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FACTORIZATION
THE PARTON LUMINOSITY

Ox(S M2 u bf dxl dajg fa/hl (xl)fb/hg (xg)a‘qaqb_)X (xleQS,M?()

mln

UX(SaMQ):Zab 1d37£ (a:)a-(x’as(MIQ-I)):Za,bﬁab@)a—ab

1
® PARTON LUMINOSITY Lap(7) = [~ 22 fo 4 (%) fo/ny (T/2) = fa © fo
e PARTONIC CROSS SECTION &4, X

EXAMPLE: THE DRELL-YAN PROCESS
(LEADING ORDER)

D2
ut
s = (p1 + p2)? = M%
-
P1

e HADRONIC C.M. ENERGY: s = (p1 + p2)?

e PARTONIC C.M. ENERGY: S = x1Z2S

e MOMENTUM FRACTIONS Z1,2 = \/g exp £y; AT LEADING ORDER § = M?



THE PDFs
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PDF DETERMINATION

DATA — PARTON DISTRIBUTIONS

Kinematic coverage

Fixed target DIS

) Collider DIS F]
4 Fixed target Drell-Yan <
5 Caollider Inclusive Jet Production 7
10 E| Collider Drell-Yan
] Z transverse momenturm
] Top-quark pair production
4 0O Black edge: New in NNPDF3.1 q‘ﬂ%
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FROM PHYSICAL OBSERVABLES TO PDFS: SOLVE EVOLUTION EQUATIONS,
CONVOLUTE WITH PARTON-LEVEL CROSS-SECTIONS

DISENTANGLING PDF'sS: CHOOSE A BASIS OF PDFs (2N; QUARKS + 1 GLUON) & A SET OF
SUITABLE PHYSICAL PROCESSES TO DETERMINE THEM ALL

NONTRIVIAL
(1) DETERMINE FUNCTIONS FROM A DISCRETE DATASET

(2) DETERMINE A PROBABILITY FUNCTIONAL IN THE SPACE OF FUNCTIONS



THE NNPDF APPROACH
BASIC IDEA: MONTE CARLO SAMPLING
OF THE PROBABILITY MEASURE IN THE (FUNCTION) SPACE OF PDFs

e GENERATE A SET OF MONTE CARLO REPLICAS [

o(k) OF THE ORIGINAL DATASET o (data) | Fpermentslbata

= REPRESENTATION OF P[o] AT DISCRETE SET 1

OF POINTS IN DATA SPACE .
e FIT A PDF REPLICA TO A DATA REPLICA MC generation

= EACH PDF REPLICA fz.(k ) IS A BEST-FIT PDF A\ S

SET FOR GIVEN DATA REPLICA | | | |
e THE SET OF NEURAL NETS IS A REPRESENTATION EVOLUTION

OF THE PROBABILITY DENSITY:
Ty T
Voo (k)
)= 3y 2 | IR |

k=1

SOLUTIONS
e (1) FUNCTIONS FROM DISCRETE DATA =- NEURAL NETWORKS
e (2) PROBABILITY IN FUNCTION SPACE = MONTE CARLO



NEURAL NETWORKS

e EACH PDF REPLICA FITTED TO A DATA REPLICA
—> NEED BEST-FIT, COVARIANCE MATRIX IN PARAMETER SPACE NOT NEEDED

e CAN USE VERY LARGE PARAMETRIZATION
NEURAL NETWORKS

Output

Hidden

(2 g2
wip, 07

n, [nput

LD 5

A, )

e FEach neuron receives input from neurons

in preceding layer and feeds output to neu-
rons in subsequent layer

Activation determined by weights and
thresholds

&i=g (ZJ wij&5 — 9@)

Sigmoid activation function

1
g9(z) = 1te—Bz

EXAMPLE: A 1—2—11 NN

flz) =

5(3) _

1
1+e

e @
11 12

(2) O (2)
1171 TR gl T

o)
21

CURRENTLY: 2-5-3-1 NN FOR EACH OF 8 BASIS PDFs (37xX8=296 FREE PARMS.)



