Simulation of a gas-target directional time projection chamber to detect light dark matter in a beam-dump experiment

Igal Jaeglé University of Florida

Introduction

Models

Preliminary simulation

Conclusion

Igal Jaegle (UF)

MC4BSM 2018

1

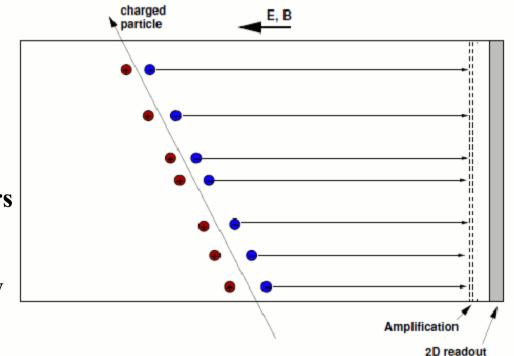
What do we want to detect?

Neutron

- ~ 1 GeV mass, keV to MeV in kinetic energy with a flux of several neutron s⁻¹
- Interact through strong force

Light Dark Matter produced in a W beam dump by an 12 GeV electron beam

- Existence hypothetical
- Mass unknown, keV to MeV in kinetic energy
- Interact through weak force
- <u>Hypothesis</u>: behaves as a fast moving neutron


Detection principle

b Detect the ionization produced when a particle scatters off nucleus of the gas material • Neutron: $C_4 H_{10}$ (iso-butane) gas – $m_{neutron} \sim m_{H}$

• Light Dark Matter (LDM): ¹H, ⁴He, CF₄, ⁴⁰Ar and ¹³¹Xe gas – m_{LDM}?

► Identifiable if elastic scattering occurs e.g. n + H → n + H

Amplification with Gas Electron Multipliers enables detection of electrons produced by the nuclear recoil with nearly 100 % efficiency estimated

Readout: measure 2D + time (ie relative z) + charge (ie absolute z) Igal Jaegle (UF)
MC4BSM 2018

Simulation steps

Signal and background sources

Geometry and materials

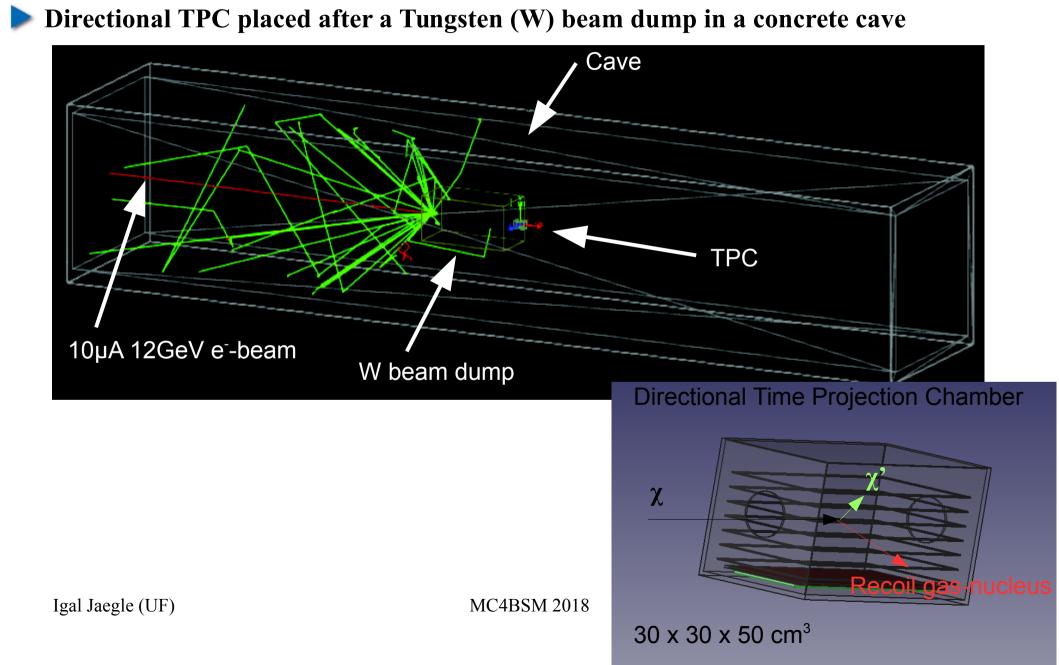
Neutron/Light Dark Matter interaction with the detector

Creation of the ionization in the gas target

Electron transport from the primary ionization to the readout

Electronic readout

Signal and background sources


Neutron

- Neutron sources (e-beam, natural radiation)
- Internal background sources (alpha, beta etc ...)

Light Dark matter

- Light Dark Matter sources: $e^- N \rightarrow e^- N A' [\rightarrow \chi \chi]$ or $e^- N \chi \chi$
- Light Dark Matter detection: $\chi + N \rightarrow \chi + N$
- Background sources (neutron, ²²²Rn)

Geometry and materials

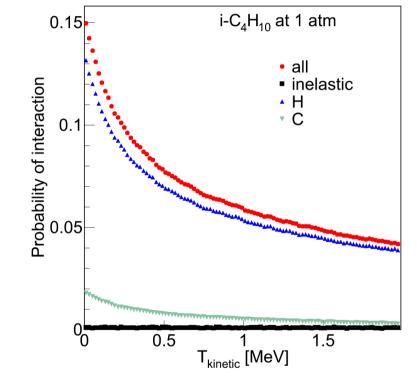
Probability of interaction

P=σ.l.ρ

- σ cross section [b] (barn = 1e⁻²⁴ cm²)
- I target length [cm]

• ρ density $[cm^{-3}] = \rho_0 [g/cm^3] \cdot \mathcal{N}_A[mol^{-1}] / \mathcal{M}_A[g/mol]$

