the n-particle phase-space at
large n (in the approximation where the outgoing particles are non-relativistic). The relevant
dimensionless quantity describing the multi-particle processes is

Rn(s) :=
1

2M2
h

Z
d⇧n|M(1 ! n)|2 , (3.8)

and the decay rates �n(s) and the cross-sections �n(s) are obtained from Rn(s) after an ap-
propriate overall rescaling with Mh and s. Following in the steps of Refs. [8, 9], we obtain
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F (�n, ") is a certain a priori unknown function of two arguments. At tree-level, the dependence
on �n and ", factorises into individual functions of each argument,

F tree(�n, ") = f0(�n) + f(") , (3.11)

and the two independent functions are given by the following expressions in the Higgs model of
Eq. (3.1), in complete agreement with the expression Eq. (3.9),
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One can further come up with various improvements in the understanding and control of
the exponential behaviour of the multi-particle rate. In particular, at tree-level the function
f0(�n) is fully determined, but the second function, f("), characterising the energy-dependence
of the final state, is determined by Eq. (3.13) only at small ", i.e. near the multi-particle
threshold. This point was addressed recently in Ref. [10] where the function f(") was computed
numerically in the entire range 0  " < 1.

What about the inclusion of loop corrections to the tree-level multi-particle rates above?
This has been achieved at the leading order in �n in Ref. [7] by resumming the one-loop
correction to the amplitude on the multi-particle mass threshold computed in Refs. [17, 18].
The result is that the 1-loop correction in the Higgs theory under consideration does not a↵ect
the factorial growth, but provides an exponential enhancement to the rate (though strictly
speaking it is valid only at small values of �n) and results in the modified expression for f0,

f0(�n)
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The first step in our programme is to determine the multi-particle amplitudes describing the
1⇤ ! n transitions of the highly virtual Higgs boson into n non-relativistic Higgses at the
leading order (i.e. tree-level) in perturbation theory. We take the bosons in the final state
to be non-relativistic because we are interested in keeping the number of particles n in the
final state as large as possible, that is, near the maximum number allowed by the phase space,
n . nmax = E/Mh. Such n-point amplitudes were studied in detail in scalar QFT in [5, 7] and
were derived for the theory of Eq. (3.1) with spontaneous symmetry breaking in Ref. [9],

A1⇤!n(p1 . . . pn) = n! (2v)1�n exp


�
7

6
n "

�
, n ! 1 , " ! 0 , n" = fixed . (3.3)

Note that the expression above is for the 1⇤ ! n current, and the conventionally-normalised
amplitude A1⇤!n is obtained from it by the LSZ amputation of the single o↵-shell incoming
line,

M1!n := (s�M2
h) · A1⇤!n(p1 . . . pn) . (3.4)

As indicated, these tree-level amplitudes are computed in the double-scaling limit with large
multiplicities n � 1 and small non-relativistic energies of each individual particle, " ⌧ 1, where
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=

1

nMh
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so that the total kinetic energy per particle mass n" in the final state is fixed. The first factor
on the right-hand side of Eq. (3.3) corresponds to the tree-level amplitude (or more precisely a
current with one incoming o↵-shell leg) computed on the n-particle threshold,

A
thr.
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or, equivalently, after the LSZ reduction of the incoming line,

M
thr.
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� 1)
�
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2
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h

, (3.7)

which is an exact expression for tree-level amplitudes valid for any value of n [5]. The kinematic
dependence in Eq. (3.3) then produces in the non-relativistic limit an exponential form-factor
which has an analytic dependence on the kinetic energy of the final state n". But, importantly,
the factorial growth ⇠ �n/2 n! characteristic to the multi-particle amplitude on mass threshold
remains. Its occurrence can be traced back to the factorially growing number of Feynman
diagrams at large n [14, 15, 16] and the lack of destructive interference between the diagrams in
the scalar theory. We refer the reader to Refs. [5, 7, 9] for more detail about these amplitudes.

The next step is to integrate the amplitudes in Eq. (3.3) over the n-particle phase-space at
large n (in the approximation where the outgoing particles are non-relativistic). The relevant
dimensionless quantity describing the multi-particle processes is

Rn(s) :=
1

2M2
h

Z
d⇧n|M(1 ! n)|2 , (3.8)

and the decay rates �n(s) and the cross-sections �n(s) are obtained from Rn(s) after an ap-
propriate overall rescaling with Mh and s. Following in the steps of Refs. [8, 9], we obtain
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the characteristic exponential expression for the 1 ! n particles rate R in the high-energy,
high-multiplicity limit:
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�n(s) / R(�;n, ") , and �n(s) / R(�;n, ") .

In particular, note that the ubiquitous factorial growth of the large-n amplitudes translates into
the 1

n! |Mn|
2
⇠ n!�n

⇠ en log(�n) factor in the rate R above.
To summarise our discussion so far, let us consider the multi-particle limit n � 1 and scale

the center-of-mass energy
p
s = E linearly with n, E / n, keeping the coupling constant small

at the same time, � ⌧ 1. It was pointed out first in Refs. [7, 8], and then argued for extensively
in the literature, that in this limit the multi-particle rates have a characteristic exponential
form,

R = enF (�n, ") , for n ! 1 , � ! 0 , " = fixed , (3.10)

where it is assumed that the high-multiplicity, weak-coupling limit above, the factor �n is
held fixed, while the fixed value can be small or large (with the former case allowing for a
perturbative treatment, while the latter one requiring a large �n resummation of perturbation
theory, somewhat reminiscent to the large g2Nc ’t Hooft coupling limit in gauge theories). The
quantity " is the average kinetic energy per particle per mass in the final state of Eq. (3.5), and
F (�n, ") is a certain a priori unknown function of two arguments. At tree-level, the dependence
on �n and ", factorises into individual functions of each argument,