PREPROCESSING

PDFS ARE PARAMETRIZED WITH NEURAL NETWORKS TIMES
PREPROCESSING FUNCTION: f;(z) = 2®(1 — )’ NN (x)

GOAL IS TO SPEED UP TRAINING WITHOUT BIASING RESULT
a;, ; RANDOM REPLICA BY REPLICA WITH UNIFORM DISTRIBUTION IN RANGE

RANGE DETERMINED SELF-CONSISTENTLY AS TWICE THE RANGE OF

EFFECTIVE EXPONENTS Qe i = l?nfffﬁ) Bett,i = %

EVALUATED AT z = 0.95, 0.65 (8); x = 107°, 1073 ()

EFFECTIVE EXPONENTS FOR QUARK SINGLET VS. PREPROCESSING RANGE
100 & 1000 REPLICAS

Small-x effective exponent for the Singlet Large-x Effective Exponent for the Singlet

1.25_\_""""I T T o T 3"'‘"'I""\“"I""\""I""

25

1.5




GENETIC MINIMIZATION
RANDOM MUTATION OF THE NN PARAMETERS STARTING FROM RANDOM VALUES

e LARGE NUMBER OF MUTANT (~ 100) PDF SETS GENERATED FROM PARENT

e FIGURE OF MERIT COMPUTED

e BEST-FIT KEPT & PASSED TO NEXT GENERATION

nrs
w — w + -
Nite
ite
CHOICES
Nt | Nt | N [ B | Nay [ Mo
INPDF 2.: a5, 5 2 : :
e MUTATION RATE 77 l\l\i L)11 :,..'3 oo | 2500 :r['J[‘J[‘Jli 2.3 }?” a0
NNPDE 3.0 i 0000 - 80 -
e POINTLIKE VS. NODAL MUTATION
NNPDEF23 NNPDF3.0
e NUMBER (POINTLIKE) OR PROBABILITY Single Parameter Mutation Nodal Mutation
(NODAL) OF MUTATIONS PDF [[ Nt | 7 PDF [ Pux |7
¥(x) 2 10, 1 Blx) || 5% per node | 15
e TARGETED WT: o () 3 | 10,304 g(z) | 5% per node | 15
WEIGTHS p; = Ez/EZ & Ty(x) 2 1, 0.1 Viz) || 5% per node | 15
Vix) 3 8,1, 0.1 Vi(x) || 5% per node | 15
P GA EPOCHS: NmUt Aglx) 3 5.1, 0.1 Va(x) || 5% per node | 15
gen stz || 2 5, 0.5 Ty(z) || 5% per node | 15
s {x) 2 1, 0.1 Tulx) || 5% per node | 15




NN TRAINING: EXAMPLE

e HIGHLY REDUNDANT PARAMETRIZATION
e COMPLEXITY INCREASES AS THE FITTING PROCEEDS

e — THE BEST FIT IS NOT THE ABSOLUTE MINIMUM:
MUST LOOK FOR OPTIMAL LEARNING POINT

UNDERLEARNING

Under Learning y*=2
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NN TRAINING: EXAMPLE

e HIGHLY REDUNDANT PARAMETRIZATION
e COMPLEXITY INCREASES AS THE FITTING PROCEEDS

e — THE BEST FIT IS NOT THE ABSOLUTE MINIMUM:
MUST LOOK FOR OPTIMAL LEARNING POINT

PROPER LEARNING

Proper Learning y*=1
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NN TRAINING: EXAMPLE

e HIGHLY REDUNDANT PARAMETRIZATION
e COMPLEXITY INCREASES AS THE FITTING PROCEEDS

e — THE BEST FIT IS NOT THE ABSOLUTE MINIMUM:
MUST LOOK FOR OPTIMAL LEARNING POINT

OVERLEARNING

Over Learning y*~0
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OPTIMAL FIT: CROSS-VALIDATION

