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Cogan, Kagan, Strauss, and Schwarztman [1407.5675] 
Almeida, Backovic, Cliche, Lee, and Perelein [1501.15968] 

de Oliveira, Kagan, Mackey, Nachman, and Schwartzman [1511.05190] 
Baldi, Bauer, Eng, Sadowski, Whiteson [1603.09349]  

Komiske, Metodiev, and Schwartz [1612.01551]

Impressive results with advanced techniques

Louppe, Cho, Becot, Cranmer [1702.00748] 
Cheng [1711.02633]

Image recognition Language processing

https://arxiv.org/abs/1407.5675
https://arxiv.org/abs/1501.05968
http://arxiv.org/abs/1511.05190
https://arxiv.org/abs/1603.09349
http://arxiv.org/abs/1612.01551
http://arxiv.org/abs/1702.00748
http://arxiv.org/abs/1711.02633
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Breaking open the black box

Multi-variate 
analyzer

ACME

Advanced techniques often operate as 
a black box. 
• No physical intuition for the 

parameters of the model 
• If it works, do we care? 

Outline for the talk 

1. Review basics of fitting data 
a. Linear regression 
b. Logistic regression 

2. Neural networks and deep learning 
3. Controlling information through 

input variables 
4. Planing to uncover what information 

the machine is learning from
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Review: Linear Regression

f(x,~a) = a0 + a1x

How to fit data 
1. Plot the data 
2. Define the function 

•   
3. Choose how to know what fits best 

• a.k.a. Loss Function 

• MSE:  

5. Find the minimum error (loss) (cost) 

•   

L(x, y,~a) =
1

N

NX

i=1

(f(xi,~a)� yi)
2

abest = a when

 
@L(x, y,~a)

@~a

���
x,y

= 0

!
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Review: Linear Regression

f(x,~a) = a0 + a1x+ a2x
2

Quadratic?

How to fit data 
1. Plot the data 
2. Define the function 

•   
3. Choose how to know what fits best 

• a.k.a. Loss Function 

• MSE:  

5. Find the minimum error (loss) (cost) 

•   

L(x, y,~a) =
1

N

NX

i=1

(f(xi,~a)� yi)
2

abest = a when

 
@L(x, y,~a)

@~a

���
x,y

= 0

! Is that good enough?  
How many parameters can we 

add?

Avoid over fitting to be 
able to use for predictions



Bryan Ostdiek  6

Logistic Regression
What if we are trying to predict a class, not a number?

quark(s) gluon
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Logistic Regression
What if we are trying to predict a class, not a number?

quark(s) gluon
What is the y-value we are trying to fit/predict?

Define one class as 1 (Signal)

Other class as 0 (Background)
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Logistic Regression
What if we are trying to predict a class, not a number?

• Change the shape of function: Logistic/Sigmoid function 

fS(z) =
1

1 + e�z
Does not add 
parameters

• Change the loss function: BCE 

L(~x, ~y,~a) = � 1

N

NX

i=1

 
yi log

⇣
fS(p(x, a))

⌘
+ (1� yi) log

⇣
1� fS(p(x, a))

⌘!
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Logistic Regression
What if we are trying to predict a class, not a number?

What is           ?z = p(x, a)
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Logistic Regression
What if we are trying to predict a class, not a number?

What is           ?z = p(x, a)

Minimize the loss with 
respect to ~a
Boundary at p(x, a) = 0
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Logistic Regression
What if there is a shape in the data?

p(x, a) = a0 + a1x1 + a2x2

+ a3x
2
1 + a4x

2
2 + a5x1x2

p(x, a) = a0 + x1a1 + x2a2
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Regression Review

Ideal
1. Choose physically motivated model 
2. Learn best-fit parameters by 

minimizing loss function
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Regression Review

Ideal
1. Choose physically motivated model 
2. Learn best-fit parameters by 

minimizing loss function

How to deal with many inputs and 
hard to describe shapes in the data?

Create new 
variables/observables

Let the machine 
choose the model

Neural Networks
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Neural Networks
• Can be used in 

classifications and 
numerical predictions 

• Don’t add more inputs, let 
machine find own shape  

• Ability to learn ‘any’ 
function 

• More nodes/hidden layers 
allows for more complex 
features

1

p(x, a) = a0 + x1a1 + x2a2

p(x, a) = a0 + x1a1 + x2a2

p(x, a) = a0 + x1a1 + x2a2p(x, a) = a0 + x1a1 + x2a2

x2

x1

x3

a3
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x2

x3

x1

1

h1

h2

hn

· · ·

h3

h4

· · ·

1

ha
1

ha
2

ha
3

ha
4

ha
n

Y yp

Input Layer Hidden Layer Output Layer

Learnable weights Learnable weights

w(1) w(2)

y1(h)

y2(Y)
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Neural Networks (Deep Learning)

