
Event Generation with 
Neural Nets

Matthew D. Klimek
Cornell Univ.
Korea Univ.

Work with M. Perelstein 1805.xxxxx
MC4BSM, IPPP Durham, 21 Apr 2018



The general problem of MC integration/generation

A model of particle physics provides predictions in the form of 
(differential) cross sections.

Comparison of models to data is facilitated by the calculation of total cross 
sections and the generation of simulated data sets. 

Simulated data should be a set of points in phase space (events), 
distributed according to the probability density function (pdf) specified by 
the differential cross section.

Since the differential cross sections are typically complicated functions, 
Monte Carlo techniques are the only feasible way of handling these 
operations.



The general problem of MC integration/generation

The basic technique is to sample the domain of the function randomly 
(uniformly in the simplest case) and sum the function values at the N 
random points. Estimates of the integral and the error are then obtained 
as:

For event generation, random points are drawn and the function is used 
to decide whether the event should be kept or not (unweighting).

Each sample requires one evaluation of the function, many of which may 
be discarded, so the unweighting can become computationally expensive.



Importance Sampling

If the function has large regions of small probability or sharply peaked 
regions, this introduces a lot of error in the integration, and inefficient 
event generation, as the important areas will not be sampled often.

This is often the case with physical processes that have strong 
enhancements in certain kinematic configurations (collinear 
enhancements, intermediate resonances, etc.).

Importance Sampling introduces an algorithm to build a function which: 
➢ is easily sampled, and 
➢ approximates the target function. 

That is, the function will be sampled most often where it is largest, 
decreasing integration error and increasing unweighting efficiency.



VEGAS

VEGAS (G.P. Lepage, J.Comp.Phys. 1978), is an importance sampling 
technique still in use today (e.g. MadEvent): 

➢ Approximate the function by a set of bins of containing equal amounts 
of the integral of the function. 

➢ To sample the function, simply choose a random bin and then sample 
uniformly within that bin.

➢ Adaptively choose bin edges to best match the function:



VEGAS as ML
VEGAS is a form of machine learning.

The algorithm goes through a training 
process where it is allowed to adjust the 
location of the bin edges, in order to decrease 
the variance in the number of points that 
land in each bin.

It builds a map from a sampling space (a 
space over which points are drawn 
uniformly) onto the target space (a space 
where the density of points approximates the 
desired function) in a piecewise-linear way. 
The training adjusts the values of the map 
at fixed discrete points.



VEGAS as ML

What if we could extend this to adjust the map at every point?

We would need a map, that is defined in terms of some adjustable 
parameters, that is capable of approximating any smooth map.

Universal approximation theorem: Given any continuous function f(x) on 
the N-cube, and any ᷧ > 0, f(x) can be approximated by a function F(x)

where

and A is a bounded, non-uniform, monotonically increasing function.

This is the basis of artificial neural nets.



General Approach
The neural net N will be a map from a sampling space X = Rd to phase space Y = 
Rd, where d is the appropriate dimensionality of phase space for the process 
under consideration.

Sample uniformly over X. Then the distribution, which is supposed to 
approximate the differential cross section, induced on Y will be the inverse of 
the Jacobian of N:

Choose a measure of statistical distance between the true differential cross 
section and 1/Jac(N). We used the Kullbeck-Leibler divergence, which is zero 
for two distributions f and g only when f = g and is positive otherwise. 

The algorithm should adjust N so that the DKL between 1/Jac(N) and the 
differential cross section is minimized (ideally to zero).

First suggested by Bendavid 1707.00028, applied only to 
Gaussian functions, see MC4BSM 2017



NN Basics

Loss function: gives a measure of how far 
the output of the net is from the goal 
when evaluated over some training data 
with known desired outputs.

Each hidden node takes a linear 
combination of the inputs, specified by 
the weights w1

i plus a constant bias 
b1, and transforms it by some 
non-linear activation function A.

The weights and biases together 
comprise the parameters of the net.

Designing a neural 
net consists of 
choosing the 
number of layers, 
hidden nodes, 
activation 
functions, loss 
functions, and 
training algorithms.

x1

x2

x3

The output layer is 
similar, but its activation 
function should be 
chosen to map any real 
number onto the desired 
output space.

Train by adjusting each parameter 
proportionally to the gradient of the 
loss function w.r.t. that parameter 
(gradient descent).



Our basic implementation

➢ Same number of input and output nodes (Rd → Rd). Number of hidden nodes 
and hidden layers to be determined by studying performance.

➢ Loss function will be K-L divergence of the net’s Jacobian with respect to the 
target differential cross section, as described earlier. 

The Jacobian contains derivatives with respect to the net, so the net’s 
components, specifically the activation functions, must be differentiable. 
(Many common choices are not.) We consider two candidates:

“Exponential Linear Unit” with α = 1: or Sinh:



Choice of coordinates
Example: 3-body 
decay in Dalitz 
(invariant mass) 
coordinates.

In principle, any choice of coordinates on phase space 
could be used, but many choices present difficulties in 
practice.

In many coordinate systems, the physical region of 
phase space has some non-trivial shape. 

The net would need to learn:

➢ the correct distribution within the physical region
➢ but also where the boundary is, and to not 

populate anything outside (unphysical events). 

However, the net is made of smooth functions so such 
behavior is not possible.



