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Lesson from LHC so far — Standard Model is good

o
@ SM works in all laboratory/collider experiments (electroweak, strong)
@ LHC 2012 - final piece of the model discovered — Higgs boson

> Mass measured ~ 125 GeV — weak coupling! Perturbative and predictive
for high energies!
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Lesson from LHC so far — Standard Model is good

"T

e SM works in all laboratory/collider experiments (electroweak, strong)
@ LHC 2012 - final piece of the model discovered — Higgs boson
> Mass measured ~ 125 GeV — weak coupling! Perturbative and predictive
for high energies!
@ Add gravity

> get cosmology
» get Planck scale Mp ~ 1.22 x 10'® GeV as the highest energy to worry
about
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Many things in cosmology are not explained by SM

Experimental observations
@ Dark Matter
@ Baryon asymmetry of the Universe
@ Inflation (nearly scale invariant spectrum of initial density perturbations)

Laboratory also asks for SM extensions
@ Neutrino oscillations
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Nothing really points to a definite scale above EW

@ Neutrino masses and oscillations (absent in SM)

» Right handed neutrino between 1 eV and 10'® GeV
@ Dark Matter (absent in SM)

» Models exist from 107 eV (axions) up to 10%° GeV (Wimpzillas, Q-balls)
@ Baryogenesys (absent in SM)

» Leptogenesys scenarios exist from M ~ 10 MeV up to 10'® GeV
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Important disclaimer

This can be easily changed by experiment, if we are lucky

Fedor Bezrukov (UoM) m¢ and vacuum stability



What happens at the scales between Electroweak 200 GeV
and Planck 10'° GeV?

@ Is SM consistent everywhere there?
@ Does any problems appear?
@ If yes, does it point to any scale?
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Standard Model self-consistency and Radiative Corrections

@ Higgs self coupling constant 1 SOV TAT
changes with energy due to
radiative corrections.

(47)2 B = 2442 — 6y}

Strong coupling

Mp=Mpgy |
Mh=Min

3
+ 329 + (9 + )%
+ (=995 — 3g% + 12494

@ Behaviour is determined by the masses of the Higgs boson my = v24v
and other heavy particles (top quark m; = y;v/V2)

@ If Higgs is heavy My > 170 GeV — the model enters strong coupling at
some low energy scale — new physics required.
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Lower Higgs masses: RG corrections push Higgs coupling
to negative values

Coupling A evolution:

my=125.5 GeV
014 T T T T
042 y=0.9176, m=170.0 —— |
. : ¥=0.9235, m=171.0 - - - -
@ For Higgs masses My < Mcritical O(L; I ey S
coupling constant is negative above 0.06 | V00472 met750 - - -
. , .
some scale ug. 0.04 -
0.02 |-
@ The Higgs potential may become 0
negative! 002 |
-0.04 L L L L
> Our world is not in the lowest energy 100000 1e+10 1e+15 1e+20
state! 1, GeV \
» Problems at some scale Higgs potential V(¢) ~ ﬁ((/))‘%
o > 108 GeV? v % v
¢
Fermi  Planck Fermi  Plahck Fermi nck
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Experiment: SM probably has metastable SM vacuum

Experimental values for y; Scale pig for A(po) =0
CMS: m; = 172.44 + 0.49 1e+18 T T T T
127 T T 1e+16 4
Stable
126 |- R Ter14 ]
% g 1e+12
e+ .
(D_ 125 | - )
EI 1e+10 -
124 | -
Metastable 1ev08 ]
12 Lo - L 1e+06 1 1 1 L
8.91 0.92 0.93 0.94 ° 0 0.01 0.02 003 004 005
yi(u=173.2 GeV) Veye M (u=173.2 GeV)
We live close to the metastability boundary!
Precision goal for y; — better than 0.5% J

FB, Kalmykov, Kniehl, Shaposhnikov’12; Buttazo et.al.’13, FB, Shaposhnikov'14, Bednyakov
et.al’15
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top quark mass

PDG’17 average

m; = 173.1 £ 0.6 GeV

ATLAS

172.84 £0.34 £ 0.61 GeV

CMS

172.44 £ 0.13 £ 0.47 GeV

Tevatron

174.30 £ 0.35 + 0.54 GeV

LI L B S L L B B
CMS 2010, dilepton ' 175.50 + 4.60 + 4.60 GeV
JHEP 07 (2011) 049, 36 pb" (value + stat £ syst)
CMS 2011, dilepton ® 172.50 + 0.43 + 1.43 GeV
EPJC 72 (2012) 2202, 5.0 b (value + stat £ syst)
CMS 2011, all-jets ® 173.49 + 0.69 + 1.21 GeV
EPJC 74 (2014) 2758, 3.5 1" (value # stat * syst)
CMS 2011, lepton+jets * 173.49 + 0.43 + 0.98 GeV
JHEP 12 (2012) 105, 5.0 fb" (value # stat # syst)
CMS 2012, dilepton ¢ 172.82+0.19+ 1.22 GeV
This analysis, 19.7 b (value + stat + syst)
CMS 2012, all-jets N 172,32+ 0.25+ 0.59 GeV
This analysis, 18.2 b (value + stat + syst)
-~