Between a neutron and a H belonging to $C_4 H_{10}$


=> 0.11 % for 1 cm

Between a neutron and a F belonging to CF₄

=> 0.003 % for 1 cm

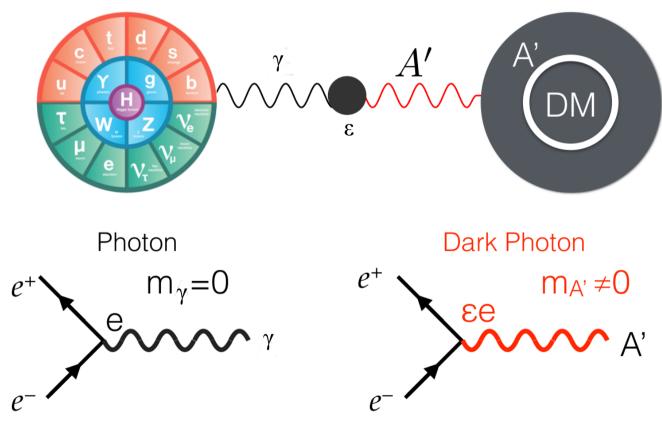
GEANT4 results for 50 cm³, $C_4 H_{10}$ (1 atm)

=> ~ 5 % efficiency at 1 MeV

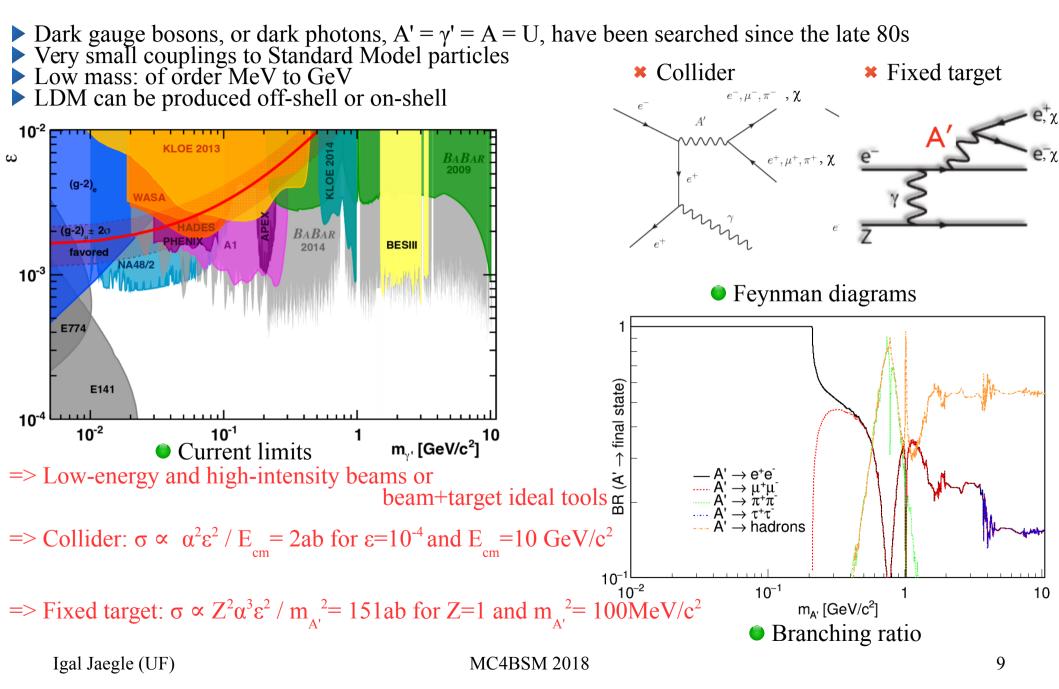
- => Good agreement between geant4 and analytical calculation
- => Efficiency can be adjusted by varying size and pressure

R. Essig, P. Schuster, and N. Toro, Phys. Rev. D 80, 015003 (2009).

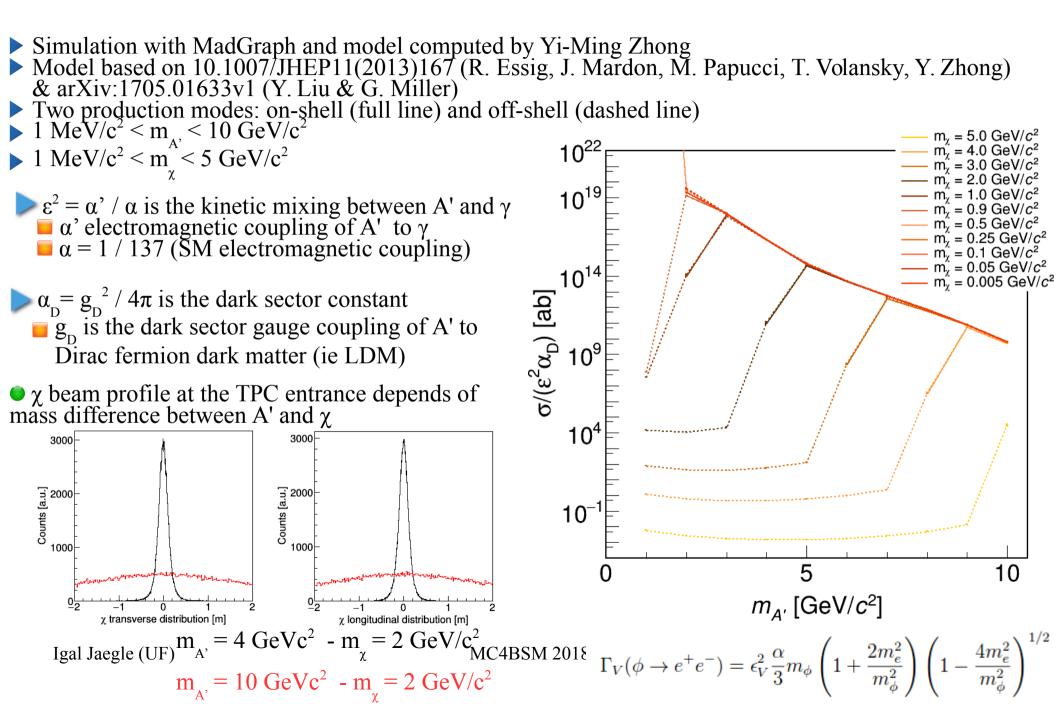
P. Fayet, Phys. Lett. B 95, 285 (1980).
P. Fayet, Nucl. Phys. B 187, 184 (1981).
P. Fayet and J. Kaplan, Phys. Lett. B 269, 213 (1991).
C. Boehm and P. Fayet, Nucl. Phys. B 683, 219 (2004).
P. Fayet, Phys. Rev. D 70, 023514 (2004).
N. Arkani-Hamed, D.P. Finkbeiner, T.R. Slatyer and N. Weiner, Phys. Rev. D 79, 015014 (2009).
M. Pospelov, A. Ritz and M. Voloshin, Phys. Lett. B 662, 53 61b (2008).


