The BDX experiment at Jefferson Laboratory MonteCarlo tools for signal simulation

Andrea Celentano

INFN-Genova

Introduction 000	The BDX experiment	MonteCarlo tools for BDX signal simulation	Conclusions 0
Outline			

- 2 The BDX experiment
- 3 MonteCarlo tools for BDX signal simulation

Introduction ●00	The BDX experiment	MonteCarlo tools for BDX signal simulation	Conclusions O
The dark sector			

Dark matter: it is there, but very little is known about it! What is it? Where did it came from?

- "WIMP miracle:" electroweak scale masses ($\simeq 100$ GeV) and DM annihilation cross sections (10^{-36} cm²) give correct dark matter density / relic abundances. No need for a new interaction!
- Intense experimental program searching for a signal in this mass region. So far, no positive evidences have been found.
- What about light dark matter, in the mass range 1 MeV ÷ 1 GeV?

The light dark matter hypothesis can explain the (gravitationally) observed relic abundance, provided a new interaction mechanism between SM and dark sector exists.

- Simplest possibility: "vector-portal". DM-SM interaction trough a new U(1) gauge-boson ("dark-photon") coupling to electric charge.
- Model parameters: Dark-photon mass, M'_A and coupling to electric charge ε . Dark matter mass, M_{χ} and coupling to dark photon, $g_D \ (\alpha_D \equiv g_D^2/4\pi)$.

LDM direct detection

Non-relativistic thermal LDM:

- Hard to measure in direct detection (although DD is crucial to probe cosmogenic origin!) due to kinematic effects (low recoil energy)
- Huge parameters space due to different low-energy behavior of different mediators

The light dark matter hypothesis can explain the (gravitationally) observed relic abundance, provided a new interaction mechanism between SM and dark sector exists.

- Simplest possibility: "vector-portal". DM-SM interaction trough a new U(1) gauge-boson ("dark-photon") coupling to electric charge.
- Model parameters: Dark-photon mass, M'_A and coupling to electric charge ε . Dark matter mass, M_{χ} and coupling to dark photon, g_D ($\alpha_D \equiv g_D^2/4\pi$).

Natural parameters space to test thermal targets at accelerators:

- *m*_{\chi}
- $y = \varepsilon^2 \alpha_D (m_\chi/m_{A'})^4$
- Fixed $m_{\chi}/m_{A'}$ ratio

ight dark matter searches at accelerators						
Introduction 00●	The BDX experiment	MonteCarlo tools for BDX signal simulation	Conclusions 0			

In the past few years, many different and complementary programs were proposed (and some already started) to search for LDM at accelerators, looking both for LDM particles and for mediators

Introduction	The BDX experiment	MonteCarlo tools for BDX signal simulation	Conclusions		
000	•0000		0		
fixed target e^- beam LDM experiment					

Beam Dump eXperiment: Light Dark Matter (LDM) direct detection in a e^- beam, fixed-target setup¹

 χ production

- High-energy, high-intensity e^- beam impinging on a dump
- χ particles pair-produced radiatively, trough A' emission

 χ detection

- Detector placed behind the dump, $\simeq 20m$
- Neutral-current χ scattering on atomic e^- trough A' exchange, recoil releasing visible energy
- Signal: high-energy O(GeV) EM shower

Number of events scales as: $N\propto \frac{\alpha_D\varepsilon^4}{m_A^4}$

LDM parameters space: $M_{A}^{\prime},~M_{\chi},~\varepsilon,~\alpha_{D}$

 $M'_A \simeq 10 \div 1000 \text{ MeV}$ $M_\chi \simeq 1 \div 100 \text{ MeV}$

¹For a comprehensive introduction: E. Izaguirre *et al*, Phys. Rev. D 88, 114015

The experiment is designed with two goals:

 Good time resolution to perform detector-veto coincidence

Introduction	The BDX experiment	MonteCarlo tools for BDX signal simulation	Conclusions
000	00●00		O
BDX detector			

BDX detector: state-of-the-art EM calorimeter, CsI(TI) crystals with SiPM-based readout.

