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• Adaptive Vertex Reconstruction (AVR): 
applied on tracks associated to the jet 

• Inclusive Vertex Fitter (IVF): on the full 
set of tracks recorded in the event (SV 
DR-matched to jet).  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From features to taggers: different approaches
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• CSVv2: three shallow NNs, depending on the vertex information, 
combined with a likelihood method


• cMVAv2: meta-tagger that combines the outputs of CSVv2 and 
other simpler taggers in a single BDT discriminator


• C-tagger: set of two BDT classifiers to identify charm jets


• DeepCSV: deep DNN that retains the simplicity of CSV, with a 
different ML approach

The four main CMS taggers
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5.1 The b jet identification 23

In this figure, the tagging efficiency is integrated over the pT and h distributions of the jets
in the tt sample. The tagging efficiency is also shown for the Run 1 version of the CSV algo-
rithm. It should be noted that the CSV algorithm was trained on simulated multijet events at
centre-of-mass energy of 7 TeV using anti-kT jets clustered with a distance parameter R = 0.5.
Therefore, the comparison is not completely fair. The performance improvement expected from
a retraining is typically of the order of 1%. The absolute improvement in the b jet identification
efficiency for the CSVv2 (AVR) algorithm with respect to the CSV algorithm is of the order of
2–4% when the comparison is made at the same misidentification probability value for light-
flavour jets. An additional improvement of the order of 1–2% is seen when using IVF vertices
instead of AVR vertices in the CSVv2 algorithm. The cMVAv2 tagger performs around 3–4%
better than the CSVv2 algorithm for the same misidentification probability for light-flavour
jets. The DeepCSV P(b) + P(bb) tagger outperforms all the other b jet identification algo-
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Figure 16: Misidentification probability for c and light-flavour jets versus b jet identification
efficiency for various b tagging algorithms applied to jets in tt events.

rithms, when discriminating against c jets or light-flavour jets, except for b jet identification
efficiencies above 70% where the cMVAv2 tagger performs better when discriminating against
light-flavour jets. The absolute b identification efficiency improves by about 4% with respect to
the CSVv2 algorithm for a misidentification probability for light-flavour jets of 1%. Three stan-
dard working points are defined for each b tagging algorithm using jets with pT > 30 GeV in
simulated multijet events with 80 < p̂T < 120 GeV. The average jet pT in this sample of events
is about 75 GeV. These working points, “loose” (L), “medium” (M), and “tight” (T), correspond
to thresholds on the discriminator after which the misidentification probability is around 10%,
1%, and 0.1%, respectively, for light-flavour jets. The efficiency for correctly identifying b jets in
simulated tt events for each of the three working points of the various taggers is summarized
in Table 2.

The tagging efficiency depends on the jet pT, h, and the number of pileup interactions in the
event. This dependency is illustrated for the DeepCSV P(b) + P(bb) tagger in Fig. 17 using

http://cds.cern.ch/record/2243476/files/DP2017_002.pdf
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Figure 53: Comparison of the data-to-simulation scale factors derived with various methods
and their combination, for b (left) and c (right) jets. The scale factors measured with the differ-
ent methods agree within their uncertainties. For the left panels, the combination includes all
measurements with the exception of the IterativeFit and the TagCount methods.
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5.2 The c jet identification 29

Table 3: Efficiency for the working points of the c tagger and corresponding efficiency for the
different jet flavours obtained using jets with pT > 20 GeV in simulated tt events. The num-
bers quoted are for illustrative purposes since the efficiency is integrated over the pT and h
distributions of the jets.

Working point #c (%) #b (%) #udsg (%)
c tagger L 88 36 91
c tagger M 40 17 19
c tagger T 19 20 1.2

CvsL discriminator
1− 0.8− 0.6− 0.4− 0.2− 0 0.2 0.4 0.6 0.8 1

C
vs

B 
di

sc
rim

in
at

or

1−

0.5−

0

0.5

1

1.5

2

b jets c jets udsg jets
ML T

CMS
Simulation

 + jetstt
 > 20 GeV

T
p

13 TeV, 2016c tagger  

b jet misid. probability
2−10 1−10 1

ud
sg

 je
t m

is
id

. p
ro

ba
bi

lit
y

2−10

1−10

1

charm efficiency contours

 = 0.2 c∈  = 0.6 c∈

 = 0.3 c∈  = 0.7 c∈

 = 0.4 c∈  = 0.8 c∈

 = 0.5 c∈  = 0.9 c∈

CMS
Simulation
 + jetstt
 > 20 GeV

T
 p

13 TeV, 2016c tagger

L

M

T

Figure 19: Correlation between CvsL and CvsB taggers for the various jet flavours (left), and
misidentification probability for light-flavour jets versus misidentification probability for b jets
for various constant c jet efficiencies (right) in tt events. The L, M, and T working points dis-
cussed in the text are indicated by the dashed lines (left) or arrows (right). The discontinuity
in the curves corresponding to c tagging efficiencies between 0.4 and 0.7 are due to the spike in
the CvsL distribution of Figure 18.