CMS 2012, lepton+jets
This analysis, 19.7 "'

172.35+ 0.16 + 0.48 GeV
(value + stat + syst)

CMS combination

Tevatron combination (2014)
arXiv:1407.2682

World combination 2014
ATLAS, CDF, CMS, DO
arXiv:1403.4427

172,44+ 0.13 + 0.47 GeV
(value + stat + syst)

174.34 + 0.37 + 0.52 GeV
(value * stat + syst)

173.34+ 0.27 £ 0.71 GeV
(value * stat + syst)

165 170

my and vacuum stability

75

180
m, [GeV]
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http://pdglive.lbl.gov/DataBlock.action?node=Q007TP
http://inspirehep.net/record/1468064
http://inspirehep.net/record/1393269

Experiment: SM probably has metastable SM vacuum

Experimental values for y; Scale pio for A(po) =0
PDG: m; =173.1 £ 0.6 le+18 T T T T
127 0 T 1e+16 4
Stable
126 | 4 o 1e+14 g
> | >
o} 125 O fe+12 4
Ei = 1e+10 i
124) | 1e+08 4
Metastable
128 yy/al | | 1e+06 1 1 1 1
.91 0.92 0.93 0.94 0 0.01 0.02 0.03 0.04
yi(u=173.2GeV) YeyE(u=173.2 GeV)

We live close to the metastability boundary!
Precision goal for y; — better than 0.5%

0.05
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Note about precisions

@ Experiment — mMC©

) Error ém/m ~ 0.5%
@ Pole mass m;

I O(a?),0(aas), O(ag) Error m/m ~ 0.2%
@ MS Yukawa coupling y:(u = My)

U 3-loop RG z Error 6y /y ~ 0.02%

@ stability constraint

Careful study of different parton shower generators, and further study of NLO
generators is required

Or/and
Build a e*e™ collider at 350 GeV

eg. Frixione, Mitov’14, Corcella’17
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One more coincidence
Without reason and explanation

u scale of minimum A is close to Planck

0.1

0.01

Mmin/Mp

my=124 GeV
OO mpy=125 GeV - - - - 3
E my=126 GeV - -
G . . mv=127 GIeV 7

-0.04 -0.02 0 0.02 0.04
Yy (u=173.2 GeV)
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Are there problems with metastable SM vacuum?

Scale ug for A(up) =0

@ Stable Electroweak vacuum — e
quite safe rente

> Some low scale/hidden sector Ter14

BSM physics is enough (e.g. © tev12

yMSM) T a0

@ Metastable — 16+08
> Problems at u? 16+06

(somewhere above 108 GeV) 0 001 002 0035 004 005
VeyeM(u=173.2 GeV)
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What to do if we are metastable?

Vacuum decays by creating bubbles of Lifetime > age of the Universe!
129

true vacuum, which then expand very

fast (v — ¢) 128
False (EW) 127
k * f ﬁ vacuum
AN V4 % 126
¢ - > ©
< -> £
V- N
K N
r “ ¢, % "
Tunneling suppression: 122
s g8 170 171 172 173 174 175 176 177
Pdecay * € bounce ~ @ 3AM) m, GeV

Note on Planck corrections
@ Critical bubble size ~ Planck scale
@ Potential corrections Vpianck = i# change lifetime!
P

Only + sign is allowed for Planck scale corrections!
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As far as we are “safe” now (i.e. at low energies), what about Early Universe?
What happens with the Higgs boson at inflation? J

@ if Higgs boson is completely separate from inflation
@ if Higgs boson interacts with inflaton/gravitation background
@ if Higgs boson drives inflation
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Metastable vacuum during inflation is dangerous

1e+17

@ Let us suppose Higgs is not at all testo |
. . . 2 1e+15
connected to inflationary physics (e.g. R RN S T
inflation) 5 revnaf st
>

1e+12 |

@ All fileds have vacuum fluctuation

1e+11 |

Hin(r=0.003) \ E
" "