Detector design:

- \simeq 800 Csl(Tl) crystals, total interaction volume $\simeq 0.5 m^3$
- Dual active-veto layer, made of plastic scintillator counters with SiPM readout

Calorimeter arrangement:

- + 1 module: 10x10 crystals, 30-cm long. Front face: $50 x 50 \ \mbox{cm}^2$
- 8 modules: interaction length 2.6 m

Signal:

- EM-shower, $E_{thr}\simeq 300$ MeV, anti-coincidence with IV and OV
- Efficiency (conservative): ${\rm O}(10\%-20\%)$ dominated by EM shower splash-back to veto counters

Introduction The BDX experiment		MonteCarlo tools for BDX signal simulation	Conclusions O
Jefferson Lab	oratory		

Jefferson Laboratory (Newport News, VA) is home for the CEBAF electron accelerator, based on superconducting RF technology.

Plan to run BDX behind Hall-A beam-dump

- Ideal beam conditions for the experiment: $E_0 = 11 GeV$, I up to \simeq 60 μ A
- Already-approved experiments with more than 10^{22} EOT (Moller, PVDIS)
- BDX is compatible with these planned experiments and can run parasitically with them

Hall-A beam-dump: Aluminum plates immersed in water for cooling.

 $11 \, / \, 18$

Introduction 000	The BDX experiment	MonteCarlo tools for BDX signal simulation	Conclusions O
Overview			

Goal: determine the total number of signal events in the detector for a given combination of model parameters **Strategy:** factorize the event generation, as in the real physical process

- χ -beam generator: simulate the interaction of the primary e^- beam in the dump (thick-target) and produce the secondary χ beam, with absolute normalization per EOT.
- Recoils generator: given the secondary χ -beam, produces the scattered e^- in the detector.
- Detector simulation: given the scattered e^- , simulates the detector response.

χ generator	lation Conclusions O	MonteCarlo tools for BDX signal simulation	The BDX experiment	Introduction 000
				χ generator

Process: $e^- + Al \rightarrow e^- + Al + \chi + \overline{\chi}$ Goal:

- Compute the total χ -flux per electron-on-target
- Generate final state 4-momenta according to d σ

Code: customized version of MadGraph/MadEvent 4 to simulate fixed-target process

- Initial state particle masses
- New particles (A', χ) and new couplings $(A' e \text{ and } A' \chi)$
- New momentum-dependent form factor for photon-nucleus interactions

Momentum-dependent FF: accounts for nuclear effects in *coherent* $e^- - Al$ interaction

- $G_{2,el}(t)$: elastic form factor
- $G_{2,in}(t)$: quasi-elastic form factor

$$\begin{split} G_{2,el}(t) &= \left(\frac{a^2 t}{1+a^2 t}\right)^2 \left(\frac{1}{1+t/d}\right)^2 Z^2 \\ G_{2,in}(t) &= \left(\frac{a'^2 t}{1+a'^2 t}\right)^2 \left(\frac{1+\frac{t}{4m_r^2}(\mu_p^2-1)}{(1+\frac{t}{0.71\,\mathrm{GeV}^2})^4}\right)^2 Z \end{split}$$

Particles.dat:

f-	f+	F	S	FMASS	FWIDTH	s	f	611
x	x	V	W	APMASS	APWIDTH	S	Α'	622
N-	N+	F	S	HPMASS	HPWIDTH	S	P	623

Interactions.dat:

N-	N-	а	GAN QND
f-	f–	х	GEAPX QDS
e-	e-	х	GEAP QDS

Couplings.f:

Ar av dv ap	uuc = 26.98 val = 111.0/(elemass*Znuc**(1.0/3.0)) val = 0.164/Anuc**(2.0/3.0) val = 773.0/(elemass*Znuc**(2.0/3.0))
t۱	<pre>val = -(pp(0.Nin)-pp(0.Nout))**2</pre>
s	+(pp(1.Nin)-pp(1.Nout))**2
ŝ.	+(pp(2.Nin)-pp(2.Nout))**2
\$	+(pp(3,Nin)-pp(3,Nout))**2
fu	ullcoupling = ee * (Znuc**2 *aval**4 *
s	tval**2/((1+aval**2*tval)*(1+tval/dval))**2 +
ŝ.	Znuc * apval**4 * tval**2 * (1+1.9276*tval)**2 /
÷.	((1+anval**2*tval)*(1+1.40845*tval)**4)**2)**0.5