Dark Sector Models

Attempt to simultaneously explain all recent results of direct and indirect dark matter detection

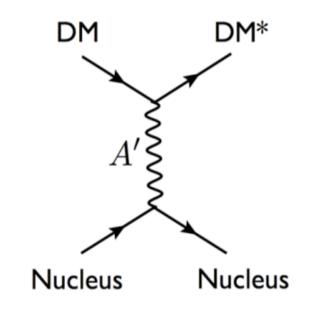

experiments

Models include WIMP dark matter candidates, and a new force, mediated by "Dark Gauge Boson"


Dark photon A' mixes with SM photon with kinetic mixing ε

The dark gauge boson A'

 $e^{-}N \rightarrow e^{-}N A' [\rightarrow \chi \chi] \text{ or } e^{-}N \chi \chi$



Reach plot - general formula

J.D. Lewin, P.F. Smith Astr. Phys. 6 (1996) 87-112 Particle Dark Matter (Cambridge ed.)

differential energy spectrum of nuclear recoils

- R is the event rate per unit mass
- T_{R} is the recoil energy
- R₀ is the total event rate
- S is the modified spectral function
- F is the form factor
- I is an interaction function

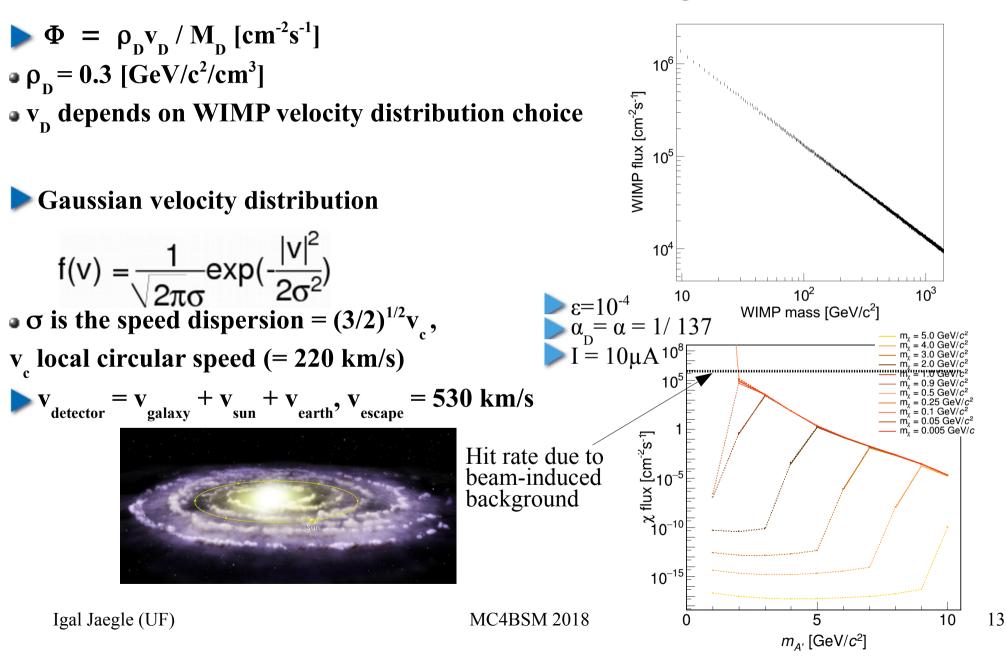
Total cross section off nucleus and off nucleon

$$\frac{d\sigma^{A}(M_{X})}{dT_{R}} = \frac{1}{V\rho\phi(M_{X})\Delta t \in (M_{X})} \frac{dN(M_{X})}{dT_{R}} \text{ and } \frac{d\sigma^{N}(M_{X})}{dT_{R}} = \frac{\mu^{2}_{N}(M_{X})}{\mu^{2}_{A}(M_{X})}\Gamma^{N}\frac{d}{dT_{R}}\frac{\sigma^{A}(M_{X})}{\Gamma^{A}(T_{R})}$$

N event number if N = 2.3 CL = 90 %, in this work N = 1

- **V** detector volume [cm³]
- \triangleright ρ target density $[cm^{-3}] = \rho_0 [g/cm^3] \cdot \mathcal{N}_A[mol^{-1}] / \mathcal{M}_A[g/mol]$
 - φ WIMP/LDM flux [cm⁻²s⁻¹] <u>model dependent</u>
 - ∆t exposure time [s]

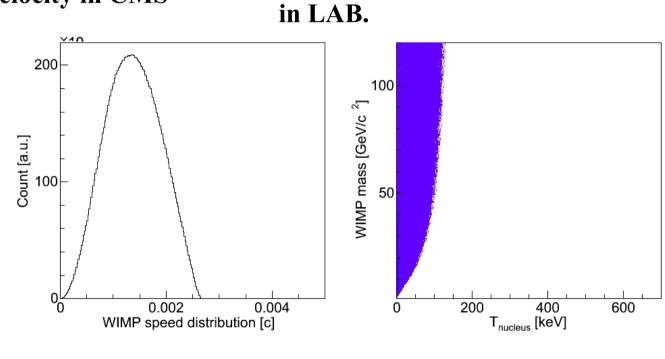
- \mathbf{P} $\boldsymbol{\mu}_{N}$ nucleon reduced mass
 - μ_A nucleus reduced mass


