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XENON1T Overview

!2



The XENON1T detector
• XENON1T searches for dark matter in the 

form of Weakly Interacting Massive Particles 
using a target of 2 tonnes of liquid Xenon.


• Placed underground, shielded by rock 
amounting to 3.6 km water at the LNGS in 
Italy, as well as an instrumented water tank 
and non-active liquid Xenon


• Circulation and purification of the liquid 
Xenon removes impurities, allowing 
electrons to drift the length of the TPC


• Destillation of Krypton reduces the 
intrinsic event rate in the analysis region 
to roughly 2 events/day
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XENON1T detection principle: Two-
phase time-projection chamber
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• Xenon atoms hit by radiation will emit 
scintillation light, as well as free 
electrons. 


• Electrons drift at a known speed in an 
electric field, until they are accelerated at 
the top of the detector in the gas phase, 
producing an amplified scintillation flash. 


• Photomultipliers at the top and bottom of 
the time projection chamber (TPC) detect 
both the first (S1) and second (S2) 
flashes. 

WIMP



• Recoils with the 
Xenon atom 
electron cloud, 
electronic recoils 
(ER) produce 
more ionisation 
than


• recoils with the 
nucleus, NR

S2/S1 discriminates between 
nuclear and electronic recoils
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Example Event from NR, and 
reconstructed parameters:
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• S1 = 4.3pe


• S2 = 250pe


• Z = 
-75.9cm


• X,y
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Analysis Overview

• The main analysis space is corrected 
s1 versus s2, in addition to radius.


• Each event s1,s2 is normalised to 
an average detector response 
based on position. 


• In order to match results to data, 
multiple simulations at different levels 
are used— both full GEANT4 
simulations, as well as fast Monte 
Carlos, which are fitted to calibration 
data


• Red lines show the median and -1 
sigma line of the nuclear recoil band
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Detector Simulation

• Particle propagation and 
interaction simulated in 
GEANT4, with detector model 
from drawings, and 
radioactive contaminations 
measured in screening 
campaign
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Background Estimation
• The total background 

estimate, from 
measurement of material 
radioactivity, and 
detector simulation 
shows good agreement 
over a large energy range


• GEANT4 simulation of 
decay, data from 
Evaluated Nuclear 
Structure Data Files


• Gray band shows 
regions blinded for other 
analyses. 

 9



Optical MC
• The reconstruction of the 

x-y position of the event is 
driven by an optical Monte-
Carlo (calibrated with  
Krypton) which is used to:


• Train a Neural Net (used 
for 278 day analysis) 


• Construct a per-PMT 
likelihood 


• Both with similar 
performance
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Acceptance estimation by 
• The XENON1T low-energy threshold is 

set by the ability to identify the primary 
scintillation signal from low-energy 
events, with at least three photo-
electrons. 


• The detector electronic response, 
noise as well as peak-finding and 
digitisation is simulated


• Simulated “waveforms”— events are 
passed to trigger and processing 
software to compute detection 
efficiency (right for 34.2-day analysis) 


• The Xenon signal processing software
— PAX is available as open-source 
software
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Data Processor:  
GitHub.com/XENON1T/pax

http://GitHub.com/XENON1T/pax


Component Fraction of signal-like 
background* Estimation

Signal - Fast Monte-Carlo fitted Americium-Beryllium (n-
source) and neutron-generator calibration

Electronic 
Recoil 72 % Fast Monte-Carlo fitted to Rn220 calibration 

data

Radiogenic 
Neutrons 6 % Fast Monte-Carlo fitted Americium-Beryllium (n-

source) and neutron-generator calibration

CNNS 3 % Fast Monte-Carlo fitted Americium-Beryllium (n-
source) and neutron-generator calibration

Accidental 
Coincidence 23 % Data-driven

Surface 
background 3 % Model from sidebands, fit to data

* In published 34.2-day analysis
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NEST
• The conversion of recoil energy into 

photons, ionisation and heat in liquid 
Xenon is included in Monte Carlo 
simulations by the NEST plugin to 
GEANT4


• NEST simulates the partition of energy 
to exited atoms and ion-electron pairs


• Nuclear recoils also loose a portion 
of energy to heat


• Parametrisation fit to data, including 
electric field dependence


• In XENON simulations, 
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Calibration 
Fitting with 

MCMC
• In the science analysis, a fast Monte Carlo, similar to 

NEST, is used rather than a full detector simulation. 