• One of first papers to show deep 
learning outperforming standard 
techniques in HEP 

• Compares shallow and deep networks 
on raw and high-level features

[1402.4735]
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Neural Networks (Deep Learning)

21 raw features for 
semi-leptonic channel 

Not much separation 
in individual features
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Neural Networks (Deep Learning)

Invariant masses of 
intermediate sates

mjj m`⌫mjjj mj`⌫

mbb mWb mWbb
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Neural Networks (Deep Learning)

11 million training examples 
1 hidden layer shallow network 
5 layer deep network
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Deep learning finds more information than our 
high-level variables

• What are our variables missing? 
• How do we know if all information 

has been used? 
• What is the machine learning? 
• What information does the 

machine learn? 
• What information is important for 

the machine? 
• …?
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Datta and Larkoski [1704.08249] 
• Sets of observables that completely 

and minimally span N-body phase 
space. 

Komiske, Metodiev, and Thaler 
[1712.07124] 
• Energy flow polynomials, a complete 

linear basis for jet substructure

http://arxiv.org/abs/1704.08249
http://arxiv.org/abs/1712.07124
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Deep learning finds more information than our 
high-level variables

• What are our variables missing? 
• How do we know if all information 

has been used? 
• What is the machine learning? 
• What information does the 

machine learn? 
• What information is important for 

the machine? 
• …?

Datta and Larkoski [1704.08249] 
• Sets of observables that completely 

and minimally span N-body phase 
space. 

Komiske, Metodiev, and Thaler 
[1712.07124] 
• Energy flow polynomials, a complete 

linear basis for jet substructure

Chang, Cohen, and BO [1709.10106] 
• Remove information to reveal what 

machine learned from

http://arxiv.org/abs/1704.08249
http://arxiv.org/abs/1712.07124
http://arxiv.org/abs/1709.10106
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How much information is in a jet?

{⌧ (0.5)1 , ⌧ (1)1 , ⌧ (2)1 ,

⌧ (0.5)2 , ⌧ (1)2 , ⌧ (2)2 ,

· · · ,

⌧ (0.5)M�2, ⌧
(1)
M�2, ⌧

(2)
M�2,

⌧ (1)M�1, ⌧
(2)
M�1}

Datta and Larkoski [1704.08249]

⌧ (�)N =
1

pTJ

X

i2Jet

pTi min
n
R�

1i,R
�
2i, · · · ,R

�
Ni,

o

Distinguish hadronic, boosted Z from QCD background
(3M - 4) unique variables in M-body phase space

Information in a jet that is useful for discriminating QCD jets 
from Z bosons is saturated by only considering observables 
that are sensitive to 4-body phase space.

http://arxiv.org/abs/1704.08249
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⌧ (0.5)2 , ⌧ (1)2 , ⌧ (2)2 ,

· · · ,

⌧ (0.5)M�2, ⌧
(1)
M�2, ⌧

(2)
M�2,

⌧ (1)M�1, ⌧
(2)
M�1}

Datta and Larkoski [1704.08249]

⌧ (�)N =
1

pTJ

X

i2Jet

pTi min
n
R�

1i,R
�
2i, · · · ,R

�
Ni,

o

Distinguish hadronic, boosted Z from QCD background
(3M - 4) unique variables in M-body phase space

Information in a jet that is useful for discriminating QCD jets 
from Z bosons is saturated by only considering observables 
that are sensitive to 4-body phase space.

Still uses a deep neural network, don’t know what 
combination of the information the machine uses. 

Is all of it necessary?

Use Energy Flow Polynomials to get a liner basis? 
(Komiske, Metodiev, and Thaler [1712.07124])

Find out what the machine is learning from?

http://arxiv.org/abs/1704.08249
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What is the machine learning?

Chang, Cohen, and BO [arXiv:1709.10106]

Does the machine learn a circle? 
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What is the machine learning?

Chang, Cohen, and BO [arXiv:1709.10106]

It has learned generically where events are in “any” parameter space. Wrong 
question to ask.

Does the machine learn a circle? Does it learn                      ?x2 + y2  r2



Bryan Ostdiek  19

What is the machine learning?
Can we find what information the machine is learning?
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Removing information from training 
samples 

Similar to what experiments do with 
different pT samples
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What is the machine learning?
Can we find what information the machine is learning?

See also de Oliveria, Kagan, Nachman, 
Schwartzman [arXiv:1511.05190]

(a) Train machine on low level data 
(b) Compute low level AUC 
(c) Choose a variable: compute 

(planing) weights 
(d) Train machine on weighted (planed) 

data 
(e) Compute planed AUC 
(f) Compare: looking for significant 

performance drop

Planing
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What is the machine learning?
Can we find what information the machine is learning?