 ε detection efficiency M_x + A → M_x + A

 Γ^{N,A} "interaction" between the WIMP/LDM and the nucleon/nucleus: Γ^A = F² I model dependent

- $I = A^2$ for SI or $I = C^2 \lambda^2 J(J+1)$ for SD
- **F**² (**qr**_n) is the form factor

WIMP flux vs beam-induced LDM flux


J.D. Lewin, P.F. Smith Astr. Phys. 6 (1996) 87-112 Particle Dark Matter (Cambridge ed.)

Elastic scattering

$$T_{nucleus}^{cm} = \frac{M_D^2}{(M_T + M_D)^2} \frac{M_T}{2} v^2$$

- T nucleus kinetic energy in CMS
- \bullet $M_{_{\rm D}}$ and $M_{_{\rm T}}$ respectively WIMP/LDM and nucleus masses
- v WIMP velocity in CMS

Igal Jaegle (UF)

Interaction function

J.D. Lewin, P.F. Smith Astr. Phys. 6 (1996) 87-112 Particle Dark Matter (Cambridge ed.)

- $\mathbf{I} \mathbf{SI} : \boldsymbol{\sigma} \boldsymbol{\alpha} |\mathbf{A}|^2$
- **SD** : $\sigma \alpha J^2$
- $\mathbf{I} = \mathbf{C}^2 \lambda^2 \mathbf{J} (\mathbf{J} + 1)$
- C related to the quark spin
- $\lambda^2 J(J+1)$ related to nuclear magnetic moment and the unpaired nucleon spin

Isotope	J	$\lambda^2 J(J+1)$		
		single particle	odd group	
¹ H	1/2	0.75	0.75	
¹⁹ F	1/2	0.75	0.647	
²³ Na	3/2	0.15	0.041	
²⁷ Al	5/2	0.35	0.087	
⁴³ Ca	7/2	0.321	0.152	
73 Ge	9/2	0.306	0.065	
⁹³ Nb	9/2	0.306	0.162	
^{127}I	5/2	0.35	0.007	
¹²⁹ Xe	1/2	0.75	0.124	
¹³¹ Xe	3/2	0.15	0.055	

WN	C_{WN}^2			$\sigma_{WN} _{spin}$	$\sigma_{WN} _{spin}$
,,,,,	NQM	EMC [36]	EMC [4]	$\frac{\mu^2 I_s}{\mu^2 I_s}$	$\sigma_{\nu_M N}$
$\tilde{\gamma} p$	0.14 ± 0.01	0.096 ± 0.009	0.06 ± 0.02	$4 \left(e \right)^4$	$\left(\frac{M_F}{m_{\tilde{q}}} ight)^4$
$\tilde{\gamma}n$	0.002 ± 0.001	0.012 ± 0.003	0.03 ± 0.01	$\frac{4}{\pi} \left(\frac{e}{m_{\tilde{q}}c} \right)^4$	$\left(\frac{1}{m_{\tilde{q}}}\right)$
$\tilde{H} p$	0.40 ± 0.02	0.46 ± 0.04	0.55 ± 0.10	$rac{8G_F^2}{\pi\hbar^4}\cos^2 2eta$	$4\cos^2 2\beta$
$\tilde{H}n$	0.40 ± 0.02	0.34 ± 0.03	0.26 ± 0.07	$\pi\hbar^4 \cos 2\beta$	
$\tilde{B}p$	0.16 ± 0.01	0.10 ± 0.01	0.06 ± 0.02	$1\left(e\right)^4$ 1	$\left(M_F\right)^4$ 1
$\tilde{B}n$	$(7\pm5) imes10^{-4}$	0.010 ± 0.003	0.03 ± 0.01	$\frac{1}{\pi} \left(\frac{e}{m_{\tilde{q}}c} \right)^4 \frac{1}{\cos^2 \theta_W}$	$\left(\frac{1}{m_{\tilde{q}}}\right) = \overline{4\cos^2\theta_W}$
$\tilde{Z}p$	1.9 ± 0.1	0.9 ± 0.1	0.3 ± 0.2	$4\left(e\right)^{4}$, $4e$	$\left(rac{M_F}{m_{ ilde q}} ight)^4 an^4 heta_W$
$\tilde{Z}n$	0.21 ± 0.04	0.002 ± 0.006	0.1 ± 0.1	$\left(\frac{\pi}{\pi}\left(\frac{1}{m_{\tilde{q}}c}\right)^{-\tan^{*}\theta_{W}}\right)$	

Table 4: Values of WIMP-nucleon spin factors; $M_F = \sqrt{8} M_W \sin \theta_W \simeq 109 \,\mathrm{GeVc^{-2}}$

Table 3: Values of $\lambda^2 J(J+1)$ for various isotopes

Igal Jaegle (UF)

Nuclear Form Factor

J.D. Lewin, P.F. Smith Astr. Phys. 6 (1996) 87-112 Particle Dark Matter (Cambridge ed.)

