(In)elastic (Boosted) Dark Matter Searches and Monte Carlo Simulation

Doojin Kim

Monte Carlo Tools for Physics Beyond the Standard Model
Institute for Particle Physics Phenomenology,
Durham University, United Kingdom, April 18th, 2018
Current Status of Dark Matter Searches

- No observation of DM signatures via non-gravitational interactions while many searches/interpretations designed/performed under WIMP/minimal dark-sector scenarios ⇒ merely excluding more parameter space in dark matter models

[Cushman, Calbiati, McKinsey (2013); Baudis (2014)]

[CMS mono-photon search (2014)]

Time to change our approach?!
Conventional vs. Nonconventional Approaches

- Conventional/traditional approaches for DM searches:
 - Weak-scale mass
 - Weakly coupled
 - Minimal dark sector
 - Elastic scattering
 - Non-relativistic

- Nonconventional/modified approaches for DM searches:
 - Other mass scales, e.g., sub-GeV, MeV, keV, ...
 - Weaker connection to the SM, e.g., vector portal (dark photon), scalar portal, ...
 - “Flavorful” dark sector, e.g., more DM species, unstable heavier dark-sector states, ...
 - Inelastic scattering
 - Relativistic

Inelastic boosted/relativistic DM searches
Inelastic “Relativistic”/Boosted Dark Matter

- Generic model framework [DK, Park, Shin (2016)]

- χ_1: "boosted" DM

- Fixed target: e^-, p, etc.

- χ_2: heavier dark sector state: unstable

- Target recoiling: visible

- χ_1: undetected

- Secondary signatures: some are visible

- Probing heavier dark-sector states

- Target recoil (like in typical DM direct detection exp.) + secondary visible signatures \Rightarrow more handles, (relatively) background-free (no secondary signatures in usual backgrounds)

- Complementary to standard DM direct searches
Boosted/Relativistic Dark Matter: Cosmic Frontier

- Signals coming from the universe today, nontrivial model building required
 - Semi-annihilation in e.g., Z_3 models [D’Eramo, Thaler (2010)]
 - Fast-moving DM via induced nucleon decays [Huang, Zhao (2013)]

- Incoming flux of boosted DM is typically small.

Underground large-volume detectors, e.g.,
Super/Hyper-K, DUNE [Agashe, Cui, Necib, Thaler (2014); Huang, Zhao (2013); Necib, Moon, Wongjirad, Conrad (2016); Berger, Cui, Zhao (2014); Kong, Mohlabeng, Park (2014); Alhazmi, Kong, Mohlabeng, Park (2016); DK, Park, Shin (2016)]

Surface-based detectors, e.g.,
ProtoDUNE, SBN Program [Chatterjee, DK, et al. (2018); DK, Kong, Park, Shin in progress]

Conventional WIMP detectors (with some model variation), e.g., Xenon, Lux-Zeplin [Giudice, DK, Park, Shin (2017)]
Boosted/Relativistic Dark Matter: Intensity Frontier

- Signals coming from colliders, additional model building not always necessary
- If dark sectors (containing dark matter) are more “weakly” connected to the SM sector, high intensity experiments are also motivated, e.g., fixed target experiments.
 - BDX, NA64, MicroBooNE, SeaQuest, LDMX, T2HKK, DUNE, SHiP, and many more

- Quite a few phenomenological studies/proposals in the context of dark photon decays, elastic/inelastic scattering of DM, etc. [LoSecco et al. (1980); Bjorken, Essig, Schuster, Toro (2009); Batell, Pospelov, Ritz (2009); deNiverville, Pospelov, Ritz (2011); Izaguirre, Knjaic, Schuster, Toro (2014); Izaguirre, Kahn, Knjaic, Moschella (2017); Berlin, Gori, Schuster, Toro (2018); Bonivento, DK, Park, Shin in progress, and many more]
Two-component Boosted DM Scenario

- A possible relativistic source: BDM scenario (cosmic frontier), stability of the two DM species ensured by separate symmetries, e.g., $Z_2 \otimes Z'_2$, $U(1) \otimes U(1)'$, etc.

- Dominant relic

- Freeze-out first

- Freeze-out later

- Negligible, non-relativistic relic

- “Assisted” freeze-out mechanism

 [Belanger, Park (2011)]

- Y_0

- Y_1

- $x = m_{Y_i}/T$
“Relativistic” Dark Matter Search

Heavier relic \(\chi_0 \): hard to detect it due to tiny/negligible coupling to SM

Lighter relic \(\chi_1 \): hard to detect it due to small amount

Galactic Center at the universe today

Laboratory

\[\gamma_1 = \frac{m_0}{m_1} \]

[Agashe, Cui, Necib, Thaler (2014)]
Boosted DM Detection

- Flux of boosted χ_1 near the earth
 \[\mathcal{F}_{\chi_1} \propto (\text{interaction strength}) \times (\chi_0 \text{ number})^2 \]
 \[\sim 0.8 \times 10^{-7} \text{ cm}^{-2} \text{ s}^{-1} \left(\frac{\langle \sigma v \rangle_{\chi_0 \chi_0 \rightarrow \chi_1 \chi_1}}{10^{-26} \text{ cm}^3 \text{ s}^{-1}} \right) \left(\frac{20 \text{ GeV}}{m_0} \right)^2 \]
 from DM number density

