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The XENON1T detector

e XENONA1T searches for dark matter in the
form of Weakly Interacting Massive Particles
using a target of 2 tonnes of liquid Xenon.

* Placed underground, shielded by rock
amounting to 3.6 km water at the LNGS in
ltaly, as well as an instrumented water tank
and non-active liquid Xenon

e Circulation and purification of the liquid
Xenon removes impurities, allowing
electrons to drift the length of the TPC

* Destillation of Krypton reduces the
Intrinsic event rate in the analysis region
to roughly 2 events/day
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XENON1T detection principle: Two-
phase time-projection chamber

Top PiTs [ [ ) I I

Gas Xe

Yy Gate

______________ S1 e
WiM Drift
Field

Cathode

oo s 0 [ 1 I

e Xenon atoms hit by radiation will emit
scintillation light, as well as free
electrons.

e Electrons drift at a known speed in an

electric field, until they are accelerated at
the top of the detector in the gas phase,
producing an amplified scintillation flash.

e Photomultipliers at the top and bottom of

the time projection chamber (TPC) detect
both the first (S1) and second (S2)
flashes.



S2/S1 discriminates between
nuclear and electronic recoills
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Example Event from NR, and
reconstructed parameters:
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Analysis Overview

8000 ¢

S

-

(-

-
|

* The main analysis space is corrected
s1 versus s2, in addition to radius.

Corrected S2 bottom |PE]

e Each event s1,s2 is normalised to 400 -
an average detector response 200 L
based on position.

100 |
e In order to match results to data, 0 ;

multiple simulations at different levels 03 10 20 30 40 50 60 -0
are used— both full GEANT4
simulations, as well as fast Monte Corrected SL IDE]

Carlos, which are fitted to calibration _ '

data 0.0001 0.001 0.01 0.1
Events per bin
* Red lines show the median and -1 Sum of best-fit background model and

sigma line of the nuclear recoil band median,-2sigma lines of NR
)

E. Aprile et al. First Dark Matter Search Results from the XENONI1T Experiment. Phys. Rev. Let

119(18):181301, 2017.
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Detector Simulation
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Background Estimation

e The total background pE e e e —
estimate, from £ g ‘° Som ie-llz3glm — Xe:136 2v3p
P - e m Materials
measurement of material -83m  — summed spectrum
" Blinded for OvBB and DEC

radioactivity, and
detector simulation
shows good agreement
over a large energy range

Pb-214

Rate [keV~tkg~td~!]

e GEANT4 simulation of
decay, data from
Evaluated Nuclear
Structure Data Files

| B R |
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Energy [keV]

 Gray band shows
regions blinded for other
analyses.
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* The reconstruction of the
X-y position of the event is
driven by an optical Monte-
Carlo (calibrated with
Krypton) which is used to:

* Train a Neural Net (used
for 278 day analysis)

 Construct a per-PMT
likelihood

rec [cm]
yin¢ [em]

y.

e Both with similar
performance
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Acceptance estimation by

* The XENON1T low-energy threshold is
set by the ability to identify the primary
scintillation signal from low-energy
events, with at least three photo-
electrons.

e The detector electronic response,
noise as well as peak-finding and
digitisation is simulated

e Simulated “waveforms” — events are
passed to trigger and processing
software to compute detection
efficiency (right for 34.2-day analysis)

e The Xenon signal processing software
— PAX is available as open-source
software
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E. Aprile et al. First Dark Matter Search Results from the XENON1T Experiment. Phys. Rev. Lett.,

119(18):181301, 2017.
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http://GitHub.com/XENON1T/pax

Fraction of signal-like

Component background* Estimation
Sianal ) Fast Monte-Carlo fitted Americium-Beryllium (n-
J source) and neutron-generator calibration
Electronic 75 o Fast Monte-Carlo fitted to Rn220 calibration
Recoll > data
Radiogenic 6 % Fast Monte-Carlo fitted Americium-Beryllium (n-
Neutrons ° source) and neutron-generator calibration
Fast Monte-Carlo fitted Americium-Beryllium (n-
o
ONNE Bk source) and neutron-generator calibration
Cﬁ?ﬁé?deg:ﬁe 23 % Data-driven
Surface o . .
background 3 % Model from sidebands, fit to data

* In published 34.2-day analysis
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NEST

Initial energy

| | | deposition Heat
The conversion of recoll energy into (Nuclear Recoils)
photons, ionisation and heat in liquid *
Xenon is included in Monte Carlo L
simulations by the NEST plugin to S?'"t'"at'o" lonisation
GEANT4 light from

exited atoms

NEST simulates the partition of energy

to exited atoms and ion-electron pairs
recombinatio

* Nuclear recoils also loose a portion
of energy to heat To PMTs To drift

v v

B. Lenardo et al.,‘ IEEE Transactions on Nuclear Science
62, no. 06, 3387 (2015) [arXiv:1412.4417].
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Parametrisation fit to data, including
electric field dependence

In XENON simulations,



Electronic Recoill Fit

0 <csl1 <10PE
—  Total
— AC

XENONA1T preliminary
N

10 < cs1 < 20 PE

Calibration
Fitting with :
MCMC

* |n the science analysis, a fast Monte Carlo, similar to
NEST, is used rather than a full detector simulation.