The BDX experiment	MonteCarlo tools for BDX signal simulation	Con
	000000	

χ generator: thick-target effects

Thin target kinematics (on-shell A'):

- A' emitted forward, $E_A \simeq E_0$
- χ beam forward peaked

 e^- in the dump:

Introdu

- Energy loss: χ kinematics gets broader
- Secondary e^-/e^+ are produced: more χ particles are emitted

To account for this:

 $\frac{dN}{dE_{A'}} \propto \int_{E_{min}}^{E_0} dE_e T_+(E_e) \frac{d\sigma(E_e)}{dE_{A'}}$

- "Traditional" approach: $T_+ = X_0 \delta(E_0 E_e)$
- Our approach: perform full calculation.
 - Evaluate $T_+(E_e)$ with MonteCarlo (G4)
 - Perform multiple MG4 runs, with different primary beam energy
 - Sum runs with weight $T_+(E_e)$
 - Implementation: external python script calling MG4 with proper cards

10

γ enerav (GeV)

clusions

000000	
	000000

Process: $\chi + e^- \rightarrow \chi + e^-$ Goal:

- Compute the total number of scattering events in the detector
- Generate final state 4-momenta according to $\mathrm{d}\sigma$

Input from χ generator: $\Phi_{\chi}(E_{\chi}, \Omega_{\chi})$ Code: standalone C++ code Interaction cross-section:

$$\frac{d\sigma_{\chi e}}{dE_R} = 4\pi\alpha\alpha_D\varepsilon^2 m_e \frac{4m_e m_\chi^2 E_R + \left[m_\chi^2 + m_e(E_\chi - E_R)\right]^2}{(m_{A'}^2 + 2m_e E_R)^2(m_\chi^2 + 2m_e E_\chi)^2}$$

- Smooth 1-dimensional function, easy to integrate and to sample.
- Function depends on incoming χ energy E_{χ} :
 - To avoid function integration event by event, bin in E_{χ} before generating events (from 0 to Ebeam)
 - For each event, use the cross-section computed at the bin center

Pacail gapor	ator		
		000000	
Introduction	The BDX experiment	MonteCarlo tools for BDX signal simulation	Conclusions

Decouple the $\chi - e^-$ interaction simulation from the detector response simulation, and use Geant4 for the latter.

$$N_D = \int_{V_D} \frac{d\Phi_{\chi}}{dE_{\chi} d\Omega_{\chi}} \frac{d\sigma_I(E_{\chi})}{dE_r} n_p dE_{\chi} d\Omega_{\chi} dE_r$$

- Define a fiducial volume V_F , with $V_F > V_D$ (also include E_r in this)
- Use V_F to calculate N_F and to generate 4-vectors
 - $\lambda_{\chi} \gg L_D$: generate events uniformly. For each χ generate the interaction vertex uniformly along the part of the trajectory that lies within V_F
 - Following G4 simulation is designed to ignore cases with recoil generated in V_{F} but not in V_{D}
- Compute the detector response as: $N_D = N_F \cdot \varepsilon$
- + ε is calculated trough G4 simulation

Detector simulation			
Introduction 000	The BDX experiment	MonteCarlo tools for BDX signal simulation	Conclusions 0

Process: e^- interaction with detector material (EM shower) **Goal:**

- · Simulate the detector response, in terms of measured observables
- Compute the overall detector efficiency

Input from recoil generator: scattered electrons 4-momenta and vertexes Code: GEant4 Monte-Carlo (GEMC) software², developed by M. Ungaro @ JLAB

GEMC is a C++ program that simulates particles through matter using Geant4 libraries.