F tree(�n, ") = f0(�n) + f(") , (3.11)

and the two independent functions are given by the following expressions in the Higgs model of
Eq. (3.1), in complete agreement with the expression Eq. (3.9),
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One can further come up with various improvements in the understanding and control of
the exponential behaviour of the multi-particle rate. In particular, at tree-level the function
f0(�n) is fully determined, but the second function, f("), characterising the energy-dependence
of the final state, is determined by Eq. (3.13) only at small ", i.e. near the multi-particle
threshold. This point was addressed recently in Ref. [10] where the function f(") was computed
numerically in the entire range 0  " < 1.

What about the inclusion of loop corrections to the tree-level multi-particle rates above?
This has been achieved at the leading order in �n in Ref. [7] by resumming the one-loop
correction to the amplitude on the multi-particle mass threshold computed in Refs. [17, 18].
The result is that the 1-loop correction in the Higgs theory under consideration does not a↵ect
the factorial growth, but provides an exponential enhancement to the rate (though strictly
speaking it is valid only at small values of �n) and results in the modified expression for f0,
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In particular, note that the ubiquitous factorial growth of the large-n amplitudes translates into
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To summarise our discussion so far, let us consider the multi-particle limit n � 1 and scale

the center-of-mass energy
p
s = E linearly with n, E / n, keeping the copupling constant small

at the same time, � ⌧ 1. It was pointed out first in Refs. [7, 8], and then argued for extensively
in the literature, that in this limit the multi-particle rates have a characteristic exponential
form,

R = enF (�n, ") , for n ! 1 , � ! 0 , " = fixed , (3.10)

where it is assumed that the high-multiplicity, weak-coupling limit above, the factor �n is
held fixed, while the fixed value can be small or large (with the former case allowing for a
perturbative treatment, while the latter one requiring a large �n resummation of perturbation
theory, somewhat reminiscent to the large g2Nc ’t Hooft coupling limit in gauge theories). The
quantity " is the average kinetic energy per particle per mass in the final state of Eq. (3.5), and
F (�n, ") is a certain a priori unknown function of two arguments. At tree-level, the dependence
on �n and ", factorises into individual functions of each argument,

F tree(�n, ") = f0(�n) + f(") , (3.11)

and the two independent functions are given by the following expressions in the Higgs model of
Eq. (3.1), in complete agreement with the expression Eq. (3.9),
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One can further come up with various improvements in the understanding and control of
the exponential behaviour of the multi-particle rate. In particular, at tree-level the function
f0(�n) is fully determined, but the second function, f("), characterising the energy-dependence
of the final state, is determined by Eq. (3.13) only at small ", i.e. near the multi-particle
threshold. This point was addressed recently in Ref. [10] where the function f(") was computed
numerically in the entire range 0  " < 1.

What about the inclusion of loop corrections to the tree-level multi-particle rates above?
This has been achieved at the leading order in �n in Ref. [7] by resumming the one-loop
correction to the amplitude on the multi-particle mass threshold computed in Refs. [17, 18].
The result is that the 1-loop correction in the Higgs theory under consideration does not a↵ect
the factorial growth, but provides an exponential enhancement to the rate (though strictly
speaking it is valid only at small values of �n) and results in the modified expression for f0,
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The first step in our programme is to determine the multi-particle amplitudes describing the
1⇤ ! n transitions of the highly virtual Higgs boson into n non-relativistic Higgses at the
leading order (i.e. tree-level) in perturbation theory. We take the bosons in the final state
to be non-relativistic because we are interested in keeping the number of particles n in the
final state as large as possible, that is, near the maximum number allowed by the phase space,
n . nmax = E/Mh. Such n-point amplitudes were studied in detail in scalar QFT in [5, 7] and
were derived for the theory of Eq. (3.1) with spontaneous symmetry breaking in Ref. [9],

A1⇤!n(p1 . . . pn) = n! (2v)1�n exp
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7

6
n "

�
, n ! 1 , " ! 0 , n" = fixed . (3.3)

Note that the expression above is for the 1⇤ ! n current, and the conventionally-normalised
amplitude A1⇤!n is obtained from it by the LSZ amputation of the single o↵-shell incoming
line,

M1!n := (s�M2
h) · A1⇤!n(p1 . . . pn) . (3.4)

As indicated, these tree-level amplitudes are computed in the double-scaling limit with large
multiplicities n � 1 and small non-relativistic energies of each individual particle, " ⌧ 1, where

" =

p
s� nMh

nMh
=

1

nMh
E kin

n '
1

n

1

2M2
h

nX

i=1

~p 2
i , (3.5)

so that the total kinetic energy per particle mass n" in the final state is fixed. The first factor
on the right-hand side of Eq. (3.3) corresponds to the tree-level amplitude (or more precisely a
current with one incoming o↵-shell leg) computed on the n-particle threshold,
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or, equivalently, after the LSZ reduction of the incoming line,
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which is an exact expression for tree-level amplitudes valid for any value of n [5]. The kinematic
dependence in Eq. (3.3) then produces in the non-relativistic limit an exponential form-factor
which has an analytic dependence on the kinetic energy of the final state n". But, importantly,
the factorial growth ⇠ �n/2 n! characteristic to the multi-particle amplitude on mass threshold
remains. Its occurrence can be traced back to the factorially growing number of Feynman
diagrams at large n [14, 15, 16] and the lack of destructive interference between the diagrams in
the scalar theory. We refer the reader to Refs. [5, 7, 9] for more detail about these amplitudes.