One nuclear form factor per nucleus Momentum transfer q = | p_{nucleus at rest} - p_{nucleus after elastic scattering} | **Spin dependent Spin independent** spin independent 10⁻¹ spin dependent 100 2 WIMP mass [GeV/c 10⁻³ Ъ2 10⁻⁵ 50 10-7

0.5

q [fm⁻¹]

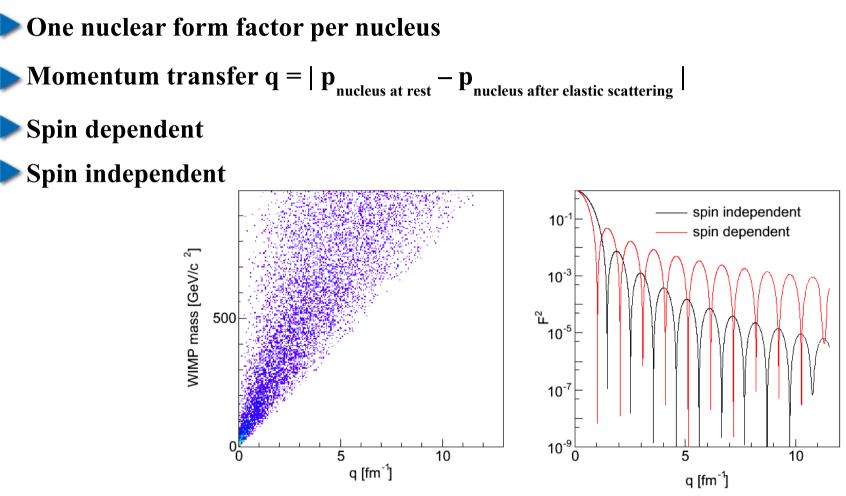
0

MC4BSM 2018

1.5

 10^{-9}

n


10

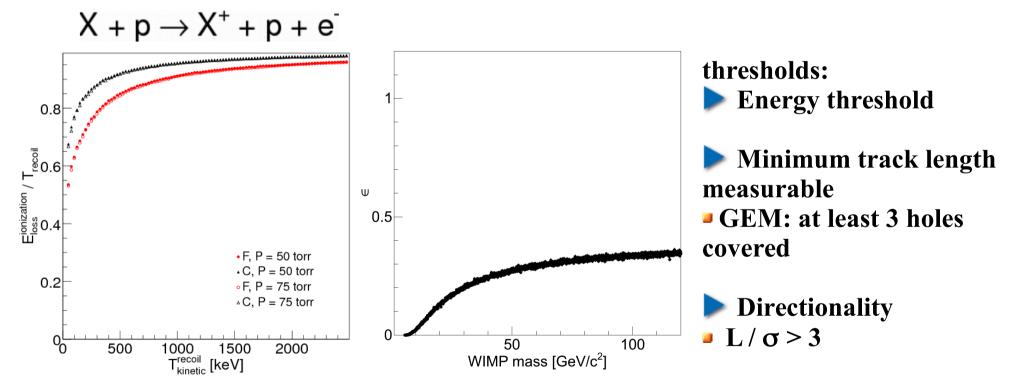
5

q $[fm^{-1}]$

Nuclear Form Factor

J.D. Lewin, P.F. Smith Astr. Phys. 6 (1996) 87-112 Particle Dark Matter (Cambridge ed.)

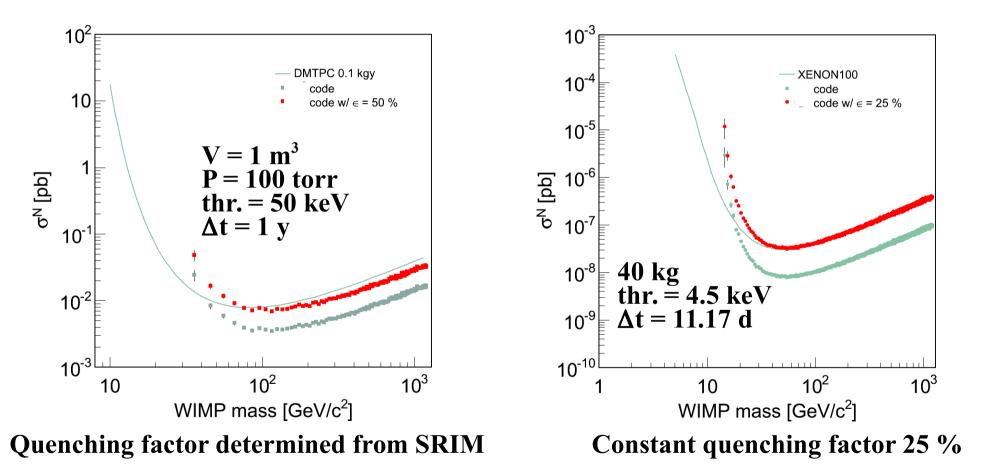
Remark: if enough energy is transferred one can deduce from the position of the minima


what kind of interaction did occur

Igal Jaegle (UF)

Detection efficiency

> Depends on the thresholds and WIMP/LDM velocity/kinetic energy distribution


Energy deposited eg through ionization

SRIM simulation and quenching factor

Code validation

Code tested by putting the input parameters corresponding to DMTPC and XENON100
Detection efficiency approximated by a constant value

Design optimization

b other key ingredients energy threshold 1 keV spacing between GEM holes 0.140 mm pad size 0.2 mm 80 µm∕∖cm transverse diffusion 480 σ_L Longitudinal Diffusion (μm/ √cm) CF₄ (b) O 80% CF₄ + 20% iC₄H₁₀ 400 320 □ 95% CF₄ + 5% DME $\sigma_{xy} = \sqrt{\left(\frac{\text{pad}}{\sqrt{1-\alpha}}\right)^2}$ [แฑ] ^{ภั}ช 200) 160 0 • pad: pad size 0.8 1.2 1.6 0.4 2.0 0 E/P (kV/cm/atm) • C_n transversal 6936A3 2-92 10 20 0 diffusion constant z [cm] • N_{eff} effective

