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What do we want to detect ?

 Neutron  

 ~ 1 GeV mass, keV to MeV in kinetic energy with a flux of several neutron s-1

 Interact through strong force

 Light Dark Matter produced in a W beam dump by an 12 GeV electron beam 

 Existence hypothetical

 Mass unknown, keV to MeV in kinetic energy

 Interact through weak force   

 Hypothesis: behaves as a fast moving neutron
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Detection principle

 Detect the ionization produced when a particle scatters off nucleus of the gas material

 Neutron: C
4
H

10
 (iso-butane) gas – m

neutron
 ~ m

H

 Light Dark Matter (LDM): 1H, 4He, CF
4
, 40Ar and 131Xe gas – m

LDM
 ?

 Identifiable if elastic scattering occurs  

                     e.g. n + H → n + H

  

 Amplification with Gas Electron Multipliers 

enables detection of electrons produced by 

the nuclear recoil with nearly 100 % efficiency

estimated

Readout: measure 2D + time (ie relative z) + charge (ie absolute z)  



Igal Jaegle (UF) MC4BSM 2018 4

Simulation steps

 Signal and background sources 

 Geometry and materials 

 Neutron/Light Dark Matter interaction with the detector

 Creation of the ionization in the gas target  

 Electron transport from the primary ionization to the readout 

 Electronic readout 
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Signal and background sources

 Neutron

 Neutron sources (e-beam, natural radiation) 

 Internal background sources (alpha, beta etc ...)

 Light Dark matter

 Light Dark Matter sources: e- N → e- N A'[→ χχ] or e- N χχ 

 Light Dark Matter detection: χ + N → χ + N

 Background sources (neutron, 222Rn)
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Geometry and materials

 Directional TPC placed after a Tungsten (W) beam dump in a concrete cave

Cave

W beam dump

TPC

Directional Time Projection Chamber

10µA 12GeV e--beam

30 x 30 x 50 cm3

χ

Recoil gas-nucleus

χ’



Igal Jaegle (UF) MC4BSM 2018 7

Probability of interaction 

 P = s . l . r 

 s cross section [b] (barn = 1e-24 cm2)

 l target length [cm]

 r density [cm-3] = r
0
 [g/cm3] . N

A
[mol-1] / M

A
[g/mol]

  Between a neutron and a H belonging to C
4
H

10

=> 0.11 % for 1 cm 

 Between a neutron and a F belonging to CF
4

=> 0.003 % for 1 cm 

 GEANT4 results for 50 cm3, C
4
H

10
 (1 atm)

              => ~ 5 % efficiency at 1 MeV

=> Good agreement between geant4 and analytical calculation

=> Efficiency can be adjusted by varying size and pressure
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Dark Sector Models 

Attempt to simultaneously explain all recent results of direct and indirect dark matter detection 

experiments

Models include WIMP dark matter candidates, and a new force, mediated by “Dark Gauge Boson”

Dark photon A' mixes with SM photon with kinetic mixing ε 

γ

γ

γ

ε
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The dark gauge boson A'

Branching ratio

Current limits

Dark gauge bosons, or dark photons, A' = γ' = A = U, have been searched since the late 80s
Very small couplings to Standard Model particles
Low mass: of order MeV to GeV
LDM can be produced off-shell or on-shell , χ

, χ

, χ

, χ

=> Low-energy and high-intensity beams or 
                        beam+target ideal tools

    
=> Collider: σ   α∝ 2ε2 / E

cm
= 2ab for ε=10-4 and E

cm
=10 GeV/c2

=> Fixed target: σ  Z∝ 2α3ε2 / m
A'

2= 151ab for Z=1 and m
A'

2= 100MeV/c2

Feynman diagrams

, χ

Collider Fixed target

, χ
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e- N → e- N A'[→ χχ] or e- N χχ
Simulation with MadGraph and model computed by Yi-Ming Zhong 
Model based on 10.1007/JHEP11(2013)167 (R. Essig, J. Mardon, M. Papucci, T. Volansky, Y. Zhong) 
& arXiv:1705.01633v1 (Y. Liu & G. Miller)
Two production modes: on-shell (full line) and off-shell (dashed line)
1 MeV/c2 < m

A’
 < 10 GeV/c2

1 MeV/c2 < m
χ
 < 5 GeV/c2

ε2 = α’ / α is the kinetic mixing between A' and γ
α’ electromagnetic coupling of A'  to γ

 α = 1 / 137 (SM electromagnetic coupling)

α
D
= g

D

2 / 4π is the dark sector constant
g

D
 is the dark sector gauge coupling of A' to 

Dirac fermion dark matter (ie LDM)