The next step is to integrate the amplitudes in Eq. (3.3) over the n-particle phase-space at
large n (in the approximation where the outgoing particles are non-relativistic). The relevant
dimensionless quantity describing the multi-particle processes is

Rn(s) :=
1

2M2
h

Z
d⇧n|M(1 ! n)|2 , (3.8)

and the decay rates �n(s) and the cross-sections �n(s) are obtained from Rn(s) after an ap-
propriate overall rescaling with Mh and s. Following in the steps of Refs. [8, 9], we obtain
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In particular, note that the ubiquitous factorial growth of the large-n amplitudes translates into
the 1
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2
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⇠ en log(�n) factor in the rate R above.
To summarise our discussion so far, let us consider the multi-particle limit n � 1 and scale

the center-of-mass energy
p
s = E linearly with n, E / n, keeping the coupling constant small

at the same time, � ⌧ 1. It was pointed out first in Refs. [7, 8], and then argued for extensively
in the literature, that in this limit the multi-particle rates have a characteristic exponential
form,

R = enF (�n, ") , for n ! 1 , � ! 0 , " = fixed , (3.10)

where it is assumed that the high-multiplicity, weak-coupling limit above, the factor �n is
held fixed, while the fixed value can be small or large (with the former case allowing for a
perturbative treatment, while the latter one requiring a large �n resummation of perturbation
theory, somewhat reminiscent to the large g2Nc ’t Hooft coupling limit in gauge theories). The
quantity " is the average kinetic energy per particle per mass in the final state of Eq. (3.5), and
F (�n, ") is a certain a priori unknown function of two arguments. At tree-level, the dependence
on �n and ", factorises into individual functions of each argument,

F tree(�n, ") = f0(�n) + f(") , (3.11)

and the two independent functions are given by the following expressions in the Higgs model of
Eq. (3.1), in complete agreement with the expression Eq. (3.9),
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One can further come up with various improvements in the understanding and control of
the exponential behaviour of the multi-particle rate. In particular, at tree-level the function
f0(�n) is fully determined, but the second function, f("), characterising the energy-dependence
of the final state, is determined by Eq. (3.13) only at small ", i.e. near the multi-particle
threshold. This point was addressed recently in Ref. [10] where the function f(") was computed
numerically in the entire range 0  " < 1.

What about the inclusion of loop corrections to the tree-level multi-particle rates above?
This has been achieved at the leading order in �n in Ref. [7] by resumming the one-loop
correction to the amplitude on the multi-particle mass threshold computed in Refs. [17, 18].
The result is that the 1-loop correction in the Higgs theory under consideration does not a↵ect
the factorial growth, but provides an exponential enhancement to the rate (though strictly
speaking it is valid only at small values of �n) and results in the modified expression for f0,
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Higgsplosion

At energy scales above E⇤ the dynamics of the system is changed:

1. Distance scales below |x| . 1/E⇤ cannot be resolved in interactions;

2. UV divergences are regulated;

3. The theory becomes asymptotically safe;

4. And the Hierarchy problem of the Standard Model is therefore absent.

Consider the scaling behaviour of the propagator of a massive scalar particle

�(x) := h0|T (�(x)�(0))|0i ⇠

8
><

>:

m2 e�m|x|
: for |x| � 1/m

1/|x|2 : for 1/E⇤ ⌧ |x| ⌧ 1/m

E2
⇤ : for |x| . 1/E⇤

,

where for |x| . 1/E⇤ one enters the Higgsplosion regime.

This is a non-perturbative criterium. Can in principle be computed on a lattice.
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Loop integrals are e↵ectively cut o↵ at E⇤ by the exploding width �(p2) of the
propagating state into the high-multiplicity final states.

The incoming highly energetic state decays rapidly into the multi-particle state
made out of soft quanta with momenta k2i ⇠ m2 n E2

⇤ .

The width of the propagating degree of freedom becomes much greater than its
mass: it is no longer a simple particle state.

In this sense, it has become a composite state made out of the n soft particle
quanta of the same field �.

Higgsplosion

• Khoze & Michael Spannowsky 1704.03447, 1707.01531
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Higgsploding the Hierarchy Problem

which is essentially a single perturbation in terms of the self-energy.

This derivation, however, breaks down completely when the Im⌃(s) explodes rather than
falls o↵ at s ! 1, which is precisely the case of interest for our consideration. In this case the
contour in (4.11) cannot be closed up at infinity and the dispersion relation (4.11) is invalid. We
thus conclude that the formal justification of the perturbative Källén-Lehmann representation
for the propagator in (4.7) or equivalently (4.9) is meaningful only for a su�ciently well-behaved
imaginary part of the self-energy expression at large s. this sentence needs refining: When, on
the other hand, decay rates do not tend to vanish at infinity, one cannot use the dispersion
relation to restore the real part from the imaginary part of the self-energy by closing up the
contour, and the Källén-Lehmann representation in the form (4.7), (4.9) simply becomes invalid.
Hence the growing multi-particle decay rates do not necessarily imply the breakdown of unitarity
of the theory. In the previous sub-section we have already argued that the relevant physical
cross-sections in this case do not blow up and hence do not destroy unitarity either.