S. Biagi, Nucl. Instr. & Meth. A283 (1989) 716.

1 m³ divided into 3 detectors of drift length of 33.33 cm

- S. Biagi, Nucl. Instr. & Meth. A310 (1991) 133.
- J. Va'vra, P. Coyle, J. Kadyk, and J. Wise, SLAC-PUB-5728 (1992). Igal Jaegle (UF) MC4BSM 2018

number of primary

electrons

Design optimization

1 m³ divided into 3 detectors of drift length of 33.33 cm
 other key ingredients
 energy threshold 1 keV
 spacing between GEM holes 0.140 mm
 pad size 0.2 mm
 transverse diffusion

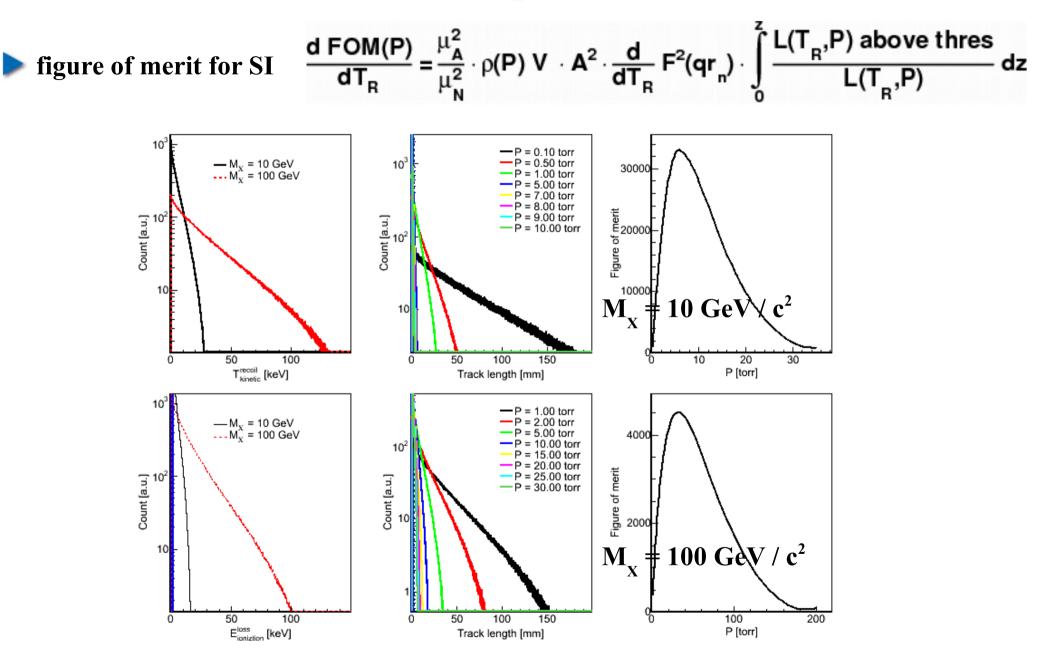
 $\sigma_{xy} = \frac{1}{\sqrt{P}} f(\frac{E}{P})$

by changing only the pressure

S. Biagi, Nucl. Instr. & Meth. A283 (1989) 716.

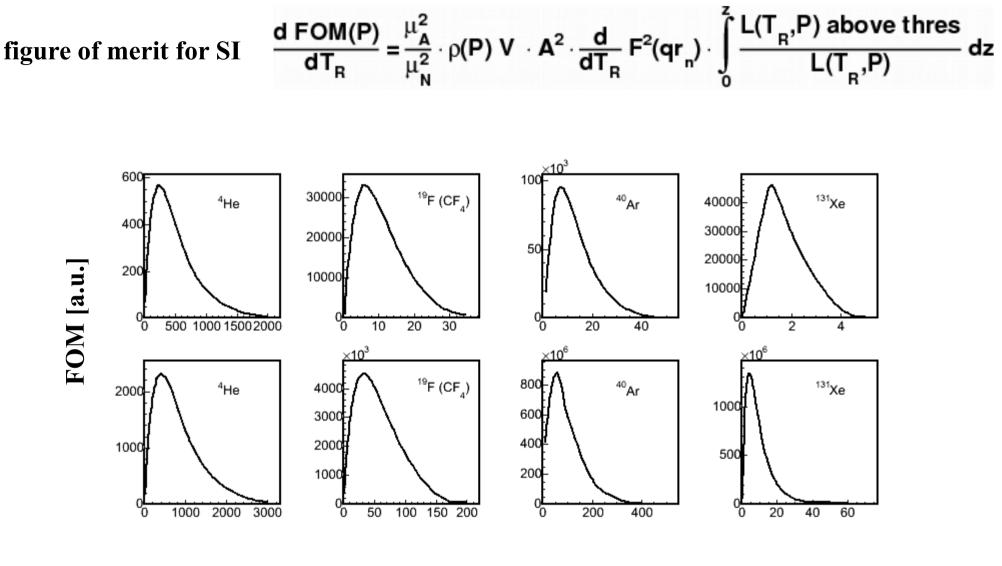
S. Biagi, Nucl. Instr. & Meth. A310 (1991) 133.

