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Supervised Learning Unsupervised Learning
• Classification 
• Numerical Predictions 
• etc

• Clustering 
• Anomaly Detection 
• GAN 
• etc

Labeled 
data

Unlabeled 
data

Hybrid?

• Learning from label proportions 
• Classification without labels

Weak supervision
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Outline

Multi-variate 
analyzer

ACME

• What is weak supervision? 
• How can it work? 
• Is it robust?

1. Introduction / Toy model

2. LHC Scenario
• Higher input dimension 
• Application to unseen data 
• Affects of mis-modeling  
• Combination of Full and Weak
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In CS lit, mixed training sets are called “bags” and method is 
Learning from Label Proportions (LLP), see e.g. Dietterich, Lathrop, 

Lozano-Prez [1997]; Amores [2013]; Yu et. al. [arXiv:1402.5902] 

“Weak Supervision” in HEP: Dery, Nachman, Rubbo, Schwartzman 
[arXiv:1702.00414] 
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In CS lit, mixed training sets are called “bags” and method is 
Learning from Label Proportions (LLP), see e.g. Dietterich, Lathrop, 

Lozano-Prez [1997]; Amores [2013]; Yu et. al. [arXiv:1402.5902] 

“Weak Supervision” in HEP: Dery, Nachman, Rubbo, Schwartzman 
[arXiv:1702.00414] 

Weak supervision is closer to quantum reality: no single event is 
really either signal or background. 

Opens the possibility of training on data instead of Monte Carlo.
Background Signal
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hA,i = yA h1,i + (1� yA) h0,i (1)

hB,i = yB h1,i + (1� yB) h0,i (2)

Make a histogram of the 
multi-dimensional data

Machine learning helps with: 
• Large dimensionality 
• Over-constrained (more groups) 
• Finite statistics

Invert
h0,i =

yA hB,i�yB hA,i

yA�yB

h1,i =
(1�yB)hA,i�(1�yA)hB,i
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L. M. Dery, B. Nachman, F. Rubbo and A. Schwartzman, JHEP 1705, 145
(2017) doi:10.1007/JHEP05(2017)145 [arXiv:1702.00414 [hep-ph]]

Dataset B, f = 0.7
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Weak supervision - DNRS

`DNRS =
X

batches

|hft,ii � hyp,ii|

LLP
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•Training directly on ‘data’ 
mitigates effects of 
mismodeling. 

•Only depends on ratios, not 
modeled distribution.

Weak supervision - DNRS

L. M. Dery, B. Nachman, F. Rubbo and A. Schwartzman, JHEP 1705, 145
(2017) doi:10.1007/JHEP05(2017)145 [arXiv:1702.00414 [hep-ph]]
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Weak supervision - DNRS
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Weak supervision - DNRS

Group A
0.7 0.7 0.7 0.7 0.7

0.7 0.7 0.7 0.7 0.7

Group B
0.4 0.4 0.4 0.4 0.4

0.4 0.4 0.4 0.4 0.4

Only depends on ratios, not modeled distribution.

What if there are uncertainties on the ratios?

0.6 0.6 0.6 0.6 0.6

0.6 0.6 0.6 0.6 0.6

Cohen, Freytsis, and BO [arXiv:1706.09451]
Condition for when label errors do not affect classifier

Metodiev, Nachman, and Thaler [arXiv:1708.02949]
Possible to do classification with arbitrary labels 

CWoLa
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Theorem 1 Given mixed samples M1 and M2 defined in terms of pure samples
S and B with signal fractions f1 > f2, an optimal classifier trained to distinguish
M1 from M2 is also optimal for distinguishing S from B.

What if there are uncertainties on the ratios?

Metodiev, Nachman, and Thaler [arXiv:1708.02949]
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Theorem 1 Given mixed samples M1 and M2 defined in terms of pure samples
S and B with signal fractions f1 > f2, an optimal classifier trained to distinguish
M1 from M2 is also optimal for distinguishing S from B.

What if there are uncertainties on the ratios?