5 Higgsplosion of heavy states below their mass-threshold

To outline the Higgsplosion approach as a solution to the Hierarchy problem in the Standard
Model, let us consider a contribution of a hypothetical heavy scalar X of mass MX to the Higgs
boson mass parameter. We focus on the Lagrangian,

LX =
1

2
@µX @µX �

1

2
m2

X X2
�

�P

4
X2h2 . (5.1)

where h is the Higgs boson. We need to specify here more what the properties of X are.
X appears here stable and decays like X ! hh are not possible, but rather processes like
X⇤

! Xhh. Just to specify the broad realm of applicability we should be very explicit.
Calculating the contribution to the Higgs boson mass from the scalar X, we find

�M2
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Z
d4p
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= �P

Z
d4p

16⇡4

✓
M2

X � p2

(M2
X � p2)2 + (Im⌃X(p2))2

�
i Im⌃X(p2)
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◆

Now, due to the Higgsplosion e↵ect the multi-particle contributions to the width of X explode
at the values of the loop momenta p2 = s?, where

p
s? ' O(25)TeV according to Fig. 1. This

is much below the masses of the hierarchically heavy states which we can assume to be at the
GUT scale ± 10 orders of magnitude. Because of the sharp exponential growth of the width
Im⌃X(s) / Rn(s) with the energy, it provides a sharp UV cut-o↵ in the integral over the loop
momenta at p2 = s?. Hence the integral in the expression above amounts to

�M2
h / �P

s?
M2

X

s? . (5.2)

This is suppressed by the factor of
⇣p

s?
MX

⌘4
'

⇣
25TeV
MX

⌘4
relative to the normal expectations

without the Higgsplosion-driven disintegration of the heavy particles.
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GUT scale ± 10 orders of magnitude. Because of the sharp exponential growth of the width
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momenta at p2 = s?. Hence the integral in the expression above amounts to
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13
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The reasoning above equally applies to any heavy modes, as far as they have a non-vanishing
interaction with the Higgs. These modes could be the heavy 1012 GeV sterile neutrinos which
are important for the standard thermal Leptogenesis [26, 27, 28], a heavy inflaton [29, 30], GUT-
scale particles [31, 32], flavons [33, 34], or the heavy degrees of freedom that would appear at
the fa ' 1011 GeV scale relevant for the axion [35, 36, 37, 38].

At one-loop level, one can always estimate the contributions to the Higgs mass from the
heavy states of any spin with generic interactions with the Higgs boson using the Coleman-
Weinberg e↵ective potential,

M2
h =

@2Ve↵

@h2
, (5.4)

where

Ve↵ =
1

64⇡2

Z p
s?

d4p STr log
�
p2 +MX(h)2

�
. (5.5)

STr = Tr(�1)F is the supertrace and MX(h) denotes the Higgs-field-dependent contribution to
the heavy field mass in the h(x) background. The main point, as above, is that the integral
over the loop momenta is cut-o↵ at the relatively low scale

p
s? where the Higgsplosion of the

heavy states takes place.
It is remarkable that the Hierarchy problem introduced into the Standard Model by the

existence of a microscopic light Higgs boson is addressed in this approach by Higgsploding the
heavy states into the original light Higgs bosons. The underlying cause of the apparent problem
provides its own solution.

6 Conclusions

The discovery of the Higgs boson, roughly 50 years after its prediction, marked one of the great-
est successes of the SM. While its interactions with all other particles ensures the restoration
of perturbative unitarity in 2 ! 2 scattering processes, it was long argued that the presence
of a scalar particle in the theory could lead to unitarity violation in multi-Higgs production
processes already at energies of O(100) TeV. Further, the Higgs boson, as an elementary scalar
particle, su↵ers from the well-known Hierarchy problem. We have reexamined and connected
both issues, thereby providing a simultaneous solution to both questions: We introduced the
Higgsplosion mechanism, arguing that the rapid increase of the decay rate of very heavy or
highly energetic particles is a physical e↵ect, but that this e↵ect leads to Higgspersion, i.e.
it restores perturbative unitarity in multi-Higgs boson production processes. While the cross
section of mutli-Higgs production processes can still reach observable levels, its exponential
growth is avoided and the SM retains self-consistency to highest energies. Quantum corrections
of heavy particles to the Higgs boson’s mass are driving the Hierarchy problem. If however, the
heavy particle’s width increases rapidly beyond a certain energy threshold, these contributions
are tamed and the Hierarchy problem can be avoided.
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Due to Higgsplosion the multi-particle contribution to the width of  
X explode at          where

which is essentially a single perturbation in terms of the self-energy.

This derivation, however, breaks down completely when the Im⌃(s) explodes rather than
falls o↵ at s ! 1, which is precisely the case of interest for our consideration. In this case the
contour in (4.11) cannot be closed up at infinity and the dispersion relation (4.11) is invalid. We
thus conclude that the formal justification of the perturbative Källén-Lehmann representation
for the propagator in (4.7) or equivalently (4.9) is meaningful only for a su�ciently well-behaved
imaginary part of the self-energy expression at large s. this sentence needs refining: When, on
the other hand, decay rates do not tend to vanish at infinity, one cannot use the dispersion
relation to restore the real part from the imaginary part of the self-energy by closing up the
contour, and the Källén-Lehmann representation in the form (4.7), (4.9) simply becomes invalid.
Hence the growing multi-particle decay rates do not necessarily imply the breakdown of unitarity
of the theory. In the previous sub-section we have already argued that the relevant physical
cross-sections in this case do not blow up and hence do not destroy unitarity either.