- User specifies materials and geometry (volumes / surfaces) in a perl script, using a GEANT4-classes like syntax
- Materials and geometry are uploaded to a database
- GEMC loads the geometry and automatically constructs the detector.
- Similar procedure for detector response/digitization

²http://gemc.jlab.org

Introduction 000	The BDX experiment	MonteCarlo tools for BDX signal simulation	Conclusions •
Conclusions			

- Dark matter in the MeV-to-GeV range is largely unexplored
- Beam Dump eXperiment at JLab: search for Dark sector particles in the 1 ÷ 1000 MeV mass range
 - High intensity ($\simeq ~10^{22}$ EOT/year), high energy (11 GeV) e^- beam
 - Detector: $\simeq 800 \text{ Csl(Tl)}$ calorimeter + 2-layers active veto + shielding
 - BDX proposal submitted to JLab PAC 44 (2016) conditionally approved.
- Strategy for signal yield evaluation follows the "dual-step" nature of the experiment:
 - Factorize χ production in the beam-dump, $\chi-e^-$ scattering in the detector, and detector response evaluation
 - Use specific code for each step: where possible, adapt existing tools to the specific experimental setup

Backup slides

LDM production and detection

Production: Main features follows from thin-target kinematics $* e^-$ energy loss and secondaries emission in the dump

- Thin target kinematics:
 - A' emitted with forward kinematics, $E'_A \simeq E_0 \label{eq:energy}$
 - High-energy χ beam strongly focused along primary beam direction allowing a compact detector
- e^- in the dump: e^- loses energy by ionization and Bremsstrahlung, χ kinematics gets broader

Detection: $\chi - e^-$ elastic scattering

- e^- recoil: EM shower (O(GeV))
- Background rejection is not critical

Cosmogenic backgrounds

- Cosmic backgrounds have been measured with a small-scale prototype in a similar overburden configuration as foreseen in BDX
- The majority of cosmic muons are detected and rejected by the veto counters, while cosmic neutrons are shielded by the overburden
- Measured anti-coincidence rate (E_{thr} \simeq 300 MeV) < 2 counts: results obtained by conservatively extrapolating from the lower-E, non-zero counts region, projecting to the JLab setup (800 crystals)

Cosmogenic backgrounds

- Cosmic backgrounds have been measured with a small-scale prototype in a similar overburden configuration as foreseen in BDX
- The majority of cosmic muons are detected and rejected by the veto counters, while cosmic neutrons are shielded by the overburden
- Measured anti-coincidence rate ($E_{thr} \simeq 300$ MeV) < 2 counts: results obtained by conservatively extrapolating from the lower-E, non-zero counts region, projecting to the JLab setup (800 crystals)

Cosmogenic background is negligible with high-energy threshold. It ^{Energy ()} will be measured on-site when beam is off

Beam-related backgrounds

Beam-related backgrounds estimated trough MC simulations (Geant4/Fluka) Challenge: very high EOT. Solutions:

- Sample non-zero flux as a function of depth and propagate to detector location (G4)
- Use biasing (Fluka)

Beam-related backgrounds

Beam-related backgrounds estimated trough MC simulations (Geant4/Fluka) Challenge: very high EOT. Solutions:

- Sample non-zero flux as a function of depth and propagate to detector location (G4)
- Use biasing (Fluka)

Muons

- High-energy muon production in the dump dominated by the
 - $\gamma \to \mu^+ \mu^- \ {\rm process}$
 - Very good consistency between G4 and Fluka for μ production in the dump
 - On-site measurement of muons after the Hall-A beam dump is foreseen (see next slide)
- 6.6m iron shield (+2 m concrete) enough to range-out high energy muons: no particles at the detector location

Beam-related backgrounds

Beam-related backgrounds estimated trough MC simulations (Geant4/Fluka) Challenge: very high EOT. Solutions:

- Sample non-zero flux as a function of depth and propagate to detector location (G4)
- Use biasing (Fluka)

Neutrinos: only particles reaching the detector

- Spectrum mainly at low-energy, dominated by μ^+ decay / μ^- capture on nuclei
- High-energy part from in-flight decays and prompt production processes