J. Va'vra, P. Coyle, J. Kadyk, and J. Wise, SLAC-PUB-5728 (1992). Igal Jaegle (UF) MC4BSM 2018

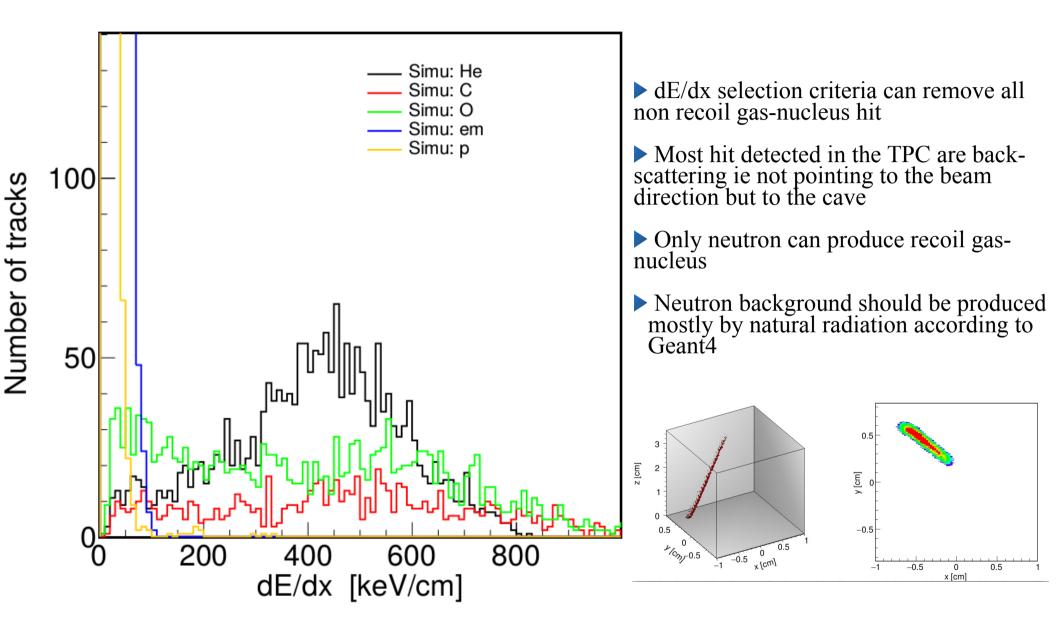

Pressure optimization

▶ 1 m³ of CF₄ divided into 3 detectors of drift length of 33.33 cm

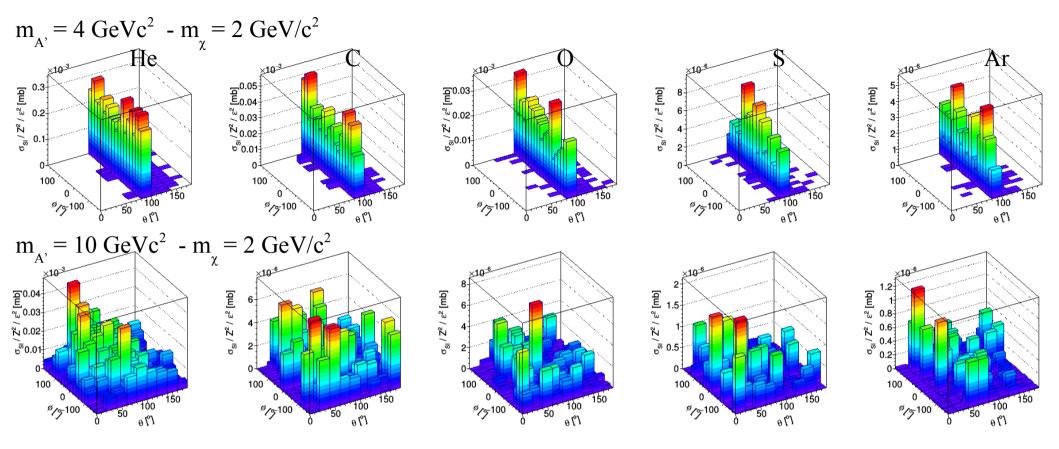
other key ingredients
energy threshold 1 keV
3 GEM holes covered L > 0.7 mm
L / σ > 3


b figure of merit calculated for two WIMP masses 10 GeV / c² and 100 GeV / c²

Pressure optimization


Igal Jaegle (UF)

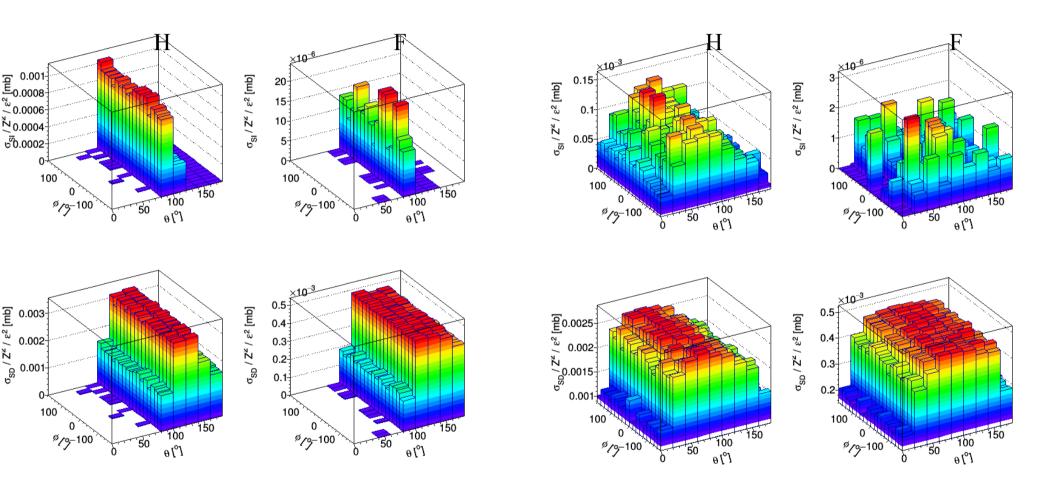
Pressure optimization



Pressure [torr]