GENETIC MINIMIZATION:
AT EACH GENERATION, X2 EITHER UNCHANGED OR DECREASING

e DIVIDE THE DATA IN TWO SETS: TRAINING AND
e MINIMIZE THE X2 OF THE DATA IN THE TRAINING SET

e AT EACH ITERATION, COMPUTE THE FOR THE DATA IN THE SET
(NOT USED FOR FITTING)

e WHEN THE STOPS DECREASING, STOP THE FIT
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OPTIMAL FIT: CROSS-VALIDATION

GENETIC MINIMIZATION:
AT EACH GENERATION, X2 EITHER UNCHANGED OR DECREASING

e DIVIDE THE DATA IN TWO SETS: TRAINING AND
e MINIMIZE THE X2 OF THE DATA IN THE TRAINING SET

e AT EACH ITERATION, COMPUTE THE FOR THE DATA IN THE SET
(NOT USED FOR FITTING)

e WHEN THE STOPS DECREASING, STOP THE FIT
GO!
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OPTIMAL FIT: CROSS-VALIDATION

GENETIC MINIMIZATION:
AT EACH GENERATION, X2 EITHER UNCHANGED OR DECREASING

e DIVIDE THE DATA IN TWO SETS: TRAINING AND
e MINIMIZE THE X2 OF THE DATA IN THE TRAINING SET

e AT EACH ITERATION, COMPUTE THE FOR THE DATA IN THE SET
(NOT USED FOR FITTING)
e WHEN THE STOPS DECREASING, STOP THE FIT
STOP!
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OPTIMAL FIT: CROSS-VALIDATION

GENETIC MINIMIZATION:
AT EACH GENERATION, X2 EITHER UNCHANGED OR DECREASING

e DIVIDE THE DATA IN TWO SETS: TRAINING AND
e MINIMIZE THE X2 OF THE DATA IN THE TRAINING SET

e AT EACH ITERATION, COMPUTE THE FOR THE DATA IN THE SET
(NOT USED FOR FITTING)
e WHEN THE STOPS DECREASING, STOP THE FIT
TOO LATE!
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STOPPING CRITERIA
STOPPING FOR THE X2 OF ONE REPLICA

| #E,and E_ - rep 0003 |

120 140 160

# iterations

| #E, and E_ - rep 0003 |

6 I 3.30
- \ T
] | I S S S o NN mORN ST -
C - Etr 3.261
s — Eval __________________ 3.24
- ? 3.221
a5 L e W
af 318 e e
B 3.16F L
350 PR 7 |l INN SRS S RSN W S S —
- : : : : 312" ‘ ‘ : ‘ e
3 : : : : : : : E 5 . 5 5 5 5 5
[ | PRI AN TSI N TN T WV M | . | . | 3—\..\\..\\I\\..\\..\\.\\.IH..M..\I.H.IH..
] a0 60 80 100 158 159 160 161 162 163 164 165 166 167

# iterations

UP TO NNPDF2.3 “INCREASING” AND “DECREASING” TRAINING AND VALIDATION Y *
DEFINED IN TERMS OF THRESHOLD VALUES 6¢, AND 0y4;:

INCREASE: X2,;(Ngen + A) > x*(Ngen + A) + Spai

FROM NNPDF3.0 USE LOOKBACK:
FIT IS RUN UP TO SOME LARGE # OF GA GENERATIONS
THEN ONE “LOOKS BACK” FOR ABSOLUTE MIN. OF VALIDATION Yy~

CHECK THAT RESULTS ARE INDEPENDENT OF THE LARGE # OF GA GENS

CHECK THAT RESULTS ARE INDEPENDENT OF FLUCTUATIONS IN VALUE OF
ABSOLUTE MINIMUM
DIFFERENT STOPPING POINTS, BUT INDISTINGUISHABLE PDFS



CLOSURE TESTS:

THE BASIC IDEA

ASSUME PDFS KNOWN: GENERATE FAKE EXPERIMENTAL DATA

CAN DECIDE DATA UNCERTAINTY (ZERO, OR AS IN REAL DATA, OR .. .)
FIT PDFS TO FAKE DATA

CHECK WHETHER FIT REPRODUCES UNDERLYING “TRUTH:
— CHECK WHETHER TRUE VALUE GAUSSIANLY DISTRIBUTED ABOUT FIT
— CHECK WHETHER UNCERTAINTIES FAITHFUL

— CHECK STABILITY

(INDEP. OF METHODOLOGICAL DETAILS)
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1072

103

10—4 L

LEVEL-0 CLOSURE TESTS

ASSUME VANISHING
EXPERIMENTAL UNCERTAINTY

MUST BE ABLE TO GET x° = 0

UNCERTAINTY AT DATA POINTS TENDS TO ZERO

(NOT NECESSARILY ON PDEF!)
DEFINE ¢ = \/<X$ep> — X2,

EQUALS FIT UNCERTAINTY/DATA UNCERTAINTY, CHECK

¢ — 0

BEST FIT ON TOP OF “TRUTH” IN DATA REGION
FRACTIONAL UNCERTAINTY VS TRAINING LENGTH

x2 VS TRAINING LENGTH

Effectiveness of Genetic Algorithm in Level 0 Closure Tests

T T T ‘ T T T T T T T |
—»— 0Old (2.3} genetic algerithm
—— New genetic algornithm

—
o
(%)

1 4
Number of 8enerations

0.45

THE GLUON

Level 0 closure test vs. MSTW

xg(x,Q)

N LN O e N W R ;A ®

- Level D Closure Test Fit
\x MSTW2008ni068cl
N

10° 107
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10° 107 10"

Effectiveness of Genetic Algorithms in Level 0 Closure Tests
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LEVEL-O, LEVEL-1 AND LEVEL-2

LEVEL O: FAKE DATA GENERATED WITH NO UNCERTAINTY
— INTERPOLATION AND EXTRAPOLATION UNCERTAINTY

LEVEL 1-2: FAKE DATA GENERATED WITH SAME UNCERTAINTY AS REAL
DATA (INCLUDING CORRELATIONS)

LEVEL 1: NO PSEUDODATA REPLICAS:
— REPLICAS FITTED TO SAME DATA OVER AND OVER AGAIN
— FUNCTIONAL UNCERTAINTY DUE TO INFINITY OF EQUIVALENT MINIMA

LEVEL 2: STANDARD NNPDF METHODOLOGY
—=> REPLICAS FITTED TO PSEUDODATA REPLICAS
— DATA UNCERTAINTY

THREE SOURCES OF UNCERTAINTY COMPARABLE IN DATA REGION

THE GLUON: LEVEL O, LEVEL 1 AND LEVEL 2
Ratios of gluon at different closure test levels Ratios of gluon at different closure test levels
AL B L A B

Il L+10 Closure Fit 350 Il Lv10 Closure Fit

Il LvI1 Closure Fit Il LvI1 Closure Fit
7 LvI2 Closure Fit

Sy [ Lvi2 Closure Fit

H0b 104 102 107 107 1 0 02 0.4 0.6 0.8 1



LEVEL-2: CENTRAL VALUES AND UNCERTAINTIES
THE GLUON: FITTED/”TRUE” e CENTRAL VALUES:

Ratio of Closure Test g to MSTW2008 73 1) 2
. e : COMPARE FITTED VS. TRUE Y

i BOTH FOR INDIVIDUAL EXPERIMENTS
& TOTAL DATASET

FOR TOTAL Ax? = 0.001 & 0.003

e UNCERTAINTIES: DISTRIBUTION OF DEVIA-
TIONS BETWEEN FITTED AND “TRUE” PDFs
SAMPLED AT 20 POINTS BETWEEN 102 AND 1

FIND 0.699% FOR ONE-SIGMA,

0.948% FOR TWO-SIGMA C.L.