 χ beam profile at the TPC entrance depends of 
mass difference between A' and χ

 m
A’

 = 4 GeVc2  - m
χ
 = 2 GeV/c2 

 m
A’

 = 10 GeVc2  - m
χ
 = 2 GeV/c2 
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Reach plot - general formula

differential energy spectrum of nuclear recoils

 R is the event rate per unit mass

 T
R
 is the recoil energy

 R
0
 is the total event rate

 S is the modified spectral function

 F is the form factor 

 I is an interaction function  

J.D. Lewin, P.F. Smith Astr. Phys. 6 (1996) 87-112
Particle Dark Matter (Cambridge ed.)
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Total cross section off nucleus and off nucleon

 N event number if N = 2.3 CL = 90 %, in this work N = 1

 V detector volume [cm3]

 ρ target density  [cm-3] = r
0
 [g/cm3] . N

A
[mol-1] / M

A
[g/mol]

 f WIMP/LDM flux [cm-2s-1] – model dependent  

 Dt exposure time [s]
 

 ε detection efficiency
           M

X
 + A → M

X
 + A

 ΓN,A “interaction” between the WIMP/LDM and the nucleon/nucleus: ΓA = F2 I  
model dependent

  I = A2 for SI or I = C2l2J(J+1) for SD
  F2 (qr

n
) is the form factor 

 m
N
 nucleon reduced mass

 m
A
 nucleus reduced mass
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WIMP flux vs beam-induced LDM flux

 F = r
D
v

D
 / M

D
 [cm-2s-1]

 r
D 

= 0.3 [GeV/c2/cm3]

 v
D
 depends on WIMP velocity distribution choice

Gaussian velocity distribution

 s is the speed dispersion = (3/2)1/2v
c 
, 

v
c
 local circular speed (= 220 km/s)

v
detector

 = v
galaxy

 + v
sun

 + v
earth

, v
escape

 = 530 km/s

J.D. Lewin, P.F. Smith Astr. Phys. 6 (1996) 87-112
Particle Dark Matter (Cambridge ed.)

ε=10-4

α
D
= α = 1/ 137

I = 10µA 

Hit rate due to 
beam-induced 
background
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Elastic scattering

 T nucleus kinetic energy in CMS

 M
D
 and M

T
 respectively WIMP/LDM and nucleus masses

 v WIMP velocity in CMS
in LAB.



Igal Jaegle (UF) MC4BSM 2018 15

Interaction function

SI : s a |A|2 

SD : s a J2  

 I = C2l2J(J+1)

 C related to the quark spin

  l2J(J+1) related to nuclear magnetic moment and the unpaired nucleon spin 

J.D. Lewin, P.F. Smith Astr. Phys. 6 (1996) 87-112
Particle Dark Matter (Cambridge ed.)
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Nuclear Form Factor

One nuclear form factor per nucleus

Momentum transfer q = | p
nucleus at rest

 – p
nucleus after elastic scattering

 |  

Spin dependent  

Spin independent

J.D. Lewin, P.F. Smith Astr. Phys. 6 (1996) 87-112
Particle Dark Matter (Cambridge ed.)
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Nuclear Form Factor

One nuclear form factor per nucleus

Momentum transfer q = | p
nucleus at rest

 – p
nucleus after elastic scattering

 |  

Spin dependent  

Spin independent

Remark: if enough energy is transferred one can deduce from the position of the minima 

what kind of interaction did occur

J.D. Lewin, P.F. Smith Astr. Phys. 6 (1996) 87-112
Particle Dark Matter (Cambridge ed.)
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Detection efficiency

 Depends on the thresholds and WIMP/LDM velocity/kinetic energy distribution

 Energy deposited eg through ionization   

 SRIM simulation and quenching factor

thresholds:
 Energy threshold

 Minimum track length 
measurable
 GEM: at least 3 holes 

covered

 Directionality
  L / s > 3
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Code validation

Code tested by putting the input parameters corresponding to DMTPC and XENON100

Detection efficiency approximated by a constant value

V = 1 m3 
P = 100 torr
thr. = 50 keV
Dt = 1 y

Constant quenching factor 25 %Quenching factor determined from SRIM

40 kg 
thr. = 4.5 keV
Dt = 11.17 d
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Design optimization

1 m3 divided into 3 detectors of drift length of 33.33 cm
other key ingredients

 energy threshold 1 keV
 spacing between GEM holes 0.140 mm
 pad size 0.2 mm
 transverse diffusion 