5 Higgsplosion of heavy states below their mass-threshold

To outline the Higgsplosion approach as a solution to the Hierarchy problem in the Standard
Model, let us consider a contribution of a hypothetical heavy scalar X of mass MX to the Higgs
boson mass parameter. We focus on the Lagrangian,
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where h is the Higgs boson. We need to specify here more what the properties of X are.
X appears here stable and decays like X ! hh are not possible, but rather processes like
X⇤

! Xhh. Just to specify the broad realm of applicability we should be very explicit.
Calculating the contribution to the Higgs boson mass from the scalar X, we find
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Now, due to the Higgsplosion e↵ect the multi-particle contributions to the width of X explode
at the values of the loop momenta p2 = s?, where

p
s? ' O(25)TeV according to Fig. 1. This

is much below the masses of the hierarchically heavy states which we can assume to be at the
GUT scale ± 10 orders of magnitude. Because of the sharp exponential growth of the width
Im⌃X(s) / Rn(s) with the energy, it provides a sharp UV cut-o↵ in the integral over the loop
momenta at p2 = s?. Hence the integral in the expression above amounts to

�M2
h / �P

s?
M2

X

s? . (5.2)

This is suppressed by the factor of
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'
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relative to the normal expectations

without the Higgsplosion-driven disintegration of the heavy particles.
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thus conclude that the formal justification of the perturbative Källén-Lehmann representation
for the propagator in (4.7) or equivalently (4.9) is meaningful only for a su�ciently well-behaved
imaginary part of the self-energy expression at large s. this sentence needs refining: When, on
the other hand, decay rates do not tend to vanish at infinity, one cannot use the dispersion
relation to restore the real part from the imaginary part of the self-energy by closing up the
contour, and the Källén-Lehmann representation in the form (4.7), (4.9) simply becomes invalid.
Hence the growing multi-particle decay rates do not necessarily imply the breakdown of unitarity
of the theory. In the previous sub-section we have already argued that the relevant physical
cross-sections in this case do not blow up and hence do not destroy unitarity either.
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Model, let us consider a contribution of a hypothetical heavy scalar X of mass MX to the Higgs
boson mass parameter. We focus on the Lagrangian,
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where h is the Higgs boson. We need to specify here more what the properties of X are.
X appears here stable and decays like X ! hh are not possible, but rather processes like
X⇤

! Xhh. Just to specify the broad realm of applicability we should be very explicit.
Calculating the contribution to the Higgs boson mass from the scalar X, we find
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Now, due to the Higgsplosion e↵ect the multi-particle contributions to the width of X explode
at the values of the loop momenta p2 = s?, where

p
s? ' O(25)TeV according to Fig. 1. This

is much below the masses of the hierarchically heavy states which we can assume to be at the
GUT scale ± 10 orders of magnitude. Because of the sharp exponential growth of the width
Im⌃X(s) / Rn(s) with the energy, it provides a sharp UV cut-o↵ in the integral over the loop
momenta at p2 = s?. Hence the integral in the expression above amounts to
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It provides a sharp UV cut-off in the integral, possibly at For �(s?) ' MX at s? ⌧ M2
X =) �M2
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X . (5.3)

The reasoning above equally applies to any heavy modes, as far as they have a non-vanishing
interaction with the Higgs. These modes could be the heavy 1012 GeV sterile neutrinos which
are important for the standard thermal Leptogenesis [26, 27, 28], a heavy inflaton [29, 30], GUT-
scale particles [31, 32], flavons [33, 34], or the heavy degrees of freedom that would appear at
the fa ' 1011 GeV scale relevant for the axion [35, 36, 37, 38].

At one-loop level, one can always estimate the contributions to the Higgs mass from the
heavy states of any spin with generic interactions with the Higgs boson using the Coleman-
Weinberg e↵ective potential,

M2
h =

@2Ve↵

@h2
, (5.4)

where
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1
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Z p
s?

d4p STr log
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p2 +MX(h)2
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STr = Tr(�1)F is the supertrace and MX(h) denotes the Higgs-field-dependent contribution to
the heavy field mass in the h(x) background. The main point, as above, is that the integral
over the loop momenta is cut-o↵ at the relatively low scale

p
s? where the Higgsplosion of the

heavy states takes place.
It is remarkable that the Hierarchy problem introduced into the Standard Model by the

existence of a microscopic light Higgs boson is addressed in this approach by Higgsploding the
heavy states into the original light Higgs bosons. The underlying cause of the apparent problem
provides its own solution.

6 Conclusions

The discovery of the Higgs boson, roughly 50 years after its prediction, marked one of the great-
est successes of the SM. While its interactions with all other particles ensures the restoration
of perturbative unitarity in 2 ! 2 scattering processes, it was long argued that the presence
of a scalar particle in the theory could lead to unitarity violation in multi-Higgs production
processes already at energies of O(100) TeV. Further, the Higgs boson, as an elementary scalar
particle, su↵ers from the well-known Hierarchy problem. We have reexamined and connected
both issues, thereby providing a simultaneous solution to both questions: We introduced the
Higgsplosion mechanism, arguing that the rapid increase of the decay rate of very heavy or
highly energetic particles is a physical e↵ect, but that this e↵ect leads to Higgspersion, i.e.
it restores perturbative unitarity in multi-Higgs boson production processes. While the cross
section of mutli-Higgs production processes can still reach observable levels, its exponential
growth is avoided and the SM retains self-consistency to highest energies. Quantum corrections
of heavy particles to the Higgs boson’s mass are driving the Hierarchy problem. If however, the
heavy particle’s width increases rapidly beyond a certain energy threshold, these contributions
are tamed and the Hierarchy problem can be avoided.
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and thus mends the Hierarchy problem by
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The reasoning above equally applies to any heavy modes, as far as they can decay and have
a non-vanishing interaction with the Higgs boson. These modes could be the heavy 1012 GeV
sterile neutrinos which are important for the standard thermal Leptogenesis [29, 30, 31], a heavy
inflaton [32, 33], GUT-scale particles [34, 35], flavons [36, 37], or the heavy degrees of freedom
that would appear at the fa ' 1011 GeV scale relevant for the axion [38, 39, 40, 41].