@ Typical momentum k ~ Hiyr is of the order ~ ter10 —
of Hubble scale

0.0001 0.001 0.01

Yy (u=173.2 GeV)

@ If typical momentum is greater than the potential barrier — SM vacuum

would decay if

1/4
Hinf > Vmax

Most probably, fluctuations at inflation lead to SM vacuum decay. ..
@ Observation of any tensor-to-scalar ratio r by CMB polarization missions

would mean great danger for metastable SM vacuum!
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Measurement of primordial tensor modes determines scale
of inflation

Hint = | 2 ~ 8.6 x 10"® GeV (_)
0.1
P
0.25 ‘ ‘ ‘
Planck TT+lowP
Planck TT+lowP+BKP
0.20 - ~lensing-+ext T
£ =0.001 Y Higgs infaltion
0.15 |- © R?infaltion |
g TN EER)2
Task for cosmology observations! J 0.10 |- .
0.05 |- a
0.00
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Does inflation contradict metastable EW vacuum?

@ Higgs interacting with inflation can cure the problem. Examples
> Higgs (¢)—inflaton () interaction may stabilize the Higgs

Line = _a¢2X2

» Higgs-gravity negative non-minimal coupling stabilizes Higgs in de-Sitter
(inflating) space
Lom = £4°R
(However, destabilises EW vacuum after inflation)

@ New physics below py may remove Planck scale vacuum and make EW
vacuum stable — many examples
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New physics above uy may solve the problem

Requirements

@ Minimum at Planck scale should be removed (but can remain near
1o ~ 1019 GeV)

@ Reheating after inflation should be fast.

No need for new physics at “low” (< ug) scales!
Example: Higgs inflation with threshold corrections at M, /&

Fedor Bezrukov (UoM) my and vacuum stability MC4BSM, Durham, 2018
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Higgs inflation and radiative corrections

M2 O*hd*h A
SJ:/ \/_{ PR § R + Guv v _Z(hz_vz)z}

4

term ¢h°R
makes potential flat

VA

Vew - Ho p/& Mp X
Threshold corrections at scale Mp /&
“shift” A back to positive values

(Not really to scale) FB, Shaposhnikov'14

Fedor Bezrukov (UoM) m¢ and vacuum stability MC4BSM, Durham, 2018 21/24



After inflation symmetry is restored in preheating

—4

8x 10% GeV
7 x 102 GeV
6 x 108 GeV
c5> x 10" GeV

A= ]

000 005 010 015 020 025

103ky

@ Thermal potential removes the high scale vacuum

@ Universe cools down to EW vacuum

Fedor Bezrukov (UoM)
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Slightly metastable vacuum can be even useful

SM is metastable, Higgs not coupled to
inflaton

T T
end of inflation +

@ During inflation Higgs fluctuation can go
slightly beyond the barrier

units of H

@ After inflation thermal Higgs potential
returns the field to the EW vacuum A

@ In some regions large fluctuations £
(instability) creates Primordial Black holes!

v

Espinosa, Racco, Riotto'17
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Conclusions: Higgs potential stability

what is good and what is bad?

Bad
We do not know what is the instability scale (if at all unstable)

Good
Would be interesting to learn!
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Backup
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Higgs mass
PDG’17, PRL 114(2015)191803

e S e o LA s e
=== ATLASH-yy
ATLAS and CMS BN AR
LHC Runl1 CMS H - yy
.......... CMS H-ZZ -4l
----- = All combined

X Bestfit
—— 68% CL

Signal strength (u)
N
[$)]

15

[y

P S B S R BRI BRI
05 124 1245 125 1255 126 1265 127

my [GeV]

Combined CMS and ATLAS, at 7 and 8 TeV

my = 125.09 £ 0.21 £ 0.11 GeV
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http://pdglive.lbl.gov/DataBlock.action?node=S126M
http://inspirehep.net/record/1356276

Combined Higgs boson couplings

35.9 fb™ (13 TeV)
T T

t

wZ

------- SM Higgs boson
— [M, €] fit
I+l

[ J+20

CMS’18
CMS Preliminary @ Observed
35.9 fb™ (13 TeV) = £10 (stat.0sys.)
w—+10 (SYS.)
20 CMS Preliminary
T T
> 1F
Mog - P
B
S -1
lJVBF e n 10
el>
W
x -2
lJWH —  ——— 10
-3
M [——e- 10
HI‘IH —————— 2
[}
o]
H natl o
T P N B N ST N g ]
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my and vacuum stability

10" 1

10 10?
Particle mass [GeV]
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http://cds.cern.ch/record/2308127/files/HIG-17-031-pas.pdf