CSVv2 b tagging algorithms. In the right panel of this figure, the transition in the performance
of the curve for a c jet identification efficiency around 0.4 is due to the largest spike in the CvsL
discriminator distribution. The performance of the CvsB tagger is similar to the performance
of both b taggers, except at small b jet misidentification probabilities where the CvsB tagger is
performing slightly worse than the cMVAv2 tagger. The CvsL tagger outperforms the cMVAv2
and CSVv2 tagger for small light-flavour jet misidentification probabilities. The DeepCSV tag-
ger described in Section 5.1.2.2 is outperforming the dedicated c tagger. For the discrimination
between c and b jets, the DeepCSV probabilities corresponding to the five flavour categories
defined in Section 5.1.2.2, are combined in the following way:

DeepCSV CvsB =
P(c) + P(cc)
1 � P(udsg)

, (4)

where the numerator corresponds to the probability to identify c jets and the denominator to
the probability to identify b or c jets. Similarly, for the discrimination between c and light-
flavour jets, the discriminator is constructed:

DeepCSV CvsL =
P(c) + P(cc)

1 � (P(b) + P(bb))
, (5)

with the numerator giving the probability to identify c jets and the denominator the probability
to identify light-flavour or c jets. The comparison with the DeepCSV algorithm used for c

Charm tagging
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B components
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Figure 19: Correlation between CvsL and CvsB taggers for the various jet flavours (left), and
misidentification probability for light-flavour jets versus misidentification probability for b jets
for various constant c jet efficiencies (right) in tt events. The L, M, and T working points dis-
cussed in the text are indicated by the dashed lines (left) or arrows (right). The discontinuity
in the curves corresponding to c tagging efficiencies between 0.4 and 0.7 are due to the spike in
the CvsL distribution of Figure 18.

CSVv2 b tagging algorithms. In the right panel of this figure, the transition in the performance
of the curve for a c jet identification efficiency around 0.4 is due to the largest spike in the CvsL
discriminator distribution. The performance of the CvsB tagger is similar to the performance
of both b taggers, except at small b jet misidentification probabilities where the CvsB tagger is
performing slightly worse than the cMVAv2 tagger. The CvsL tagger outperforms the cMVAv2
and CSVv2 tagger for small light-flavour jet misidentification probabilities. The DeepCSV tag-
ger described in Section 5.1.2.2 is outperforming the dedicated c tagger. For the discrimination
between c and b jets, the DeepCSV probabilities corresponding to the five flavour categories
defined in Section 5.1.2.2, are combined in the following way:

DeepCSV CvsB =
P(c) + P(cc)
1 � P(udsg)

, (4)

where the numerator corresponds to the probability to identify c jets and the denominator to
the probability to identify b or c jets. Similarly, for the discrimination between c and light-
flavour jets, the discriminator is constructed:

DeepCSV CvsL =
P(c) + P(cc)

1 � (P(b) + P(bb))
, (5)

with the numerator giving the probability to identify c jets and the denominator the probability
to identify light-flavour or c jets. The comparison with the DeepCSV algorithm used for c
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Heavy flavor jets with DNN — DeepCSV

ROC for c vs b

4

Performance of the c jet identification efficiency algorithms demonstrating the 
probability for b jets to be misidentified as c jet as a function of the efficiency to correctly 
identify c jets. The curves are obtained on simulated ttbar events using jets within 
tracker acceptance with pT>30 GeV , b jets from gluon splitting to a pair of b quarks are 
considered as b jets. The lines shown are for CSVv2, DeepCSV CvsB, c-tagger CvsB
and cMVAv2. cMVAv2 and the c-tagger use also the information from the soft leptons 
inside jets, while CSVv2, DeepCSV do not.