S. Biagi, Nucl. Instr. & Meth. A283 (1989) 716.
S. Biagi, Nucl. Instr. & Meth. A310 (1991) 133.
J. Va’vra, P. Coyle, J. Kadyk, and J. Wise, SLAC-PUB-5728 (1992).

 pad: pad size
 C

D
 transversal 

diffusion constant
 N

eff
 effective 

number of primary 
electrons
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Design optimization

1 m3 divided into 3 detectors of drift length of 33.33 cm
other key ingredients

 energy threshold 1 keV
 spacing between GEM holes 0.140 mm
 pad size 0.2 mm

 transverse diffusion  

 by changing only the pressure  

S. Biagi, Nucl. Instr. & Meth. A283 (1989) 716.
S. Biagi, Nucl. Instr. & Meth. A310 (1991) 133.
J. Va’vra, P. Coyle, J. Kadyk, and J. Wise, SLAC-PUB-5728 (1992).
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Pressure optimization

1 m3 of CF
4

 divided into 3 detectors of drift length of 33.33 cm

other key ingredients
 energy threshold 1 keV
 3 GEM holes covered L > 0.7 mm 
 L / s > 3

figure of merit calculated for two WIMP masses 10 GeV / c2 and 100 GeV / c2
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Pressure optimization

 figure of merit for SI  

M
X
 = 10 GeV / c2

M
X
 = 100 GeV / c2
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Pressure optimization

 figure of merit for SI  

Pressure [torr]

F
O

M
 [

a.
u

.]
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Beam-induced background

 dE/dx selection criteria can remove all 
non recoil gas-nucleus hit

 Most hit detected in the TPC are back-
scattering ie not pointing to the beam 
direction but to the cave

 Only neutron can produce recoil gas-
nucleus

 Neutron background should be produced 
mostly by natural radiation according to
Geant4
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Beam-induced light dark matter scattering distributions

 m
A’

 = 10 GeVc2  - m
χ
 = 2 GeV/c2 

 m
A’

 = 4 GeVc2  - m
χ
 = 2 GeV/c2 

He C O S Ar

When 2 x LDM mass ~ dark photon mass, there is a clear scattering pattern 
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Beam-induced light dark matter scattering distributions

 m
A’

 = 10 GeVc2  - m
χ
 = 2 GeV/c2  m

A’
 = 4 GeVc2  - m

χ
 = 2 GeV/c2 

H F FH

With Hydrogen scattering pattern is more pronouced 
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Reach plot

Beam-induced LDM 

 SI case

 By lowering the pressure the directional sensitivity increases for low mass WIMP/LDM 
beam-induced LDM 1y exposure, 150keV thres.



Igal Jaegle (UF) MC4BSM 2018 29

Reach plot

 SD case

 By lowering the pressure the directional sensitivity increases for low mass WIMP/LDM
beam-induced LDM 1y exposure, 150keV thres.
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Conclusion

 Beam-induced light dark matter flux much smaller than WIMP flux 
 
 Beam-induced light dark matter much faster than WIMP 

 A directional detector (TPC) might have a high separation power between signal and 
background

If LDM mass is around 50% of the dark photon mass, there is a clear scattering pattern, 
 pattern more pronounce if target is Hydrogen

 Preliminary design optimization of directional TPC
   By lowering the pressure the directional sensitivity increases for low mass WIMP/LDM
  Room for improvements 
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Thanks for your attention
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Neutron interaction with matter 
depend on the neutron kinetic energy

 elastic scattering from nuclei: n+A->n+A  => dominant in the MeV region

 inelastic scattering: n+A->n'+A*, A* excited state of the nucleus A*-> A + g  

=> > 1 MeV neutron enough to excite the nucleus

=> hydrogen has no excited state 

 radiative neutron capture: n+(Z,A) → g+(Z,A+1) 

=> since s ~ 1 / v, the neutron is most likely absorbed when it is slow

 other nuclear reactions: (n,p),(n,d),(n,a) etc … 

=> the neutron is captured and charged particles are emitted

=> s ~ 1 / v i.e. eV to keV

 fission => thermal energies below eV

 high energy hadron shower > 100 MeV



Igal Jaegle (UF) MC4BSM 2018 33

H, C and F cross sections

 generated by ACE-MCNP using ENDF/B-VI Cross Section Library 2006

ENDF/B-VI Cross Section Library 2006 combined

 measured cross section (by Time-of-Flight technique)

 calculation from N-body physics

 elastic scattering is the dominant process (> 95 %) in all 3 cross sections

 s(H at 1 MeV) ~ 4.5 b

 s(C at 1 MeV) ~ 2 b

 s(F at 1 MeV) ~ 3.2 b
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