- Setting $\langle \sigma v \rangle_{\chi_0 \chi_0 \rightarrow \chi_1 \chi_1}$ to be $\sim 10^{-26} \text{ cm}^3 \text{ s}^{-1}$ and assuming Navarro-Frenk-White DM halo profile, a standard profile, one finds
 \[\mathcal{F}_{\chi_1} \sim 10^{-7} \text{ cm}^{-2} \text{ s}^{-1} \text{ for WIMP mass-range } \chi_0 \text{ [e.g., } \mathcal{O}(20 \text{ GeV})] \]

- No sensitivity in conventional dark matter direct detection experiments \Rightarrow large-volume (neutrino) detectors motivated
 - ✔ Super-/Hyper-Kamiokande (SK/HK)
 - ✔ Deep Underground Neutrino Experiment (DUNE)
Benchmark Model

\[\mathcal{L}_{\text{int}} \equiv -\frac{\epsilon}{2} F_{\mu\nu} X^{\mu\nu} + g_{11} \bar{\chi}_1 \gamma^\mu \chi_1 X_\mu + g_{12} \bar{\chi}_2 \gamma^\mu \chi_1 X_\mu + \text{h.c.} + \text{(others)} \]

- **Vector portal** (e.g., “dark photon” scenario) [Holdom (1986)]
- **Fermionic DM**
 - \(\chi_2 \): a heavier (unstable) dark-sector state
 - Flavor-conserving interaction \(\Rightarrow \) elastic scattering (can be **suppressed or even vanishing**)
 - Flavor-changing interaction \(\Rightarrow \) inelastic scattering

- Not restricted to this model: various models conceiving BDM signatures
 - BDM source: galactic center, solar capture, dwarf galaxies, assisted freeze-out, semi-annihilation, fast-moving DM etc. [Agashe et al. (2014); Berger et al. (2015); Kong et al. (2015); Alhazmi et al. (2017); Super-K (2017); Belanger et al. (2011); D’Eramo et al. (2010); Huang et al. (2013)]
 - Portal: vector portal, scalar portal, etc.
 - DM spin: fermionic DM, scalar DM, etc.
 - iBDM-inducing operator: two chiral fermions, two real scalars, dipole moment interactions, etc. [Tucker-Smith, Weiner (2001); Giudice, DK, Park, Shin (2017)]
Inelastic BDM (iBDM) at Large-Volume Detectors

\[
\frac{d\sigma}{dE_T} = \frac{m_T}{8\pi\lambda(s, m_T^2, m_1^2)} |M|^2,
\]

\[
|M|^2 = \frac{8(\epsilon e_{12})^2 m_T}{2m_T(E_2 - E_1 - m_X)^2} \times [M_0(F_1 + \kappa F_2)^2 + M_1 \{(F_1 + \kappa F_2)\kappa F_2 + (\kappa F_2)^2\}(E_1 - E_2 + 2m_T)^2].
\]

(F_1 = 1, F_2 = 0 for electron)

\[
M_0 = \left[m_T(E_1^2 + E_2^2) - \frac{(\delta m)^2}{2}(E_2 - E_1 + m_T) \\
+ \frac{m^2(T)(E_2 - E_1)}{2m_T} + m_1^2E_2 - m_2^2E_1 \right],
\]

\[
M_1 = m_T \left\{ \left(E_1 + E_2 - \frac{m_2^2 - m_1^2}{2m_T} \right)^2 \\
+ (E_1 - E_2 + 2m_T) \left(E_2 - E_1 - \frac{(\delta m)^2}{2m_T} \right) \right\},
\]

\[
\delta m \equiv m_2 - m_1.
\]

\[
M_2 \leq \sqrt{m_T^2 + 2E_1m_T + m_1^2} - m_T.
\]

\[
\cos \theta = \frac{E_TE_2 + (m_T^2 + m_2^2 - s)/2}{\sqrt{(E_2^2 - m_2^2)(E_T^2 - m_T^2)}}
\]

- \(\theta \) (roughly) determines angular separation between the primary (target recoil) and the secondary \((e^+e^-)\) pair signals.
Discovery Potential with e-scattering

- GeV/sub-GeV mass and sizable boost factor of dark-sector particles preferred by kinematics
- e^--scattering preferred \leftarrow smaller threshold energy, e^- as a fundamental particle
- e^+e^- from the secondary: highly collimated (not separable in most favored parameter region)
- e^- from the primary: collimated, but separable with detectors of good angular resolution
- High chance to observe two separable charged tracks

[DK, Park, Shin (2016)]
Discovery Potential with p-scattering

- GeV/sub-GeV mass and decent boost factor of dark-sector particles preferred by kinematics
- (Typically) Larger threshold energy, p could be broken apart, atomic form factor
- e^+e^- from the secondary: separated
- p from the primary: separated from the secondary particles
- High chance to observe three separable charged tracks

[DK, Park, Shin (2016)]
Recall, in a minimal boosted DM scenario, if flux over the whole sky is $\mathcal{O}(10^{-7})$ cm$^{-2}$ s$^{-1}$, it is promising and achievable!

