

On the behaviour of composite resonances breaking LFU

Mikael Chala (IPPP)

With M. Spannowsky. arXiv:1803.02364

- Very clean observable

- Below SM prediction in several measurements

$$R_{K^{(*)}} \equiv \frac{\mathcal{B}(B^{+(0)} \to K^{+(*)} \mu^{+} \mu^{-})}{\mathcal{B}(B^{+(0)} \to K^{+(*)} e^{+} e^{-})}$$

- Very clean observable

- Below SM prediction in several measurements

- Very clean observable

- Below SM prediction in several measurements

physics (e.g. Composite Higgs models)

The simplified Lagrangian

$$\Delta \mathcal{L} = \frac{1}{2} m_V^2 V_\mu V^\mu + J_\mu V^\mu + \cdots$$
$$J_\mu = g_{V\ell\ell} \lambda_{ij}^{\ell} \overline{\ell_L^i} \gamma_\mu \ell_L^j + g_{Vqq} \lambda_{ij}^q \overline{q_L^i} \gamma_\mu q_L^j$$

The simplified Lagrangian

 $\Delta \mathcal{L} = \frac{1}{2} m_V^2 V_\mu V^\mu + J_\mu V^\mu + \cdots$ $J_{\mu} = g_{V\ell\ell} \lambda_{ij}^{\ell} \overline{\ell_L^i} \gamma_{\mu} \ell_L^j + g_{Vqq} \lambda_{ij}^q \overline{q_L^i} \gamma_{\mu} q_L^j$ ~ 1 Larger values in conflict with neutrino trident Smaller values disfavoured production. by ΔMs [L. Di Luzio, M. Kirk, and A. Lenz; '17]

The simplified Lagrangian

 $\Delta \mathcal{L} = \frac{1}{2} m_V^2 V_\mu V^\mu + J_\mu V^\mu + \cdots$ $J_{\mu} = g_{V\ell\ell}\lambda_{ij}^{\ell}\overline{\ell_L^i}\gamma_{\mu}\ell_L^j + g_{Vqq}\lambda_{ij}^q\overline{q_L^i}\gamma_{\mu}q_L^j$ ~ 1 Larger values in conflict with neutrino trident $g_{Vqq} \sim 0.05 \frac{m_V^2}{\text{TeV}^2}$ Smaller values disfavoured production. by ΔMs [L. Di Luzio, M. Kirk, and A. Lenz; '17]

The composite Higgs paradigm (a high-energy copy of QCD) UV $L \sim \lambda [\Lambda_{UV}] \overline{q_i} \mathcal{O}_F^{d_i} + \text{new global } \mathcal{G}$ TeV scale

Heavy quarks are produced in pairs via QCD (no model dependence)

This is strongly influenced by the minimal composite Higgs model. In non-minimal composite Higgs models:

This is strongly influenced by the minimal composite Higgs model. In non-minimal composite Higgs models:

Heavy leptons are produced in pairs via EW interactions, so much weaker constraints [1306.1525], [1007.4206]

 $m_L > 500 \text{ GeV}$ W^{\pm}, Z, h

The actual reach of di-muon searches

Leptonic Z decay gives very few events, so we consider hadronic decays of:

Muons with $\rm pT > 50~GeV$ removed from hadrons in clustering process

Muons with pT > 50 GeV removed from hadrons in clustering process Jets are clustered with R = 1.2

Muons with pT > 50 GeV removed from hadrons in clustering process Jets are clustered with R = 1.2

We require, first, the presence of exactly two opposite charged muons and at least one jet

- Muons with pT $> 50~{\rm GeV}$ removed from hadrons in clustering process
- Jets are clustered with R = 1.2
- We require, first, the presence of exactly two opposite charged muons and at least one jet
- The leading pT jet is required to have a significant mass drop. It is then filtered

Muons with pT $> 50~{\rm GeV}$ removed from hadrons in clustering process

Jets are clustered with R = 1.2

R

b

b

We require, first, the presence of exactly two opposite charged muons and at least one jet

The leading pT jet is required to have a significant mass drop. It is then filtered

mass drop

MC4BSM, IPPP Durham, April 21, 2018

Rbb

filter

0802.2470

R_{bb}

R_{filt}

Muons with $\rm pT > 50~GeV$ removed from hadrons in clustering process

Jets are clustered with R = 1.2

We require, first, the presence of exactly two opposite charged muons and at least one jet

The leading pT jet is required to have a significant mass drop. It is then filtered

Muons with $\rm pT > 50~GeV$ removed from hadrons in clustering process

Jets are clustered with R = 1.2

We require, first, the presence of exactly two opposite charged muons and at least one jet

The leading pT jet is required to have a significant mass drop. It is then filtered

pT muons above 200 GeV, leading jet mass in the range $[80,\,130]~{\rm GeV}$

pT muons above 200 GeV, leading jet mass in the range [80, 130] GeV

 $\mu^{+}\mu^{-} + 1 - 2 jets, p_{T}^{\mu} > 100 GeV$

	$\epsilon(BP)$	$\epsilon(b)$
2 muons	90	99
≥ 1 jet, j_1 tagged and filtered	70	45
$p_T^{\mu_{1,2}} > 200 \text{ GeV}$	93	16
$80 \text{ GeV} < m_{j_1} < 130 \text{ GeV}$	58	7.0
Total	34	0.49

Given our ignorance on m_V and m_L , we set further cuts depending on these parameters. In particular, we require $m_V^{\text{rec}} > 0.75 \times m_V$, $|m_L^{\text{rec}} - m_L| < 100$ GeV.

Final results

Final results

Final results

Conclusions

Parameter space regions that were thought excluded by searches for di-muon resonances, are still allowed. They are not even ruled out by other beyond the Standard Model analyses, including multi-lepton searches for electroweakinos or heavy leptons.

Conclusions

- Parameter space regions that were thought excluded by searches for di-muon resonances, are still allowed. They are not even ruled out by other beyond the Standard Model analyses, including multi-lepton searches for electroweakinos or heavy leptons.
 - Some of the allowed regions can already be probed at the 95 % CL with our dedicated analysis.

Conclusions

- Parameter space regions that were thought excluded by searches for di-muon resonances, are still allowed. They are not even ruled out by other beyond the Standard Model analyses, including multi-lepton searches for electroweakinos or heavy leptons.
 - Some of the allowed regions can already be probed at the 95 % CL with our dedicated analysis.

With more luminosity, e.g. 300/fb (3000/fb), heavier resonances can be tested, e.g. mV = 2 (3) TeV.