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Outline

ATLAS

O qg/g tagging is an important topic for VBF A?é
analyses g | (s=8TeVv :
£ L. =20.3 +
O Conventional g/g tagging uses high level 20

quantities of jets such as track multiplicity,
jet width, etc.

m Quark Jets (Data)
¢ Gluon Jets (Data) ]
O Quark Jets (Pythia 8 AU2)

O Gluon Jets (Paythia 8 AU2) |
— Quark Jets N'LO pQCD

O We investigate the possibility of a different

representation of detector data, i.e. jet — Gluon Jets N°LO pQCD
image, and seek to apply computer vision 0200 1000 1500
techniques for g/g tagging Jetp_[GeV]
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Jet Image

O Represent jets as images; Treat calorimeter cells
as pixel

JHEP 02 (2015) 118
JHEP 07 (2016) 069
arXiv 1612.01551

O Direct use of computer vision techniques

O All constituents (truth particle/ track/ topo clusters/
tower) in jets are boosted and rotated such that
n(jet) = 0 and ®(jet) =0

O Crop jet constituents into 16x16 grid (Anx A® =
0.05x0.05);

O The intensity of a pixel is the sum of prt of the
constituents in that pixel

O Eachimage normalized suchthat),;, I =1

201845 (e (e



https://link.springer.com/article/10.1007/JHEP02(2015)118
https://link.springer.com/article/10.1007/JHEP07(2016)069
https://arxiv.org/abs/1612.01551
https://arxiv.org/abs/1612.01551

Jet Image Example
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Topocluster

images

Tower
images
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Convolution Layer
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https://papers.nips.cc/paper/4824-imagenet-classification-with-deep-convolutional-neural-networks.pdf
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lllustration of CNN g/g tagger Detailed breakdown of the network structure

Once jet images are formed we apply convolutional neural network (CNN) for tagging

The image can have multiple “colors” (channel), e.g. we can simultaneously feed the
network with track+tower images

The training of the network utilizes NVidia Tesla K80 GPU with 224000 jets as training
sample and 56000 jet images as testing sample

The network is trained with 50 epochs with ~80s/ epoch

201845 [ e



Gluon Jet Rejection
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Quark Jet Efficiency Quark Jet Efficiency
O Gluon jet rejection as a function of the quark jet efficiency using physics motivated observables and

jet image discriminants for jets with 150<pT<200 GeV (left) and 400<pT<500 GeV (right)
The LLH is a tagger constructed from the optimal (likelihood) combination of N(track) and jet width

The CNN tagger outperforms jet width and track multiplicity and is better or comparable to the
combination of them
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CNN: Inputs

c [ | [ | T | | | [ | | [ [ | | T | | | | L | |
kel o
*8' ATLAS Simulation Preliminary *8' ATLAS Simulation Preliminary
D 10.0— Vs =13 Tev 1 @ 100k Vs =13 Tev |
o ’ N Anti-k, EM+JES R=0.4 B (A ) N ~ Anti-k, EM+JES R=0.4 ]
© — - [n|<2.1, 150 GeV <pr <200 GeV - © = - s n|<2.1, 400 GeV <pr <500 GeV
) B e s . ) B e n ts .
c - "= - c - Te~ -
o ) N
= i 1 =2 i
G i 1 O i
—=——CNN Truth Particles - = CNN Truth Particle
= CNN Topo Clusters = CNN Topo Clusters
- CNN EM Towers - CNN EM Towers
= =+ CNN Topo Clusters + Tracks = =+ CNN Topo Clusters + Tracks
1 0 = = CNN EM Towers + Tracks 1 0 | = = CNN EM Towers + Tracks
Ve e by v e b by Py g Ve b b v b g
0.4 0.5 0.6 0.7 0.8 0.9 1.0 0.4 0.5 0.6 0.7 0.8 0.9 1.0
Quark Jet Efficiency Quark Jet Efficiency

O Gluon jet rejection as a function of the quark jet efficiency using the CNN tagger with
different inputs for jets 150<pt<200 GeV (a) and 400<p1<500 GeV (b).

O Best discriminating CNN is built with using 2-channel image combining towers and

tracks. In general CNN with using tower as inputs has more discriminative power than
topo clusters.
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CNN: Truth Comparison
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O Comparison between using track images and truth charge particle images as input

O As might be expected, due to the precise measurement of charged-particle
trajectories, there is little difference between the particle- and detector-levels.
Degradation due to efficiency and resolution effects are only expected at much
lower and higher transverse momenta
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CNN: n Dependence

C 1T 1771 T 1T T T 1T T1T1 | T 171 | 1T T 1 ‘ T T 1

O

© ATLAS Simulation Preliminary|

ko)

o 10.0— Vs =13 TeV _

o B K. - Anti-k, EM+JES R=0.4 7

@ - X Inl<2.1, 150 GeV <pr <200 GeV |

- — §:§- -

cC — .§'.\ 1

(@) N

= — 1§_ ]

— ‘\Q'

o - '.{: —
~.

.k:

~
~3

=&+ CNN EM Towers + Tracks, |n|<1.2
| =5 CNN EM Towers + Tracks, 1.2<\n|<2.1 ]

1'O\III|IIII|IIIIII\I|IIII‘II\I
0.4 0.5 0.6 0.7 0.8 0.9 1.0

Quark Jet Efficiency

O Comparison between different |n| ranges. The full || range (|n| < 2.1) is used for
training

O Similar performance is achieved when testing the tagger on jets that are

predominately in the barrel (|n| < 1.2) to those that are in the transition region
between the barrel and endcap calorimeters (1.2 < |n| < 2.1)
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O Comparison the tagger performance in two different regimes of the average
number of collisions per bunch crossing () regimes corresponding to the out-of-
time pileup representative of LHC Run 2 conditions

O The distributions of the pixel intensities do vary with pileup, but the performance of
the CNN tagger is found to be robust
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O The radiation pattern inside gluon jets is similar between the Pythia
and Herwig, whereas there are larger differences for quark jets

O For Herwig, the quark jets and gluon jets look more similar
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Gluon Jet Rejection
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O When generators produce different images, the CNN returns a different performance
when training and testing with images from various simulators

O However, if the same network is used for testing and only the training sample is
varied, the gap in performance is mostly removed

O One explanation is that the network is learning robust features for quark versus gluon
tagging, but the degree to which the features are expressed in the radiation patterns

varies between generators
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CNN: Visualization
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O Per-pixel correlation with CNN tagger output
O The pixel intensity in the image core and the CNN score are highly

correlated and thus important for quark-tagging. The outer pixels and
CNN score are anti-correlated and thus important for gluon-tagging
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convolutional layer are considered

O The conv filters extract the raw features of the images; Circular blobs wraps
around the center

O Some filters are rotational copies of each other, indicating the network

learned rotational invariance.
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Conclusion

Jet image is a novel representation of detector data

Computer vision techniques can be applied to directly for
classification problems

We present the first results of CNN application in g/g tagging
at ATLAS detector

CNN qg/g tagger yields better (or comparable) performance
as taggers combining high level jet quantities

CNN qg/g tagger is robust against n and pile-up variations

CNN qg/g tagger learns features of jets which are consistent
with our physics intuition