Comparable/better signal sensitivity at DUNE! ⇒ More investigation needed! [De Roeck, DK, Moghaddam, Park, Shin, Whitehead, in progress]
More Applications

- Similar physics opportunities at surface-based detectors, e.g., NOvA, SBN Program, ProtoDUNE, etc.
- Challenge: enormous cosmic-origin backgrounds (typically from muons)
- Solution:
 - Many signal features of iBDM [Chatterjee, DK et al. (2018)]
 - “Earth Shielding” for elastic BDM (at the cost of half statistics) [DK, Kong, Park, Shin in progress]

- Similar physics opportunities at conventional WIMP detectors or (small-volume) neutrino detectors, e.g., Xenon, DarkSide, CUORE, etc.
- Challenge: “small” volume w.r.t the flux of boosted DM
- Solution: model modification to increase the flux
 \[\mathcal{F}_{\chi_1} \propto m_0^{-2} \]
 - Good resolution, sensitivity to low-energy (MeV-range) signals
 - Phenomenological study at WIMP detectors with their detector specifics considered [Giudice, DK, Park, Shin (2017)]
(In)elastic BDM Searches in Various Experiments

Detectors are **complementary** to one another rather than superior to the others!
Event Simulation for Cosmic-frontier Searches

- Boosted/relativistic DM injection
 - (Usually) boosted DM comes with a fixed boost factor
- Parton-level Calculation
 - Phase-space gen.
 - Standard parton-level calculators
- Event Generation
 - Standard event generators
 - GENIE
- Detector Response
 - LArSoft
 - GEANT4

- Electron scattering: good enough with standard parton-level calculators (or even phase-space generator) to describe leading behaviors of BDM-initiated events
- Proton scattering: several effects even before detector responses, e.g., atomic form factor, deep inelastic scattering (DIS of iBDM \cite{DK, Machado, Park, Shin, in progress}), Δ-resonances regime, nucleon effects etc.
- GENIE (see also Berger's talk for more details)
 - The above-mentioned effects are fully considered.
 - Resonance model in \cite{Rein, Sehgal (1981)} (inputs from lattice QCD needed?)
 - Elastic BDM has been implemented, iBDM is being implemented.
Event Simulation for Intensity-frontier Searches

- Boosted/relativistic DM injection
- Parton-level Calculation
- Event Generation
- Detector Response

- Boosted/relativistic DM injection
- Parton-level Calculation
- Event Generation
- Detector Response

- Ex) vector portal
- Meson (π/η) decays
- Bremsstrahlung
- Drell-Yan

- Phase-space gen.
- Standard parton-level calculators
- Standard event generators
- GENIE
- LArSoft
- GEANT4

- BdNMC [deNiverville (2017)],
 - All production mechanisms are considered.
 - Target and detector characteristics can be set.
 - Pre-simulated data is used.

- Fixed target experiments with the latest MadGraph

[deNiverville, Chen, Pospelov, Ritz (2017)]
Conclusions

- Boosted/relativistic dark matter searches at the cosmic/intensity frontier are promising.
- They may provide an alternative avenue to explore dark sector physics (including dark matter).

- Theoretical/phenomenological studies have been actively conducted and in progress.
- There are many ongoing/projected experiments in which they can be tested/probed.

- Many existing MC tools can be utilized for boosted/relativistic DM physics, and an increasing amount of effort to develop dedicated MC tools has been made.
- More active interactions with MC-tool community are highly expected/encouraged!
Thank you!
Background Considerations

- **Potential sources**

 - Cherenkov radiation (CR) by electron/muon is distinguished from that by proton.
 - Electron-preferred scenarios:
 - CR by an N.C. electron
 - CR by a C.C. electron/muon/tau
 - CR by at least, a C.C. proton unless broken

 - Proton-preferred scenarios: opening angles among recoil proton, decayed electrons are large enough to resolve
Background Considerations

- More challenging cases: broken nuclei

\[\nu_\ell \rightarrow \ell \rightarrow p/n \rightarrow \pi^+ \rightarrow \mu^+ \nu \rightarrow e^+ \nu \nu \nu \]

- Similar expectations for neutral currents
- (Dedicated study in progress)
Background Considerations

More challenging cases: broken nuclei

\[\nu_\ell \rightarrow \ell \rightarrow W \rightarrow p/n \pi \]

- \(\pi^+ \rightarrow \mu^+ \nu \rightarrow e^+ \nu \nu \nu \)

- Expecting again that (quality) track-based particle identification allows us to distinguish multi-track background events from signal ones.
- A dedicated study is needed.

Particle tracks created by a neutrino interaction in liquid argon in the ArgoNeuT.
Flux of Neutrino

[Ruppin et al., (2014)]