• In addition, the measured detector response; 
efficiencies and reconstruction uncertainties, are 
applied to the produced quanta


• Important scintillation parameters include the 
photon yield, and the size of recombination 
fluctuations


• Priors from other experiments or NEST, refit to 
data. 


• Simultaneous fit to multiple calibration sources and 
data-taking periods


• Uses GPU processing to handle large amount of 
nuisance parameters
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Electronic Recoil Fit

XENON1T preliminary



Calibration Fitting with 
MCMC
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• Calibration sources of both ER and NR are 
used to characterise the detector response


• The neutron calibration was performed with an 
AmBe source, and fitted with a physics-
motivated model


• The Bayesian fit incorporates a large number of 
detector and physics uncertainties, and fits the 
calibration well.


• WIMP and other NR source distributions are 
obtained by using the best-fit model above. 


• In addition, two parameters were identified as 
important uncertainties; the efficiency and the 
exiton-to-ion ratio



Radiogenic Neutrons, 
CNNS/CEvNS

• Neutrons from radioactive 
decay or muons produce 
nuclear recoils similar to a 
WIMP


• A cut on multiple scattering 
targets neutrons— GEANT4 
simulation to incorporate both 
self-shielding and double-
scatter efficiency.


• Neutrino scattering constitute 
an irreducible background, 
concentrated at very low cs1

 16

Expected Radiogenic  
distribution versus r and z



Data-driven backgrounds
• “Surface events”  occur at the 

outer edge of the detector, 
where the position 
reconstruction and drift field 
homogeneity is the poorest. 


• cs1/cs2 shape estimated 
from events reconstructed at 
high r, with radial PDF 
estimated from sidebands


• Accidental coincidence events, 
random pairings of s1 and s2 
signals, are simulated by 
randomly pairing lone signals 



Statistical toyMC treatment

• The low background allows 
XENON1T to exclude signal 
expectations of only a few events. 
Asymptotic results from likelihood 
ratios can be inaccurate, so large 
toyMC production and fitting runs 
are necessary.


• Large increases in computing 
power needed, in particular when 
two science runs are combined 
with separate nuisance parameters


• Plus large amounts of optimisation 
studies
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ToyMC example: 

WIMP cross-section/1e45cm^2



Upcoming Results

• The XENON collaboration is currently analysing a total (including 
the previous 34.2 days) of 279 live-time days. 
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Upcoming Results
• A combined 279-day 

analysis


• Interaction-dependent 
correction of position for 
inhomogeneous electric 
field increases the analysis 
volume to 1.3 tonne. 


• Significant improvement in 
sensitivity, moving the 
range of expected upper 
limits down. 

PRELIMINARY XENON1T
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Summary
• XENON1T is finalising a 278.9-day 

exposure analysis


• As that analysis winds down, more 
specialised search groups are 
convening; 


• Annual Modulation


• Spin dependent/ other operators


• inelastic scattering


• Readying foran upgrade from 1T to 
XENONnT


• Water tank is sized to accept 
larger TPC


• Cooling 
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Pretend discovery— 
signal set at SR0 

upper limit



References, backup slides



Normalisation of the 
detector response

• Both S1 and S2 signals are 
normalised by the spatially 
varying detector response: 


• S1 signals are corrected by 
the light-collection efficiency


• S2 signals are corrected the 
loss of electrons as they drift 
farther (top right), and the 
PMT array efficiencies (lower 
right)
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How thresholds are 
computed

• For steps in (true) 
expected signal, toyMC 
datasets are generated. 


• to the right, the survival 
distribution for different 
signal expectation are 
shown as function of 
log-likelihood ratio


• The threshold we use is 
what likelihood ratio 
above which 10% of the 
toyMC fall

 24



• The thresholds found this way, 
plotted versus signal 
expectation is the line above 
which we exclude a signal size 
at 90% confidence level
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Intervals

• To the right, one can see the 
median upper and lower edge 
of this Feldman-Cousins 
interval as function of true 
signal


• This is the typical size of the 
uncertainty on the signal size 
if we have an excess
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