Metodiev, Nachman, and Thaler [arXiv:1708.02949]

Nice theory, but relies on “optimal classifier.” 
How does it work in practice?
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Choice Toy Models BSM Scenario

Loss function BCE BCE

ninput 3 11

Hidden Nodes 30 30

Activation Sigmoid Sigmoid

Initialization Normal Normal

Learning algorithm Adam SGD

Learning rate 0.0015 0.01

Batch size 32 64

Epochs 100 20

Technical Aspects

Learning implemented with Keras. 
TensorFlow backend 
scikit-learn used to compute metrics. 
Particle physics events generated 
 with MadGraph + pythia + Delphes.
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200,000 samples with 70% signal 
200,000 samples with 40% signal 

Test on 200,000 samples with 55% signal

Toy model with 3 inputs
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Toy model with 3 inputs

• Each event labeled with 0.4 or 0.7 
• Using a loss function other than 

DNRS (LLP) works 
• Weak and full supervision yield 

similar results
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Toy model with 3 inputs

• Keep ratios fixed at 0.4 and 0.7 
• Label the 0.7 set with a different 
number 

• Test on original test set

Almost no dependence on 
the label!
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Toy model with 3 inputs
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Toy model with 3 inputs
How can the weak networks achieve similar results with the wrong information?

Examine the output of the networks
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JETS + MET

vs

gluino Z + jets

LHC Scenario

� = 0.3 fb � = 28800 fb
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JETS + MET

vs

gluino Z + jets

LHC Scenario

• Not trying to get the best, realistic search possible 
• Characterizing weak supervision 

• Generate 1 million background, 500k signal 

• After basic cuts, 264K and 473K events left

� = 0.3 fb � = 28800 fb

pT (j1) > 200 GeV Emiss
T > 200 GeV
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JETS + MET

vs

Correlations between input parameters

LHC Scenario
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Network AUC Signal e�ciency

Full 0.99992393(31) 0.999373(17)

Weak 0.9998978(35) 0.999286(30)

Metrics for training networks to distinguish gluino pair production with decays
to 1st generation quarks from the dominant Z + jet background. The signal

e�ciency is given for a background acceptance of 0.01.

LHC Scenario

Group A Group B

Signal Background

40% 60% 80%
20%

yt = 0.472 yt = 0.843
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LHC Scenario

Can we trust this performance?

Not enough backgrounds (effective 
luminosity for backgrounds much smaller) 

Need much more pure samples than can 
be obtained with the given number of 
background events

Network AUC Signal e�ciency

Full 0.99992393(31) 0.999373(17)

Weak 0.9998978(35) 0.999286(30)

Metrics for training networks to distinguish gluino pair production with decays
to 1st generation quarks from the dominant Z + jet background. The signal

e�ciency is given for a background acceptance of 0.01.

� = 0.3 fb
� = 28800 fb
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luminosity for backgrounds much smaller) 
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be obtained with the given number of 
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Network AUC Signal e�ciency

Full 0.99992393(31) 0.999373(17)

Weak 0.9998978(35) 0.999286(30)

Metrics for training networks to distinguish gluino pair production with decays
to 1st generation quarks from the dominant Z + jet background. The signal

e�ciency is given for a background acceptance of 0.01.

 23

LHC Scenario

Can we trust this performance?

Evaluate networks trained on “bad” 
background using new background samples



Bryan Ostdiek  24

Cuts on network to give same 
signal count for both full and 
weak supervision. 

Dashed = before cut 
Solid = after cut

LHC Scenario
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LHC Scenario
How to mimic the effects of mis-modeling?
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LHC Scenario
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LHC Scenario
How to mimic the effects of mis-modeling?

ft label
Dataset Original Random 15% Phase space swap

A 0.472 0.374 (0.585) 0.416 (0.593)

B 0.843 0.782 (0.769) 0.810 (0.747)

Signal Background
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LHC Scenario
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LHC Scenario

ft label
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LHC Scenario

ft label
Dataset Original Random 15% Phase space swap

A 0.472 0.374 (0.585) 0.416 (0.593)

B 0.843 0.782 (0.769) 0.810 (0.747)

Random 15% Phase Space 
Swap

Full AUC change:     0.01%  
Weak AUC change:  0.00%

Full AUC change:      4.33%  
Weak AUC change:   0.00%
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LHC Scenario

Both full and weak supervision capable of great classification 

Same network architecture, training method, and loss function are used

Event-by-event do both networks 
yield same classification?
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LHC Scenario
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LHC Scenario
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LHC Scenario

15% Extra  
Background Rejection
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LHC Scenario
Choice of loss function matters

Komiske, Metodiev, Nachman, and Schwartz 
[1801.10158]

http://arxiv.org/abs/1801.10158
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• Weak supervision: training on mixed 
data sets. 

• Closer model of quantum reality. 

• Robust to mismodeling. 

• Analytic arguments. 

Conclusion

Open Questions

• Why does weak supervision not 
match full supervision performance? 

• Can weak supervision be done on 
multi-class problems? 

• Particular LHC scenarios which 
would work? 

• How to validate? 
• Can this work with small amounts of 

data?

Highlights