See also de Oliveria, Kagan, Nachman, 
Schwartzman [arXiv:1511.05190]

(a) Train machine on low level data 
(b) Compute low level AUC 
(c) Choose a variable: compute 

(planing) weights 
(d) Train machine on weighted (planed) 

data 
(e) Compute planed AUC 
(f) Compare: looking for significant 

performance drop

Planing Saturation
Used in Baldi, Sadowski, Whiteson [arXiv:1402.4735 and 1410.3469]; Baldi, Bauer, 
Eng, Sadowski, Whiteson [arXiv:1603.09349]; Guest, Collado, Baldi, Hsu, Urban, 

Whiteson [arXiv:1607.08633]; Datta, Larkoski [arXiv:1704.08249]; Aguilar-Saavedra, 
Collins, Mishra [arXiv:1709.01087]

(a) Train network on low level data 
(b) Compute low level AUC 
(c) Add high level variable 
(d) Train new machine using low + 

high level info 
(e) Compute AUC 
(f) No performance gain implies 

information has been learned
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Technical aside: using saturation to pick the network
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Technical aside: using saturation to pick the network

Choose 3 layer networks for all deep 
network examples going forward

Minimal improvementhigh-level not adding much
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Example with a toy model

f(~x) = [⇥ (r0 � r) + Cr] · [z ·Bz + Cz]Signal Distribution:

Background Distribution: Uniform

Results
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BSM Models
L � Z 0

µ

X

f

Qf

�
gLf̄�

µPLf + gRf̄�
µPRf

�

Vector couplings

q

q e+

e�

Z 0
L

q

q e+

e�

Z 0
V

Left-handed couplings

gL = gR gR = 0

8 low-level features (4-momentum of electron and positron)
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What is the machine learning?

Original distributions

Planed distributions
mee[GeV ] y(e�) y(e+)

How much information is there to learn in a given distribution?

Vector Couplings
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What is the machine learning?

Iterative procedure to remove all information. What if 
we don’t know the physics from the start? 

Use the machine to learn the planing weights?
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Conclusion

• Machine learning trades intuitive, physical parameters for improved results 
• Image pixels 
• Grammar of QCD and jet clustering 
• Etc.  

• Jet substructure has observables which span the space, can show when 
adding more information doesn’t help 

• Through planing, possible to find remove information, while maintaining the 
same network structure. Allows one to determine what information the 
network needs to learn.
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Backup

ROC Curves

Basic Neural Network Example

What is machine learning for?
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Particle Physics Interlude
Machine learning particle physics

Can identify and measure photons, 
electrons, muons, and things made 

of quarks

Beams travel in ±z direction,  
no momentum in (x, y) plane

Neutrinos (and some BSM particles) 
escape detection
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Particle Physics Interlude
Machine learning particle physics

Can identify and measure photons, 
electrons, muons, and things made 

of quarks

Beams travel in ±z direction,  
no momentum in (x, y) plane

Neutrinos (and some BSM particles) 
escape detection

Energy and momentum vector

Missing momentum in (x, y) plane

jets (b-jets)

Which heavy particle 
decayed to the final state 

particles?
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Neural Networks
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x1
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AND
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0
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a0 = �20, a1 = 15, a2 = 15
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Neural Networks

x2

x1

1

p(x, a) = a0 + x1a1 + x2a2
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Neural Networks

x2

x1

1

p(x, a) = a0 + x1a1 + x2a2

p(x, a) = a0 + x1a1 + x2a2

p(x, a) = a0 + x1a1 + x2a2p(x, a) = a0 + x1a1 + x2a2

x1    x2    y
AND

0
0

0 0
1

1
1

0
11

0
0

a0 = �20, a1 = 15, a2 = 15

x1    x2    y
XOR

0
0

0 0
1

1 10
11

1

0

This system cannot produce XOR

(cannot make a two sided cut)

x1    x2    y
OR

0
0

0 0
1 1

1 1
1

0
11

a0 = �10, a1 = 15, a2 = 15
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Neural Networks
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Neural Networks
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Neural Networks

Simple example showing that neural network can access ‘high-level’ functions
To learn weights, need LARGE training set and CPU time

x1    x2    y
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Measuring Classifiers
How good is the classifier?
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Measuring Classifiers
How good is the classifier?

AUC = 1.0 is perfect, this is not attainable for most problems
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What is machine 
learning (for)?

Supervised Learning Unsupervised Learning
• Classification 
• Numerical Predictions 
• etc

• Clustering 
• Anomaly Detection 
• Generative adversarial 

networks 
• etc

Labeled 
data

Unlabeled 
data

Hybrid?

• Learning from label proportions 
• Classification without labels

Getting information from data