NORM. DISTRIBUTION OF DEVIATIONS

LEVEL-2 FITTED 2 VS “TRUE”

Distribution of 2 for experiments
Distribution of single replica fits in level 2 uncertainties

I \ I \
[ [ I -

= E==== Ciosure el ] B I T I L L L L L
o m— TV - 200 Replica distribution 2
C METW2008nlo central % N — .
1.8 — 180 Gaussian distribution [
1.6 — 160 —
14p- = 140 =
e = 2 120/ =
1 - E 100F- =
0.8 80 —
0.6 60 —
0.4 40:_ _:
0.2 20 E
Mg Stag Soﬂmsc%aafg%mﬁ%;ﬁUSHgéﬁfﬁ%%ngﬁgaév VeggrDe 0 Aigg Clag Yoy Tom q; :5

Experiments

Difference to theory (o)



e INCREASE MAXIMUM GA TRAINING LENGTH TO 80K

e INCREASE NN ARCHITECTURE TO 2-20-15-1
NUMBER OF FREE PARAMETRES INCREASE BY MORE THAT 10X

LEVEL-2 STABILITY TESTS

TESTS EFFICIENCY OF CROSS-VALIDATION

e CHANGE PDF PARAMETRIZATION BASIS
OLD: ISOTRIPLET, &« — d, s + S, s — §;
NEW: ISOTRIPLET, SU(3)-OCTET, BOTH TOTAL (¢ + q) & VALENCE (q — )

dx, 3]

30K GENS VS 80K GENS
Central Value

STATISTICAL EQUIVALENCE!

DISTANCES BETWEEN REF. AND NEW FIT.
difference in units of standard deviation of the mean

Y
] Lol =] s w B Dy

2.3 BASIS VS 3.0 BASIS
Central Yalue

RRRAEY

300 vs 37 PARMS
Central Yalue

20 T

RN

"
_____

D6 D7 DB Do



OPTIMIZATION I
MONTECARLO COMPRESSION

Correlations for NNPDF3.0 NLO
Compressed N,.=50 @ @=100 GeV

Correlations for NNPDF3.0 NLO
Prior N, =1000 @ Q=100 GeV

™ = B = a2 =
.-tl

1.0
0.8
0.6
0.4
0.2
0.0
-0.2
-0.4
-0.6
-0.8

-1.0

1.0

0.8
0.6
0.4
0.2
0.0
-0.2
-0.4

-0.6
-0.8

-1.0

(Carrazza, Latorre, Kassabov, Rojo, 2015)

CONSTRUCT A VERY LARGE REPLICA SAMPLE

SELECT (BY GENETIC ALGORITHM) A SUBSET OF REPLICAS WHOSE STATISTICAL
FEATURES ARE AS CLOSE AS POSSIBLE TO THOSE OF THE PRIOR

= FOR ALL PDFS ON A GRID OF POINTS

MINIMIZE DIFFERENCE OF:. FIRST FOUR MOMENTS, CORRELATIONS; OUTPUT OF
KOLMOGOROV-SMIRNOV TEST (NUMBER OF REPLICAS BETWEEN MEAN AND o, 20,

INFINITY)

50 COMPRESSED REPLICA REPRODUCE 1000 REPLICA SET TO PRECENT ACCURACY



OPTIMIZATION I
SMPDF COMPRESSION

e SELECT SUBSET OF THE COVARIANCE MATRIX CORRELATED TO A GIVEN SET OF PROCESSES

e PERFORM SVD ON THE REDUCED COVARIANCE MATRIX, SELECT DOMINANT EIGENVECTOR,
PROJECT OUT ORTHOGONAL SUBSPACE

e [ITERATE UNTIL DESIRED ACCURACY REACHED

® COMPRESSED HESSIAN REPRESENTATION OF PROBABILITY DISTN.

e CAN ADD PROCESSES TO GIVEN SET; CAN COMBINE DIFFERENT OPTIMIZED SETS
e WEB INTERFACE AVAILABLE

w_etmiss_13tev(LO)

