Fast Simulation of EM Calo Showers

with Generative Adversarial Networks

Michela Paganini

Ph.D. Student, Yale University

Affiliate, Lawrence Berkeley National Lab

- @mickypaganini
- <u>michela.paganini@yale.edu</u>

mickypaganini.github.io

with Luke de Oliveira and Ben Nachman

Traditional **Physics Simulators**

À NON KA

Our Solution: CaloGAN

Performance **Evaluation**

What's the issue?

Run: 191426 Event: 86694500 2011-10-22 17:30:29 CEST

Full simulation with Geant 4 is compute intensive!

O

 $(\bigcirc$

40

able to model complex physical processes and detector geometries

170 computing centers in 42 countries. Tier 0 @CERN (20% WLCG):

- 65k processor cores
- 30PB disk + >35PB tape ullet

Slowest part: simulating EM particles in calorimeters

- ~80% of full simulation time spent in calorimetry
- ~75% of full simulation time spent simulating electromagnetic particles

Eur. Phys. J. C (2010) 70: 823-874 DOI 10.1140/epjc/s10052-010-1429-9

Special Article - Tools for Experiment and Theory

The ATLAS Collaboration*,**

Impossible to get required simulated statistics for many physics studies without faster simulation!

> Fast simulation programs developed to complement the GEANT4 simulation —> still not good enough

> > THE EUROPEAN PHYSICAL JOURNAL C

The ATLAS Simulation Infrastructure

How can machine learning help?

GANs for HEP

HIGHER SCHOOL OF ECONOMICS NATIONAL RESEARCH UNIVERSITY

UC San Diego

ERS

Ap

UNIVERSITY OF TEXAS ARLINGTON

Generative Adversarial Networks

- 2-player game between generator and discriminator
- ▷ Latent prior $z \sim p_z(z), z \in Z$ mapped to sample space $G : Z \longrightarrow X$
- $\begin{tabular}{ll} \hline G(\cdot;\theta_G) & \mbox{implicitly defines a distribution} \\ p_{\rm model}(x;\theta_G) \end{tabular} \end{tabular} \end{tabular}$
- \supseteq Discriminator $D(\cdot; \theta_D)$ tells how fake or real a sample looks via a score $D: \mathcal{X} \longrightarrow \mathbb{R}$

Shower Images

- More realistic scenario. ullet
- EM calorimeter drawing inspiration • from the ATLAS geometry.
- Built with GEANT4. ullet

- Heterogeneous longitudinal ulletsegmentation into 3 layers.
- Irregular granularity in eta and phi. ullet
- Sequence of alternating lead and • liquid argon sublayers.

Shower Images

- More realistic scenario.
- EM calorimeter drawing inspiration from the ATLAS geometry.
- Built with GEANT4.

Simulated showers of *e*⁺, *pi*⁺ and *y* with uniform energy in [1, 100] GeV

- Heterogeneous longitudinal segmentation into
- Irregular granularity
- Sequence of alternating lead and liquid argo

Shower Images

- More realistic scenario.
- EM calorimeter drawing inspiration from the ATLAS geometry.
- Built with GEANT4.

Simulated showers of *e*⁺, *pi*⁺ and y with a uniform energy in [1, 100] GeV

- Heterogeneous longitudinal segmentation into
- Irregular granularity
- Sequence of alternating lead and liquid argo

Unique Dataset Characteristics

- High dynamic range
- Sparsity
- Inhomogeneous 3D image with spatial-temporal dependence
- Conditional generation on physical attributes

training dataset generated with GEANT4

CaloGAN GENERATOR

Condition and build operations to reproduce physics

CaloGAN DISCRIMINATOR

Enforce constraints and encode laws of nature

Does it work?