At one-loop level, one can always estimate the contributions to the Higgs mass from the
heavy states of any spin with generic interactions with the Higgs boson using the Coleman-
Weinberg e↵ective potential,
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STr = Tr(�1)F is the supertrace and MX(h) denotes the Higgs-field-dependent contribution to
the heavy field mass in the h(x) background. The main point, as above, is that the integral
over the loop momenta is cut-o↵ at the relatively low scale

p
s? where the Higgsplosion of the

heavy states takes place.
It is remarkable that the Hierarchy problem introduced into the Standard Model by the

existence of a microscopic light Higgs boson is addressed in this approach by Higgsploding the
heavy states into the original light Higgs bosons. The underlying cause of the apparent problem
provides its own solution.

6 Conclusions

The discovery of the Higgs boson, roughly 50 years after its prediction, marked one of the great-
est successes of the SM. While its interactions with all other particles ensures the restoration
of perturbative unitarity in 2 ! 2 scattering processes, it was long argued that the presence
of a scalar particle in the theory could lead to unitarity violation in multi-Higgs production
processes already at energies of O(100) TeV. Further, the Higgs boson, as an elementary scalar
particle, su↵ers from the well-known Hierarchy problem. We have reexamined and connected
both issues, thereby providing a simultaneous solution to both questions: We introduced the
Higgsplosion mechanism, arguing that the rapid increase of the decay rate of very heavy or
highly energetic particles is a physical e↵ect, but that this e↵ect leads to Higgspersion, i.e.
it restores perturbative unitarity in multi-Higgs boson production processes. While the cross
section of mutli-Higgs production processes can still reach observable levels, its exponential
growth is avoided and the SM retains self-consistency to highest energies. Quantum corrections
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which is essentially a single perturbation in terms of the self-energy.

This derivation, however, breaks down completely when the Im⌃(s) explodes rather than
falls o↵ at s ! 1, which is precisely the case of interest for our consideration. In this case the
contour in (4.11) cannot be closed up at infinity and the dispersion relation (4.11) is invalid. We
thus conclude that the formal justification of the perturbative Källén-Lehmann representation
for the propagator in (4.7) or equivalently (4.9) is meaningful only for a su�ciently well-behaved
imaginary part of the self-energy expression at large s. In the scenario which is of main interest
to us in this work, the decay rates (or equivalently, the imaginary part of ⌃) happen to grow
rather than vanish at infinity. In this case one cannot use the dispersion relation to restore the
real part from the imaginary part of the self-energy by closing up the contour, and the Källén-
Lehmann representation in the form (4.7), (4.9) simply becomes invalid. Hence the growing
multi-particle decay rates do not necessarily imply the breakdown of unitarity of the theory.
In the previous sub-section we have already argued that the relevant physical cross-sections in
this case do not blow up and hence do not destroy unitarity either.

5 Higgsplosion of heavy states below their mass-threshold

To outline the Higgsplosion approach as a solution to the Hierarchy problem in the Standard
Model, let us consider a contribution of a hypothetical heavy scalar X of mass MX to the Higgs
boson mass parameter. This obviously requires that X and the Higgs boson h can interact with
each other and we further assume that X is not absolutely stable. This picture is captured by
a simple Lagrangian,

LX =
1

2
@µX @µX �

1

2
M2

X X2
�

�P

4
X2h2 � µXh2 . (5.1)

The Higgs-portal interactions �P X2h2 ensure that X-loops contribute to the Higgs boson mass
while the interaction µXh2 lifts the X ! �X parity symmetry and ensures that X can decay
into multiple Higgs bosons X ! hh.

Calculating the contribution to the Higgs boson mass from the scalar X, we find
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Now, due to the Higgsplosion e↵ect the multi-particle contributions to the width of X explode
at the values of the loop momenta p2 = s?, where

p
s? ' O(25)TeV according to Fig. 1. This

is much below the masses of the hierarchically heavy states which we can assume to be at the
GUT scale ± 10 orders of magnitude. Because of the sharp exponential growth of the width
Im⌃X(s) / Rn(s) with the energy, it provides a sharp UV cut-o↵ in the integral over the loop
momenta at p2 = s?. Hence the integral in the expression above amounts to

�M2
h / �P

s?
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X

s? . (5.2)
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Asymptotic Safety
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Scalar DM: I

are also colliding clusters of galaxies, such as the Bullet Cluster, that show the need for a

non-baryonic matter component in our Universe [5, 6].

Unfortunately, all evidence for dark matter thus far has been of gravitational origin:

non-gravitational evidence continues to elude us. Without any such additional evidence,

the range of models that both successfully provide the source of dark matter and evade all

present constraints is large. The standard DM candidate is a weakly interacting massive

particle (WIMP), but there are a plethora of other solutions, such as: axions, fuzzy dark

matter, light sterile neutrinos, self-interacting dark matter, dissipative dark matter, atomic

dark matter and many more.