1.0
0.5f :
- 0.0 w_etmiss_13tev(LO)
W): 1.06
8- g, NNPDF3.1 NNLO
= 0.0F
_2‘8 S:MPDF:
e %)1_03 ...........................................................................................
~  0.0¢
-0.5 P
-1.0 —
0.5f
= 0.0f L 1.00}
23 :
o3 e
T os| 5 0.97f
-1.0
0.5 2
"o 3
10 *0.94
0.5
@ 0.0 : : :
—0.5L | I I I | I I I L I
1.05 1 2 3 4 5 6 7 8 9 10
T bins

(Carrazza, SF, Kassabov, Rojo, 2016)

e EG ggH, Hbb, W EX'*5 = 11 EIGENVECTORS

e STUDY CORRELATIONS OF PDFS TO DATA AND AMONG THEMSELVES!



ALL IS WELL?
CAN WE DO BETTER?

e ARCHITECTURE: DO WE NEED SEVEN NNS?

e PREPROCESSING: ARE RESULTS TRULY INDEPENDENT OF IT?
e MINIMIZATION: IS THE GA OPTIMIZED?

e STOPPING: OVER/UNDERLEARNING?

UNCERTAINTIES ARE FAITHFUL, BUT
ARE THEY THE SMALLEST WITH GIVEN DATA?

IS THERE NO INFORMATION LOSS?



EXTRAS



MORE EFFICIENT MINIMIZATION?

e LOOK AT s DEPENDENCE (CORRELATED REPLICAS)

e SIGNIFICANT FLUCTUATIONS ABOUT PARABOLIC SHAPE
NOT DUE TO FINITE-SIZE MONTE CARLO SAMPLE

Parabola example for Total (nnfit_index=198)

NLO Second batch

MNLO First batch

Results at NMLO (two batches)
NLO Minimum of two batches

11500 +

11000 +

10500 A

10000 A

9500 A

U.lIDS D.lllﬂ U.1I15 U.lIZD U.ll25 U.lI3D
BATCH MINIMIZATION
e MINIMIZE EACH REPLICA MORE THEN ONCE & KEEP BEST RESULTS

e SIGNIFICANT STABILIZATION



PDF UNCERTAINTIES: HOW MUCH DO THEY VARY?

e COMPUTE PERCENTAGE PDF UNCERTAINTY ON ALL DATA INCLUDED IN GLOBAL FIT
e COMPARE GLOBAL FITS
PERCENTAGE PDF UNCERTAINTY ON PREDICTIONS

(NeY) i ctribv it
Ot distribution

(7)] LI T Ty Tyl LI | LI | LI | LI LI LI LI LI
2 ~ e ——— NNPDF30_nlo_as_0118 7
‘q«:‘J - n Y eeeaaa median NNPDF30_nlo_as_0118
300[— — CTl4nlo ]
R | | median CT14nlo .
— —— MMHT2014nlo68cl ]
250— 1t UM L eeaaaa median MMHT2014nlo68cl —
200 — ]
150 — —
100 — ]
50— —
O e T = & = e L el el et e LY

1 2 3 4 5 6 7 8 9 10

relative error %

e MEDIAN SIMILAR
e DISTRIBUTION VERY DIFFERENT!

e NNPDF: SMALLER MODE, BUT FAT TAIL < GREATER FLEXIBILITY



THE Ay? PROBLEM

e TOLERANCE MIGHT COMPENSATE FOR MISSING FUNCTIONAL UNCERTAINTY
e BUT WHAT IS Ax? FOR AN NNPDF FIT?

e CAN ANSWER USING HESSIAN CONVERSION! Ay? = 16 + 15
— NON-PARABOLIC BEHAVIOUR NEAR MINIMUM ON SCALE OF UNCERTAINTIES?

— INEFFICIENCY OF THE MINIMIZATION PROCEDURE?