Generator Performance

Average generated image from GEANT (top) and our model (bottom)

Qualitative Results

GEANT4 1st layer deposition

CaloGAN 1st layer deposition

GEANT4 2nd layer deposition

CaloGAN 2nd layer deposition

GEANT4 3rd layer deposition

CaloGAN 3rd layer deposition

Conditioning on Attributes

Ten positrons generated from fixed latent prior while varying energy

Verification with Domain Knowledge

Comparison of physics-driven 1D marginals, for CaloGAN and GEANT4 Showers

 10°

10-1

 10^{-2}

 10^{-3}

Computational Speedup

Generation Method	Hardware	Batch Size	milliseconds/shower
Geant4	CPU	N/A	1772
CaloGAN	CPU	1	13.1
		10	5.11
		128	2.19
		1024	2.03
	GPU	1	14.5
		4	3.68
		128	0.021
		512	0.014
		1024	0.012

Total time (ms) required to generate a single shower under various algorithm-hardware combinations

CPU: Intel® Xeon® Processor E5-2697A v4

GPU: NVIDIA K80 on AWS (p2.8xlarge instance)

REPRODUCE THIS!

Papers / Preprints	arXiv:1705.02355, 1711.0881
Data	
Code	github.com/hep-lbdl

- Interest from various scientific disciplines
- Simulation as common pain point
- Try it on your own data!

3, 1712.10321

DELEY DATA

/CaloGAN

Why this matters

- disciplines (medicine, weather, nuclear)
- feedback loop for pure ML research

 GANs provide a viable strategy for speeding up numerically intensive simulation - extends to other

Basic science provides theory-driven success metrics

Image from <u>blogs.nvidia.com</u> \bigcirc \bigcirc + + + THANK YOU!

Backup

Tricks for training GANs

Batch Normalization:

Mini-batch Discrimination:

helps reduce mode collapse

LAGAN for Jet Images

see <u>my IML talk</u>

see <u>Ben's talk</u>

arXiv:1701.05927

- Modification of <u>DCGAN</u> and <u>ACGAN</u>
 - Ad-hoc design to fit Physics data:
 - sparsity 0
 - high dynamic range 0
 - highly location-dependent features 0

Options for LAGAN Layers

Convolutional Layer (weight sharing)

Locally-Connected Layer

ATLAS Calorimeter

Shower Shape Variable	Formula	Notes
E_i	$E_i = \sum_{\text{pixels}} \mathcal{I}_i$	Energy deposited in the i^{th} layer of calorimeter
$E_{ m tot}$	$E_{\rm tot} = \sum_{i=0}^{2} E_i$	Total energy deposited in the electromagnetic calorimeter
f_i	$f_i = E_i/E_{ m tot}$	Fraction of measured energy deposited in the i^{th} layer of calorimeter
$E_{\mathrm{ratio},i}$	$\frac{\mathcal{I}_{i,(1)} - \mathcal{I}_{i,(2)}}{\mathcal{I}_{i,(1)} + \mathcal{I}_{i,(2)}}$	Difference in energy between the highest and second high- est energy deposit in the cells of the i^{th} layer, divided by the sum
d	$d=\max\{i:\max(\mathcal{I}_i)>0\}$	Deepest calorimeter layer that registers non-zero en- ergy
Depth-weighted total energy, l_d	$l_d = \sum_{i=0}^2 i \cdot \mathcal{I}_i$	The sum of the energy per layer, weighted by layer num- ber.
Shower Depth, s_d	$s_d = l_d/E_{ m tot}$	The energy-weighted depth in units of layer number.
Shower Depth Width, σ_{s_d}	$\sigma_{s_d} = \sqrt{\frac{\sum\limits_{i=0}^{2} i^2 \cdot \mathcal{I}_i}{E_{\text{tot}}} - \left(\frac{\sum\limits_{i=0}^{2} i \cdot \mathcal{I}_i}{E_{\text{tot}}}\right)^2}$	The standard deviation of s_d in units of layer number.
$i^{\rm th}$ Layer Lateral Width, σ_i	$\sigma_i = \sqrt{\frac{\mathcal{I}_i \odot H^2}{E_i} - \left(\frac{\mathcal{I}_i \odot H}{E_i}\right)^2}$	The standard deviation of the transverse energy pro- file per layer, in units of cell numbers.