In this article we focus on a classic WIMP-like example: a massive scalar whose O(1)

coupling to the Higgs boson naturally generates a correct relic abundance ⌦DMh
2 = 0.12

[2]. This scenario has been well explored by many authors [7–11].

Typically, the addition of a light fundamental scalar in a theory introduces hierarchy

problems, and so previous scalar dark matter models su↵ered from inability to predict the

preferred mass range for DM. However, in the Higgsplosion scenario [12–14], this large

hierarchy problem is greatly reduced by the presence of a new dynamically-generated scale

– the Higgsplosion scale. This scale determines corrections to the DM mass. As a result,

if the scale is known, we obtain a unique prediction for the mass of minimal scalar dark

matter.

Currently the Higgsplosion scale is quantitatively not well known, although existing

calculations indicate EH ⇠ 200mh = 25 TeV [15] (see also Refs. [16–19] for earlier work).

Experimentally, a low Higgsplosion scale can result in striking signatures at high-energy

colliders [20]. In this paper we treat the Higgsplosion scale as a free parameter and show

that the currently theoretically preferred region for the Higgsplosion scale leads to a dark

matter model that is: a) not in tension with any current experimental results, and b)

testable in the foreseeable future at direct detection experiments such as LZ and indirect

detection experiments such as CTA.

This paper is organized as follows: in Section 2 we describe the model, clarify the

scalar mass-Higgsplosion scale relation and enforce the freeze-out constraints. In Section 3

we investigate the viability of such a theory, given both current and projected future

constraints from direct detection, indirect detection and production experiments, including

XENON and HESS. The strength and relevance of self-interaction and the stability of the

vacuum for such a model are discussed in Section 4. Finally, we present our concluding

remarks in Section 5.

2 A minimal scalar dark matter model

2.1 Model

In this work, we consider the simplest possible scenario for Higgsploding dark matter: a

singlet real scalar, X, with a Z2 symmetry [7–9]. The dark and Standard Model sectors

communicate via a Higgs-portal coupling, �HX,

L = LSM +
1

2
@µX@

µ
X �

1

2
m

2

X,0X
2
�

�X

4!
X

4
�

�HX

2
X

2

⇣
H

†
H

⌘
, (2.1)

– 2 –

Typically, the mass is uncertain: it’s a scalar

Enter Higgsplosion:

with,

LSM � µ
2

0H
†
H � �H(H

†
H)2. (2.2)

For now, we make the assumption that �X ⌧ �HX. In Section 4.2, we confirm this is

a safe assumption, despite the renormalization group (RG) flow. We also assume that the

bare mass is small, such that the renormalized mass of the dark scalar is dominated by the

quadratically-divergent contribution from loops of Higgs particle,

m
2

X = m
2

X,0 + �m
2

X ⇡ �m
2

X ⇡
�HX⇤2

UV

16⇡2
, (2.3)

where ⇤UV is the UV cut-o↵ of the theory. In a Higgsploding theory, as discussed in

[12–15], this cut-o↵ becomes physical. Above a certain virtuality, called the Higgsplosion

scale EH, the Higgs bosons are expected to decay exponentially into a large number of soft

quanta, a phenomenon dubbed Higgsplosion. The imaginary part of the self-energy for

the Higgs particle grows exponentially with the virtuality of the propagator and the Higgs

propagator e↵ectively vanishes above EH. This has the consequence of cutting o↵ integrals

over Higgs four-momenta, kµ, at kµkµ = E
2

H
. Hence, in the regime described, we expect a

dark scalar mass of order

m
2

X ⇡ �HX

E
2

H

16⇡2
. (2.4)

If the Higgsplosion scale is known, this relation greatly restricts the parameter space avail-

able, and uniquely determines the dark matter mass when combined with the freeze-out

condition, as we will show in Section 2.3.

As we will see, the region of parameter space corresponding to large mass and portal

coupling remains unbounded for our model. As a result, we must choose a maximal coupling

strength that we consider perturbatively under control. In this work, we choose a somewhat

conservative value, �X,�HX 
p
8⇡ ' 5[21].

2.2 Bare masses, scales and hierarchy

Typically, in order to arrive at the IR spectrum we observe for the SM, we must fine-tune

the Higgs bare mass in the UV – this is the Hierarchy problem. This problem persists in

the presence of Higgplosion, but is significantly reduced. In order to achieve the observed

Higgs mass, the bare mass must now instead satisfy,

µ
2

0 = �
�H

2
v
2

EW � E
2

H

✓
�H

4⇡2
+

�HX

16⇡2
�

Ncy
2
t

8⇡2
+ · · ·

◆
, (2.5)

where the first term is the Higgs doublet mass required to break the electroweak symmetry

and the remaining terms are self-energy corrections, with Nc quark colours. In the Hig-

gsploding regime, we expect the scale of all of these contributions to be proportional to E
2

H
:

if any particle reaches virtuality of order E2

H
, it’s self-energy quickly suppresses its propaga-

tor. As a result, the Higgs mass1 is fine-tuned to the extent of
p
�HvEW/EH ⇠ 10�2, which

is a vast improvement when compared to the usual fine-tuning of order mh/mGUT ⇠ 10�14.