Instability

Mt, GeV

Absolute stability

1 . . .
6?20 125 130 135 140
MH, GeV

Bednyakov, Kniel, Pikelner, Veretin'15
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Stable EW vacuum — mostly anything works

@ No problems throughout the whole thermal evolution of the Universe.
@ Adding inflation — many examples

» R? inflation

> Separate scalar inflaton interacting with the Higgs boson
> non-minimally coupled Higgs inflation

Fedor Bezrukov (UoM)

m; and vacuum stability

ro.002

0.25

0.20

0.15

Planck TT-+lowP
Planck TT+lowP+BKP
+lensing+ext b
Y Higgs infaltion
@ R? infaltion -
-@ M\t + EO°R/2

£ =0.001

095 096 097 098 099 1.00

MC4BSM, Durham, 2018 29/24



Higgs inflation at tree level

Scalar part of the (Jordan frame) action
2

M h? oHho”h A
= [ d%vV=g{ - LR-¢—R+ — = (W - v?)?
SJ / X g{ D) f D) guv 2 4( v )
@ his the Higgs field; Mp = ——— = 2.4 x 10'8GeV

V8nGn
@ SM higgs vev v < Mp/+/&€ — can be neglected in the early Universe

@ At h > Mp/+/€ all masses are proportional to h — scale invariant
spectrum!

Fedor Bezrukov (UoM) my and vacuum stability MC4BSM, Durham, 2018

30/24



Higgs inflation at tree level

Scalar part of the (Jordan frame) action

M2 h? O*ho*h A
= d4\/— __PH_ —R __h2_ 2\2
SJ / X (¢} { D) f D) + guv 2 4( v )
4 —D
To get observed §T/T ~ 107°
va oot
& 49000 Mp/e  Mp 5%
Mathematical trick — conformal transformation
N 2
Iuv = Guv = 1+ é:Mizg/JVa
P

) - s -2 )\2
leads to flattened potential: V(¢) — V(x) = yy=3 1—e Vovp
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CMB parameters are predicted

0.25 T T T T T
Planck TT+lowP
Planck TT+lowP+BKP
0.20 - tlensing+-ext 7]
* Higgs infaltion
0.15 |- 7]
I~
8
S
0.10 - 7]
0.05 -
0.00 , ; ‘

L
095 096 097 098 099 1.00
ns

For large &€ Higgs inflation

, 4 B(AN+9) _
spectral index n=1 ANt 0.97
tensor/scalar ratio  r = ¢ 4,21323)2 ~ 0.0033

OT/T~10° = £ =~ 47000
Note: for very near critical top quark/Higgs masses results change and allow

for larger r
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Adding required counterterms to the action

@ In principle — Hl is not renormalizable, all counterterms appear at some

loop order
@ Let us try to add only the required counterterms at each order in loop
expansion
(6)()2 A4 — Yt -
=——-—F +i + —F

L > a (x) + gy N Oyt

M

_hy) | X X< F

£
= ~ 1/2
) Q(x) % (1 —e“/mX/MP) / L X > %

Doing quantum calculations we should add
-E + £1-Ioop + 5-£1-Ioop ct. t

Fedor Bezrukov (UoM) m; and vacuum stability MC4BSM, Durham, 2018
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Counterterms: A modification

Calculating vacuum energy

-

Fedor Bezrukov (UoM)

1
—Trin
2

% 4//2
o]

912 (2 AFH” 3 1 2
(——In ) +—) (F’2+§F"F) F*,

64n2 \ & 42 2
—Trin[id + y:F]

4 22

2 F

(2o + 3 pe
6412\ € 22
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Counterterms: A modification

Calculating vacuum energy

AN 2
l, A 1 /1
C1 = =Trin|o-S(FYH”
‘\~_/I 2 r (4( ) ) ]
912 (2 1 2
6Ly = ~+64 F?+-F"F| F*
Lt 6472 (5 @ ) ( 3 )
O = —Trn[id + y.F]
4
Yi |2 4
6Ly = - =yl F
Lt 642 (g 1b )

Small y: F4F* ~ y ~ F*
Large y : F™F4 ~ e X/VeMe gng F4 + M3 /&2
0 d4p — just A redefinition, while 9115 is not!
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Modified A evolution can make the potential positive again

Effect on the potential

10| Non-critical
= Critical
5
A —
/1(#) 54| (F2+1FF)° -1 5 0
(1) + 64 | (F2+ IF7F)" - B
-10, MIBI&

ye(u) = yi(p) + Sy [F2 = 1] | T e 1o- 0?10

(Red curve: ¢ = 1500, oy: = 0.025,
04 =—-0.015)
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