ROC c vs. light

5

Performance of the c jet identification efficiency algorithms demonstrating the probability for 
light jets to be misidentified as c jet as a function of the efficiency to correctly identify c jets. 
The curves are obtained on simulated ttbar events using jets within tracker acceptance with 
pT>30 GeV , b jets from gluon splitting to a pair of b quarks are considered as b jets. The 
lines shown are for CSVv2, DeepCSV CvsL, c-tagger CvsL and cMVAv2. cMVAv2 and the c-
tagger use also the information from the soft leptons inside jets, while CSVv2, DeepCSV do 
not. The irregularity observed in the ROC curve of the c-tagger is caused by a sharp feature 
in the discriminator distribution due to jets without any selected tracks.
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Trying more complex architectures
•Convolutional NN successfully applied in neutrino physics and image recognition
•Some proposals to treat jets as images

… but
•Jets do not look like normal images!
•CMS events are way more complex and bring more information than a flat image 

(e.g. tracking information)
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nothing like a 
‘natural’ image!

Boosted W

the Jet Image
J. Cogan et al. JHEP 02 (2015) 118

Credit: Peter G Trimming (Wikipedia)

no smooth edges, clear features, low 
occupancy (number of hit pixels)

L. de Oliveira, et al., Comp. and Software for Big Science (2017) 1

CMS is a complex detector

• Translation: Jet-images are translated such that the leading pT subjet is located at (η, φ) = (0, 0).
Note that translations in φ are effectively rotations around the detector z-axis, while translations in
η are Lorentz boosts along the z-axis. As such, translations in η can alter the mass of a jet-image if
the pixel energies are kept fixed. However, the transverse energy is invariant to such η translations,
and thus is used for the pixel intensities.

• Rotation: Jets are rotated such that the second leading pT subjet is aligned along the vertical axis of
the jet-image. If the jet has only one subjet, the first principle component of the energy distribution
in (η, φ) is rotated to align with the vertical axis of the jet-image.

• Parity Flip: After rotation, images are flipped over the vertical axis such that the right side of the
image has a higher energy than the left. This helps to standardize the location of additional radiation
in the jet-image.

After pre-processing, the leading subjet within the jet-image is located at the center of the image, and
the second subjet (if it exists) is aligned along the vertical axis of the image. In facial recognition
tasks, this is equivalent to aligning the eyes within an image of a face. With such a standardized
jet-image representation, the machine learning algorithms do not need to learn about the symmetries
in the jet-image, thus allowing the learning to focus more effectively on discrimination. The effect of
the pre-processing on a collection of W jets can be found in Figure 1.
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Figure 1. The average jet-image for W jets before (left) and after (right) pre-processing. The average is taken
over jet-images with 240 GeV/c < pT < 260 GeV/c and 65 GeV/c2 < m < 95 GeV/c2.

4 Deep learning architectures and training

Discrimination between W and quark/gluon jet-images is performed using deep neural networks
(DNN), which have been found to outperform competing algorithms in computer vision tasks sim-
ilar to jet tagging with jet-images. DNNs have been found to learn rich high-level representations
from raw (pixel-level) image data [5– 7]. We make use of the power of such networks by training
them on jet-images, with the pixel level information as input. We focus our attention here on two

    
  

DOI: 10.1051/,127 1270000EPJ Web of Conferences epjconf/20160000  (2016)
201Connecting The Dots 6

9 9

3

• Convolutional networks propose for jet images* and 
shown to work for some problems

• In general the CMS detector is more complex, e.g. not 
translational invariant

CMS not “image” like, 2D CNN less easy to use
18
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Particle-based NN architecture
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Particle-based NN architecture
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Particle-based NN architecture
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Figure 3: Performance of the b jet identification algorithms demonstrating the probability 
for non-b jets to be misidentified as b jet, as a function of the efficiency to correctly 
identify b jets. The curves are obtained on simulated ttbar events using jets within 
abs(η)<2.4 and with pT>30 GeV. The b jets from gluon splitting to a pair of b quarks are 
considered as b jets. The lines shown are for DeepCSV (retrained for the Phase 1 
detector geometry), NoConv, and DeepFlavour. The NoConv algorithm serves only for 
comparison. The absolute performance in this figure serves as an illustration since the b 
jet identification efficiency depends on the pT and η distribution of the jets in the topology 
as well as the amount of b jets from gluon splitting in the sample.

5

Figure 5: Performance of the DeepCSV (retrained for the Phase 1 detector geometry) 
and DeepFlavour b jet identification algorithms demonstrating the probability for non-
b jets to be misidentified as b jet ,as a function of the efficiency to correctly identify b 
jets. The curves are obtained on simulated QCD multijet events using jets within 
abs(η)<2.4 and with 300 GeV < pT < 600 GeV. The b jets from gluon splitting to a pair 
of b quarks are considered as b jets. The absolute performance in this figure serves 
as an illustration since the b jet identification efficiency depends on the pT and η 
distribution of the jets in the topology as well as the amount of b jets from gluon 
splitting in the sample.