Given that X is also a scalar, one might expect it to exhibit its own Higgsplosion-like

behaviour, which we dub “Xplosion”2. Indeed, in the limit �HX ! 0, the dark sector
1
The top quark contribution is also reduced by Higgsplosion, we refer the reader to references [12–15]

2
This “pun” being the sole reason for our particle naming scheme.

– 3 –

These are also related by the freeze-out condition:

decouples from the SM sector and one could expect the amplitude for the process

X ! nX, (2.6)

to grow exponentially at some Xplosion scale, EX / f(8⇡/�X)mX, where f(8⇡/�X) be-

comes infinite in the limit �X ! 0. In the symmetric phase of the theory, the processes

(2.6) most likely remains negligible. It is only in the broken phase, i.e. for the scalar

X model with the spontaneously broken Z2 symmetry, that the calculations of quantum

e↵ects summarised in [14, 15] would lead to Xplosion. However, in the Z2 symmetric case

relevant here, where X is the scalar DM candidate, quantum e↵ects are known to expo-

nentially suppress the e↵ect of Xplosion seen at the classical level. Furthermore, we have

assumed that �HX 6= 0 and mX � mh, so the Higgsplosion process,

X ! X + nh, (2.7)

is allowed at far lower virtualities of order m
2

X
+ E

2

H
⌧ E

2

X
. Even if Xplosion (2.6) was

possible, Higgsplosion (2.7) ultimately determines the UV behaviour of X.

In our scenario we set the bare mass of X to be relatively small,

�
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16⇡2
E

2

H . m
2

X,0 .
�HX

16⇡2
E

2

H, (2.8)

so that the self-energy contribution is dominant. In that sense, the mass of X is natural.

2.3 Freeze-Out

In this subsection, we follow treatment of freeze out calculations as summarised in [8,

22]. An important quantity in the calculations to follow is the thermally-averaged dark

matter annihilation cross-section h�annvreli ⌘ h�vi. The contributions to this cross-section

for di↵erent annihilation modes were calculated in [7]. We include the exact results in

Appendix A.

In the regimemX � v, where v is the Standard Model Higgs vacuum expectation value,

the annihilation cross-section is dominated by the hh,W+

L
W

�
L

and Z
0

L
Z

0

L
modes. This is not

surprising: these modes are the four degrees of freedom of the Higgs doublet that directly

couple to X through the �HXX
2
H

†
H operator. In the regime m

2

X
� {v

2
,m

2

h
,m

2

W
,m

2

Z
}

the annihilation cross-section simplifies to:

h�vi ⇡
�
2

HX

16⇡m2

X

. (2.9)

We will see that mX . v leads to values for the Higgsplosion scale that are too low,

and so we can safely ignore the low-mass regime entirely. As a result, we will use the

approximation of Eq. 2.9 throughout this paper.

The relic density of dark matter today is constrained by the Planck satellite [2] to

⌦DMh
2 = 0.12. Our prediction for the present day density of X particles is [8, 22, 23]:

⌦Xh
2 =


8⇡Gg⇤(mX/xf )

45

�
1/2 4⇡2

GxfT
3

0

45h�viH2

100

, (2.10)
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Figure 3: Constraints from direct and indirect detection, in mass-coupling space. De-

manding correct relic density confines the possible values to the black line, with numbered

points indicating the required Higgsplosion scale EH in TeV. We end our line at a coupling

of �HX = 5, which we consider non-perturbative. The grey dashed line traces the same ob-

served value of the relic density but for the case of a complex scalar. The HESS constraints

are shown with (solid blue) and without (dashed blue) Sommerfeld enhancement. We see

a small e↵ect in the regions of higher couplings. For X real and perturbative coupling, we

are left with a range of possible DM masses and the corresponding EH values in the range

19TeV . EH . 85TeV, that are experimentally viable. As in earlier plots, the projected

future constraints from LZ and CTA probe the entire remainig parameter space.

4 Other considerations

4.1 DM self-interaction

In this section we assess the extent of DM self-interaction in our model. Recent work has

suggested that strong DM self-interactions can change inner-halo structure and give better

agreement with short-scale observations than regular cold dark matter (CDM) models. To

solve these small-scale discrepancies, such as the “core-cusp” problem, we require a self

interaction cross-section per mass of �(XX ! XX)/mX ⇠ 1cm2g�1 [38, 39].

Self scattering is determined by two processes: XX ! XX, with amplitude propor-

tional to �X, and XX ! h
⇤
! XX, with amplitude proportional to �

2

HX
v
2
/m

2

h
. Since

we require �X ⌧ �HX in our model, the Higgs exchange process dominates the amplitude.

Summing the contributions from the s, t and u channels and calculating the cross-section

yields a non-trivial expression. However, for mh ⌧ mX and under the assumption that

that the initial and final X particles are non-relativistic, v ⌧ 1, we find the leading order
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Scalar DM: summary

• Higgsplosion provides a scale for DM mass.


• This scale is related to its coupling to the SM: once 
Higgsplosion scale is chosen, everything is fixed.


• In our case the currently favored lower value of E* is 
pointing in a reasonable part of the parameter space.



Higgsplosion Future
• Collider production: can we see this at 100TeV?


• Further exploration of the semiclassical method


• What can lattice say?


• Can we learn anything from Hamiltonian truncation 
methods?


• How about astro signals? There are sources with E > 25 
TeV.



Higgsplosion Summary
• This n! amplitude growth does not seem to be a 

perturbation theory breakdown.


• Unitarity is not violated. (Higgspersion)


• Loops of all particles that couple to the Higgs are 
suppressed after E*. This offers a solution to the large 
hierarchy problem.


• A new dynamically generate scale can be useful for other 
physics.