CLOSURE-TESTING:
THE PARAMETRIZATION DEPENDENCE

CLOSURE TEST PERFORMED WITH
DATA GENERATED BASED ON MSTO8
FUNCTIONAL FORM

e REFITTED EITHER WITH NNPDF OR
MSTW-CT FUNCTIONAL FORM

. e LEVEL O: VANISHING DATA UNCER-
j‘- TAINTY

GLUON PDF UNCERTAINTY NORMALIZED TO MSTWO08
1“3: T Ty T T 1T Iﬂ ”'l:'

— MSTW-CT: FIT HAS ZERO UN-
CERTAINTY

L? = e | |
i i ] — NNPDF: ABOUT HALF OF TOTAL
UNCERTAINTY

Lt = 3 e LEVEL 1. NOMINAL DATA UNCER-
TAINTY, BUT REPLICAS FITTED W/O
PSEUDODATA

— MSTW-CT: FIT HAS SMALL UN-
CERTAINTY
— : ABOUT 2/3 OF FINAL
UNCERTAINTY
e LEVEL 2
m]z”_ﬁ-]-“__l- ”1["+—3 ]In-ﬂlllc:rll ”]"u*‘-' 10~ 2 ek h R 1 — NNPDEF UNCERTAINTY LARGER

THAN MSTW-CT

. — NNPDF UNCERTAINTY SIMILAR
(C. Mascaretti, 2016) TO MSTW WITH TOLERANCE

1!
'lul:l | |

1= =

“STANDARD” PARAMETRIZATION
MISSES INTERPOLATION &
FUNCTIONAL UNCERTAINTY?



2 ET"I:: . xg /"—\
u - a0
e TO CONVERT HESSIAN INTO MONTECARLO -2 b
GENERATE MULTIGAUSSIAN REPLICAS AE

IN PARAMETER SPACE

e ACCURATE WHEN NUMBER OF REPLICAS -6 r}“‘ ' lﬁ:ﬂ:";ﬁ ::x”c:}
SIMILAR TO THAT WHICH REPRODUCES DATA E? momne o ) dF'
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(Carrazza, SF, Kassabov, Rojo, 2015)

MC < HESSIAN

Generated with APFEL 3.0.0 Web
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(Thorne, Watt, 2012)

e TO CONVERT MONTE CARLO INTO HESSIAN, SAMPLE

THE REPLICAS f;(x) AT A DISCRETE SET OF POINTS &
CONSTRUCT THE ENSUING COVARIANCE MATRIX
e EIGENVECTORS OF THE COVARIANCE MATRIX AS A

BASIS IN THE VECTOR SPACE SPANNED BY THE REPLI-
CAS BY SINGULAR-VALUE DECOMPOSITION

e NUMBER OF DOMINANT EIGENVECTORS SIMILAR TO

NUMBER OF REPLICAS — ACCURATE REPRESENTATION



NONGAUSSIAN BEHAVIOUR

MONTE CARLO COMPARED TO HESSIAN

CMS W + ¢ production

6 CMSWCHARM-WpCb-eta4(NLO) [Bin 5]

Distribution
w

MC900_nnlo
CMC100_nnlo
MCH_nnlo_100

97 08 0.9 1.0 11 12
Ratio to MC900_nnlo

e DEFINE KULLBACK-LEIBLER DIVERGENCE

Dt = [~ Po) 2EE) gy

BETWEEN A PRIOR P AND ITS REPRESEN-

TATION

13 14

e Dy, BETWEEN PRIOR AND HESSIAN

DEPENDS ON DEGREE OF GAUSSIANITY

o Dyxi,
DOES NOT

Dxr(Prior|Compressed)

e DEVIATION FROM GAUSSIANITY E.G. AT
LARGE x DUE TO LARGE UNCERTAINTY +
POSITIVITY BOUNDS
— RELEVANT FOR SEARCHES

e CANNOT BE REPRODUCED IN HESSIAN
FRAMEWORK

e WELL REPRODUCED BY COMPRESSED MC

Kullback-Leibler divergence (all)

» PDF4LHC15_nlo_100
e PDF4LHC15 nlo_mc

10°

1073

107 107
Dy (Prior|Gaussian)

CAN (A) GAUGE WHEN MC IS MORE ADVANTAGEOUS THAN HESSIAN;

(B) ASSESS THE ACCURACY OF COMPRESSION