-

102 20 < csl < 30 PE

e In addition, the measured detector response; = +

efficiencies and reconstruction uncertainties, are

applied to the produced quanta i T T

mlo?' o 30 < csl < 40 PE

* Important scintillation parameters include the ;‘é}ml

photon yield, and the size of recombination

fluctuations 10°

102, 40 < cs1 < 50 PE

* Priors from other experiments or NEST, refit to

data.
10°
e Simultaneous fit to multiple calibration sources and 10! - S - e
data-taking periods .
e Uses GPU processing to handle large amount of 10° f
nUisance parameters 0 1000 2000 3000 4000 5000

Corrected S2 Bottom [PE)
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Corrected S2 bottom [PE]
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Calibration sources of both ER and NR are
used to characterise the detector response

The neutron calibration was performed with an
AmBe source, and fitted with a physics-
motivated model

The Bayesian fit incorporates a large number of
detector and physics uncertainties, and fits the
calibration well.

WIMP and other NR source distributions are
obtained by using the best-fit model above.

In addition, two parameters were identified as
important uncertainties; the efficiency and the
exiton-to-ion ratio

E. Aprile et al. First Dark Matter Search Results from the XENON1T Experiment. Phys. Rev. Lett.,
119(18):181301, 2017.

15



Radiogenic

Neutrons,

CNNS/CEVNS

* Neutrons from radioactive
decay or muons produce
nuclear recoils similar to a
WIMP
* A cut on multiple scattering g

targets neutrons— GEANT4

simulation to incorporate both
self-shielding and double-
scatter efficiency.

e Neutrino scattering constitute
an irreducible background,
concentrated at very low cs1
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E. Aprile et al. Physics reach of the XENONI1T dark matter experiment. JCAP, 1604(04):027, 2016.
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Data-driven backgrounds

~3.75} Massiia88ka 0 il NR Median
x Red280em:. = 1 duhaiad
(@ ’ =3 S50 .
e “Surface events” occur at the S
outer edge of the detector, 8, oo | EIGPEEE
where the position §2 . ;
reconstruction and drift field %2 =
homogeneity is the poorest. S, | B
, 2,00
e cs1/cs2 shape estimated T

from events reconstructed at
high r, with radial PDF
estimated from sidebands

e Accidental coincidence events,
random pairings of s1 and s2
signals, are simulated by
randomly pairing lone signals

20 a0 b0 o
Corrected S1 [PE]



Statistical toyMC treatment

ToyMC example:

e The low background allows 2.03.0 5.0 10.0 20.(E)xpeCted Evfoncf.so 1000.0
XENON1T to exclude signal T T [ vemanims
expectations of only a few events. 25- T e Signal < 8.00e.47¢m~2
Asymptotic results from likelihood Vo 2 ToyHIE WP events
ratios can be inaccurate, so large
toyMC production and fitting runs ] - O R ——
are necessary. 101

0.5 4

e Large increases in computing

0.0

power needed, in particular when 02 10 10 o

tV\./O SCISNLE runs are combined WIMP cross-section/1e45cm”2
with separate nuisance parameters

* Plus large amounts of optimisation
studies
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Upcoming Results
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Date

e The XENON collaboration is currently analysing a total (including
the previous 34.2 days) of 279 live-time days.
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Upcoming Results

e A combined 279-day

analysis 107 3
* Interaction-dependent — 107
correction of position for 5 |
iInhomogeneous electric % 107% 5
field increases the analysis 3 _
volume to 1.3 tonne. % 1074 -

e Significant improvement in 1077 -

sensitivity, moving the
range of expected upper
limits down.
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PRELIMINARY Sensitivity projection

PRELIMINARY XENONA1T
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101! 102 103
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Summary

e XENONT1T is finalising a 278.9-day

. 10743 5
exposure analysis s —— XENONLT 35.6t-d
_ o Injected signal
* As that analysis winds down, more 10-44 ’
Al — Mean 90% confidence interval,
speC|aI|.se<_j search groups are T 3 - 0 excess power — 50%
convening, — ] 278.90 days exposure
o]
. c 1074 4
e Annual Modulation 3 ]
= _
e Spin dependent/ other operators % 1046 -
| | | = ! Pretend discovery—
* inelastic scattering _ i
Lo-47 signal set at SRO
* Readying foran upgrade from 1T to ] upper limit

o WIMP mass [GeV/c?]
e \Water tank is sized to accept

larger TPC

e Cooling
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Normalisation of the

detector response

e Both S1 and S2 signals are
normalised by the spatially
varying detector response:

e S1 signals are corrected by
the light-collection efficiency

e S2 signals are corrected the
loss of electrons as they drift

farther (top right), and the

PMT array efficiencies (lower

right)
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How thresholds are
computed

e For steps in (true)

expected signal, toyMC Lo TWo-Sided Likelihood-ratio survival fraction

datasets are generated.

\

e to the right, the survival

distribution for different &
signal expectation are E 1o
shown as function of s |
log-likelihood ratio @
e The threshold we use is
what likelihood ratio 1072
above which 10% of the ’ Loa ikelinood ratio

toyMC fall
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e The thresholds found this way,
plotted versus signal
expectation is the line above
which we exclude a signal size
at 90% confidence level
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Intervals

Upper, Lower Limits, FC+3sigma

0.14 |
Median, 70% band, ULs
e To the right, one can see the Lo Median, 70% band, LLs |1
median upper and lower edge £ 0.10] :
of this Feldman-Cousins | _
interval as function of true 5
signal 7% ‘
% 0.04 |- -
e This is the typical size of the ® ool _
uncertainty on the signal size

if we have an excess 0-08.00 0.02 0,04 0.06 0.08 010 0.12 0.14

true WIMP x-section/1le-45cm”™2
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