7
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jet identification efficiency depends on the pT and η distribution of the jets in the topology 
as well as the amount of b jets from gluon splitting in the sample.
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Figure 5: Performance of the DeepCSV (retrained for the Phase 1 detector geometry) 
and DeepFlavour b jet identification algorithms demonstrating the probability for non-
b jets to be misidentified as b jet ,as a function of the efficiency to correctly identify b 
jets. The curves are obtained on simulated QCD multijet events using jets within 
abs(η)<2.4 and with 300 GeV < pT < 600 GeV. The b jets from gluon splitting to a pair 
of b quarks are considered as b jets. The absolute performance in this figure serves 
as an illustration since the b jet identification efficiency depends on the pT and η 
distribution of the jets in the topology as well as the amount of b jets from gluon 
splitting in the sample.

7

M. Verzetti (CERN and FWO)
CMS-DP-2017-013

https://cds.cern.ch/record/2263802?ln=it
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Particle-based NN architecture

Charged (16 features) x25

Secondary Vtx (17 features) x4

Global variables (6 features)
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Performance of the DeepJet multi classification algorithm, the recurrent and the convolutional 
approach, demonstrating the probability for gluon jets to be misidentified as a light quark (uds) jet, 
as a function of the efficiency to correctly identify light quark jets. The curves are obtained on 
simulated QCD events with p̂T between 30 and 50 GeV and using jets with a pT above 30 GeV. 
The absolute performance in this figure serves as an illustration since the light quark jet 
identification efficiency depends on the pT and η distribution of the jets, the event topology, the 
flavour composition of the sample, and the generator used. All curves are obtained using Pythia8. 
Jets that originate from a gluon splitting to cc or bb quarks are not considered gluon jets.

!14

Similar performance to simpler, 
dedicated binary taggers, but with full 
multi-class power.

Significantly better performances in 
given regions with different quark 
composition

M. Verzetti (CERN and FWO)
CMS-DP-2017-027

https://cds.cern.ch/record/2275226?ln=it


Boosted objects AK8



Boosted tagging @ CMS

subjets fatjet double-b

τ-axis1

τ-axis2FatJet: CSVv2 w/o retraining. 
Custom (relaxed) track and SV 
association directly on anti-kT 0.8
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Boosted tagging @ CMS

subjets fatjet double-b

τ-axis1

τ-axis2

subjets fatjet double-b

τ-axis1

τ-axis2

FatJet: CSVv2 w/o retraining. 
Custom (relaxed) track and SV 
association directly on anti-kT 0.8

Sub-jet: CSVv2 w/o retraining 
applied to sub-jets (soft drop, 
pruned, etc…)
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Boosted tagging @ CMS

subjets fatjet double-b

τ-axis1

τ-axis2

subjets fatjet double-b

τ-axis1

τ-axis2

subjets fatjet double-b

τ-axis1

τ-axis2

FatJet: CSVv2 w/o retraining. 
Custom (relaxed) track and SV 
association directly on anti-kT 0.8

Sub-jet: CSVv2 w/o retraining 
applied to sub-jets (soft drop, 
pruned, etc…). Used for boosted top

Double b: dedicated training 
targeting boosted resonances X→bb

28 M. Verzetti (CERN and FWO)



Double-b tagger

subjets fatjet double-b

τ-axis1

τ-axis2

29

• All input features ~duplicated to 
account for the two sub-jet axes


• The input features are checked to be 
~independent from the jet pT and mass 
to ease background estimation in the 
analyses


• A total of 27 input features combined in 
a BDT

M. Verzetti (CERN and FWO)



Boosted tagging @ CMS
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BTV-13-001

https://cds.cern.ch/record/1581306?ln=it


• Significantly larger amount of candidates used to accomodate for 
90% of the fat jets


• Need to learn substructure from both charged and neutral 
candidates


• RNNs become computationally too expensive to train

• Use particle-level convolutional layers (P-CNN) where each 

feature is treated as a “colour”

DeepJet for boosted resonances

31

Inclusive particles x100  
10 features, pT ordered

Secondary Vtx x5
14 features,  

displacement ordered

Dense
521 nodes x1 Output

Charged particles x60
30 features, sIP ordered

P-CNN layers x14

P-CNN layers x14

P-CNN layers x14

Sub-structure

{Flavour

M. Verzetti (CERN and FWO)



{ { {

particles (sorted)

features

zam = SaSj kaa,j xa,(m+j-1)

P-CNNs



{ { {

particles (sorted)

features

zam = SaSj kaa,j xa,(m+j-1)

P-CNNs

Loop over contiguous elements of 
the kernelSweep over the elements



{ { {

particles (sorted)

features

P-CNNs

Multiple features (“colours”) are 
accounted computing the 
transformation

zam = SaSj kaa,j xa,(m+j-1)



{ { {

particles (sorted)

features

P-CNNs

zam = SaSj kaa,j xa,(m+j-1)

Different filters/kernels learn 
different transformations



• Flavour information largely 
improves jet tagging


• Large improvement w.r.t to 
the BDT approach


• Introduces mass sculpting, 
not necessarily a bad thing

Performance

36

Figure 1. Comparison of the performance of the two BDT taggers and the two particle-based 
CNN taggers in terms of ROC curves in MC simulated events for top jets as signal and QCD jets 
as background. The events correspond to AK8 jets with 1000<pT<1400 GeV and |η|<1.5. 