Beam-induced background

Beam-induced light dark matter scattering distributions

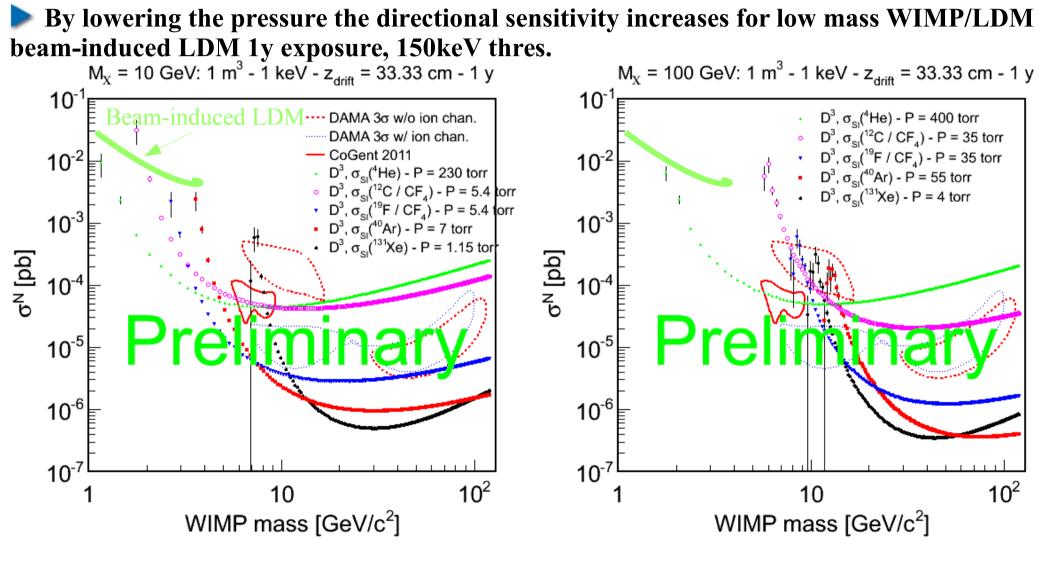


When 2 x LDM mass ~ dark photon mass, there is a clear scattering pattern

Beam-induced light dark matter scattering distributions

 $m_{A^2} = 4 \text{ GeVc}^2 - m_{\chi} = 2 \text{ GeV/c}^2$

 $m_{A'} = 10 \text{ GeVc}^2 - m_{\chi} = 2 \text{ GeV/c}^2$



With Hydrogen scattering pattern is more pronouced

Igal Jaegle (UF)

Reach plot

SI case

Igal Jaegle (UF)

Reach plot

SD case

By lowering the pressure the directional sensitivity increases for low mass WIMP/LDM beam-induced LDM 1y exposure, 150keV thres. $M_x = 10 \text{ GeV}: 1 \text{ m}^3 - 1 \text{ keV} - z_{drift} = 33.33 \text{ cm} - 1 \text{ y}$ $M_x = 100 \text{ GeV}: 1 \text{ m}^3 - 1 \text{ keV} - z_{drift} = 33.33 \text{ cm} - 1 \text{ y}$ 10³ 10³ D^{3} , $\sigma_{SD}^{(19}F / CF_{4}) - P = 35$ torr D^{3} , $\sigma_{sp}(^{19}F / CF_{4}) - P = 5.4$ torr $D^{3}, \sigma_{SD}^{(131)}Xe) - P = 4 \text{ torr}$ 10² 10² $D^{3}, \sigma_{ep}(^{131}Xe) - P = 1.15$ torr DAMA 3o w/o ion chan. DAMA 3o w/ ion chan. CoGent 2011 σ^N [pb] a^N [pb] Preliminary Prelimina 10⁻² 10⁻² 10-4 10⁻⁴ 10⁻⁶ 10⁻⁶ 10² 10² 10 10 WIMP mass [GeV/c²] WIMP mass [GeV/c²]

Igal Jaegle (UF)

Conclusion

Beam-induced light dark matter flux much smaller than WIMP flux

Beam-induced light dark matter much faster than WIMP

A directional detector (TPC) might have a high separation power between signal and background

If LDM mass is around 50% of the dark photon mass, there is a clear scattering pattern, pattern more pronounce if target is Hydrogen

Preliminary design optimization of directional TPC

By lowering the pressure the directional sensitivity increases for low mass WIMP/LDM

Room for improvements

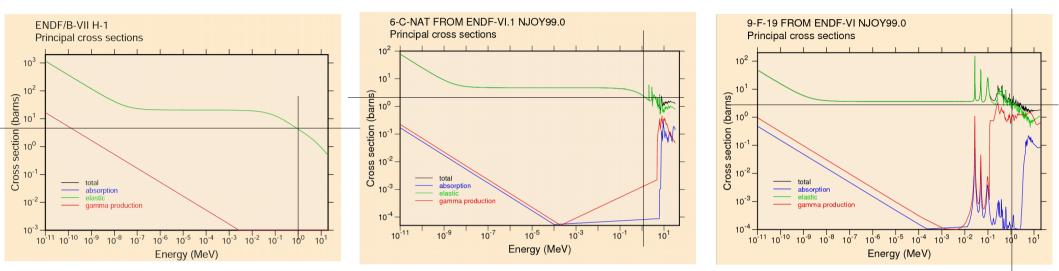
Thanks for your attention

Neutron interaction with matter depend on the neutron kinetic energy

- elastic scattering from nuclei: n+A->n+A => dominant in the MeV region
- \triangleright inelastic scattering: n+A->n'+A*, A* excited state of the nucleus A*->A+ γ
- =>>1 MeV neutron enough to excite the nucleus
- => hydrogen has no excited state
- **radiative neutron capture:** $n+(Z,A) \rightarrow \gamma+(Z,A+1)$

=> since $\sigma \sim 1 / v$, the neutron is most likely absorbed when it is slow

other nuclear reactions: (n,p),(n,d),(n,α) etc ...


=> the neutron is captured and charged particles are emitted

 $\Rightarrow \sigma \sim 1 / v$ i.e. eV to keV

- **fission => thermal energies below eV**
- high energy hadron shower > 100 MeV

H, C and F cross sections

generated by ACE-MCNP using ENDF/B-VI Cross Section Library 2006

ENDF/B-VI Cross Section Library 2006 combined

- measured cross section (by Time-of-Flight technique)
- calculation from N-body physics

elastic scattering is the dominant process (> 95 %) in all 3 cross sections

- σ(H at 1 MeV) ~ 4.5 b
- σ(C at 1 MeV) ~ 2 b
- σ(F at 1 MeV) ~ 3.2 b

Igal Jaegle (UF)