Choice of coordinates
Solution: use coordinates in which the physical region is a unit hypercube, 
and an output function that maps Rn onto it. Then all outputs of the net are 
guaranteed to be physical.

Define qi ∈ [0,1] to interpolate between the minimum and maximum 
possible invariant masses of the system composed of particles {i+1, …, n}.

Rescale all relative angles to the range [0,1].



Output layer considerations

The internal layers of the NN may return any real 
values, so the output layer should contain a final 
function that maps onto the unit interval.

A common choice of output function is the 
Sigmoid, but it approaches 0 and 1 exponentially 
slowly, making it very hard to populate the edges 
of phase space.

We also investigated a function with faster 
asymptotic behavior:

Sigmoid

➢ Always takes values in [0,1]
➢ Approaches limiting values rapidly
➢ Approximately linear between [0,1]
➢ p controls how sharp the edges are

p = 50



Output layer considerations

Sigmoid

p = 50

For the sigmoid output function, 
we use a sinh activation function. 
The asymptotically exponential 
behavior of these functions 
cancels and allows good reach to 
the edges 0 and 1.

For our custom activation 
function which 
approaches 0 and 1 
rapidly, a traditional ELU 
activation function is 
sufficient.



Complete setup

➢ Implemented in MXNet 1.1.0 with Python 2.7 interface.
➢ Various numbers of hidden nodes and layers tested, as well as 

different activation/output functions as described earlier.
➢ Physics input: simply type analytical expression for the differential 

cross section into the code, or provide a function that python can call. 
(Easy to interface with Feynman diagram calculator.)

➢ Training:
○ Draw a sample of 100 uniform random points.
○ Feed through the NN.
○ Compute the KL divergence between the NN output and the target diff. cross section.
○ Try to minimize KL divergence by adjusting the NN parameters according to the 

gradient of the KL divergence (gradient descent).

➢ Train until value of KL divergence stabilizes.
○ (How close to 0 does it get?)



3-body Dalitz, constant matrix element

➢ 2-dimensional phase space. Parametrize with:
○ m23 and ᶚ, the angle between p2 and p1 in the m23 rest frame.
○ Phase space is flat in ᶚ.
○ Both variables can be shifted/scaled to lie in a unit square.

Training results with 3 
layers of 64 nodes. Training 
to stability takes ~1 minute 
on a very old laptop.

Training epochs (100 points each)

Lo
g1

0 
K

L 
di

ve
rg

en
ce

 (l
os

s)
Sinh/Sigmoid
ELU/Custom activation
Bendavid 1707.00028

This is in fact more than is needed for this simple example. 3 
layers of 4 nodes, or one layer of 16 nodes is sufficient and 
training takes ~seconds. See forthcoming paper.

M = sqrt(s) = 1 GeV
m1 = 0.1 GeV
m2 = 0.2 GeV
m3 = 0.3 GeV



3-body Dalitz

Density of events generated by trained network vs. true distribution:

qi

(c
os

 ᷔ
 +

 1
) /

 2
 

qi

(c
os

 ᷔ
 +

 1
) /

 2
 

NN true



3-body Dalitz

Is the NN output by itself consistent with the desired true distribution?

qi

(c
os

 ᷔ
 +

 1
) /

 2
 

NN

No: p-value ~ 10-4

But a NN is a universal approximator. What 
happened?

The parameter space of the NN is very high 
dimensional, and there are many local minima 
of the loss function (KL divergence.)

In general, one lands in a local minimum which 
is a good, but not great, approximation to the 
desired function.



3-body Dalitz
What to do about errors from 
“pretty good” false minima?

qi

(c
os

 ᷔ
 +

 1
) /

 2
 

NN

➢ Unweighting: NN is already pretty good 
so unweighting is quite efficient

➢ Average: each false minimum is a 
~random deviation from the right answer. 
Train multiple times with different 
random seeds and combine results:

qi

(c
os

 ᷔ
 +

 1
) /

 2
 

p = ~0.5 
with no 
unweighting 
(100% 
efficiency)

NN average 10x



3-body Dalitz with intermediate resonance

We can include a matrix 
element along with phase 
space:

3-body decay via an 
intermediate resonance 
with mass 0.75 GeV.

qi

(c
os

 ᷔ
 +

 1
) /

 2
 

p = ~0.5

NN average 10x



qqg

The NN also has no trouble 
handling singularities such 
as are present in qqg 
production.

x 2
x1

NN average 10x

Cut on x < 0.999



Parameter Scans

➢ Training must be performed for each parameter point. 

➢ For these simple cases, training is cheap but can we do better?

➢ Yes: it is not necessary to initialize a new net with random weights for 

each point in the parameter scan

➢ After training for one point the NN has learned the “basic physics”

➢ It is very cheap to train from one parameter point to a nearby point

➢ Scans can be performed step-by-step very efficiently



Summary, and questions for the audience

➢ Neural Networks allow a continuum implementation of the classic 
VEGAS phase space integrator/generator.

➢ Proper choices of network architecture allow typical physical 
scenarios to be handled accurately and quickly

➢ Questions:
○ What would you accept as a fair measure of performance to compare the NN method 

with classic methods?
○ What are some examples of MC generation where the phase space generation is the 

bottleneck (so we can try those)?