5

M. Verzetti (CERN and FWO)

CMS-DP-2017-049

https://cds.cern.ch/record/2295725?ln=it


From training to 
practice



Training / Analysis: 

• Keras + TensorFlow

• Python-based

• Private productions

• Minimal interaction with ROOT

• Few processes, single threads

• Little memory constraints

• Expendable jobs

Two worlds colliding

38

Production: 

• Custom framework

• C++ based (speed!)

• Mostly ROOT-centric (at least 

I/O)

• Many processes, multiple 

threads

• Many other concurrent 

activities → memory 
constraints


• Processes cannot die (e.g. 
trigger)+

M. Verzetti (CERN and FWO)



Integration of DeepJet (AK4) into CMSSW. PR #19893 

39 M. Verzetti (CERN and FWO)



Integration of DeepJet (AK4) into CMSSW. PR #19893 

40 M. Verzetti (CERN and FWO)



x Interface based on TF python API:

• Uses python C API and a pre-built TF package

• Large overhead and no handle on memory/threading


x Interface based on TF C API:

• Low level and not very convenient

• Lots of customisations and ad-hoc handling needed


✓Interface based on TF C++ API:

• Access to all the needed internals for production usage with minimal 

need for custom code

• Shallow interface to connect TF to the CMSSW internals (e.g. logging)

Backend choice

41 M. Verzetti (CERN and FWO)

https://gitlab.cern.ch/mrieger/CMSSW-DNN/tree/80X
https://gitlab.cern.ch/mrieger/CMSSW-DNN/tree/c_api
https://github.com/cms-sw/cmssw/tree/master/PhysicsTools/TensorFlow


• TF starts lots of threads in its own thread pool to:

• Faster loading of data

• Parallelism between operations (inter_op_parallelism_threads)

• Parallelism within operations (intra_op_parallelism_threads)


• Normally a good thing, has a critical impact on memory consumption in 
HEP frameworks, which have their own thread schemes/pools (CMSSW 
uses TBB)


• Solved with the implementation of two custom sessions:

• Without any threading (NTSession)

• Sharing the thread pool with the rest of the framework (TBBSession)

Issue 1: Multithreading

42

Marcel Rieger - 28.2.18
5 Multi-threading in TF

● Upon session startup, TensorFlow starts lots of threads


■ Reserved by dedicated thread pool for

҆ Queued data loading

҆ Parallelization between operations (inter_op_parallelism_threads)

҆ Parallelization within operations (intra_op_parallelism_threads)


■ Overhead acceptable for end-user, but experiment software typically implements    
its own threading model (e.g. via Intel’s Thread Building Blocks, TBB)


→ Critical impact on memory consumption, esp. in parallel production jobs

→ 2

→ 10

Similar behavior

in C/C++ API

M. Verzetti (CERN and FWO)

https://github.com/cms-sw/cmssw/blob/master/PhysicsTools/TensorFlow/src/NTSession.h
https://github.com/cms-sw/cmssw/blob/master/PhysicsTools/TensorFlow/src/TBBSession.h


• Initially DeepJet graph was large (~150MB)

• Not feasible for production operations

• Weights stored as Variables, which need more memory then 

Constants

• By default Keras stores a lot of ancillary information on top of 

the model (operations and tensors used for training, optimiser 
status etc.)


• Reduction of O(10-100) by removing things not needed for 
inference and converting to constants


• Further reduction: one single computation graph loaded and 
shared across threads, multiple sessions computing inference


• In the future: AOT compilation?

Issue 2: Memory footprint

43 M. Verzetti (CERN and FWO)



• Jet tagging is of paramount importance for the CMS Physics 
program


• Lots of development in the last ~1.5 years to apply modern 
machine learning techniques to this field

• Large improvements in performance

• Still some room for new developments, especially in the 

boosted regime


• Flavour tagging is not only fancy algorithms, but solid and 
performing computing infrastructures as well

Summary

44 M. Verzetti (CERN and FWO)


