Learning through weak supervision

Bryan Ostdiek Machine learning for phenomenology workshop. IPPP, Durham April 5, 2018

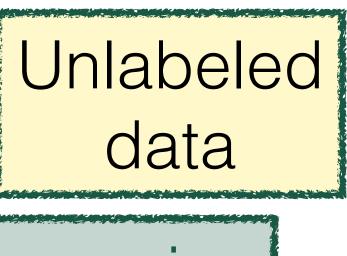
Hybrid?

Supervised Learning

- Classification
- Numerical Predictions
- etc

Labeled

data



Unsupervised Learning

- Clustering
- Anomaly Detection
- GAN
- etc

Learning from label proportions Classification without labels

Weak supervision

References

"Weakly Supervised Classification in High Energy Physics," Dery, Nachman, Rubbo, and Schwartzman. [1702.00414]

"(Machine) Learning to Do More with Less," Cohen, Freytsis, and **BO**. [<u>1706.09451</u>]

"Classification without labels: Learning from mixed samples in high energy physics," Metodiev, Nachman, and Thaler. [1708.02949]

"Learning to Classify from Impure Samples," Komiske, Metodiev, Nachman, and Schwartz. [1801.10158]

"Weakly Supervised Classification in High Energy Physics," Dery, Nachman, LLP Rubbo, and Schwartzman. [1702.00414]

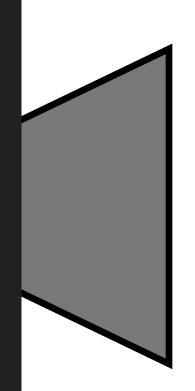
"(Machine) Learning to Do More with Less," Cohen, Freytsis, and BO. [<u>1706.09451</u>]

"Classification without labels: Learning from mixed samples in high energy physics," Metodiev, Nachman, and Thaler. [1708.02949]

"Learning to Classify from Impure Samples," Komiske, Metodiev, Nachman, and Schwartz. [1801.10158]

ACME

Multi-variate analyzer



Outline

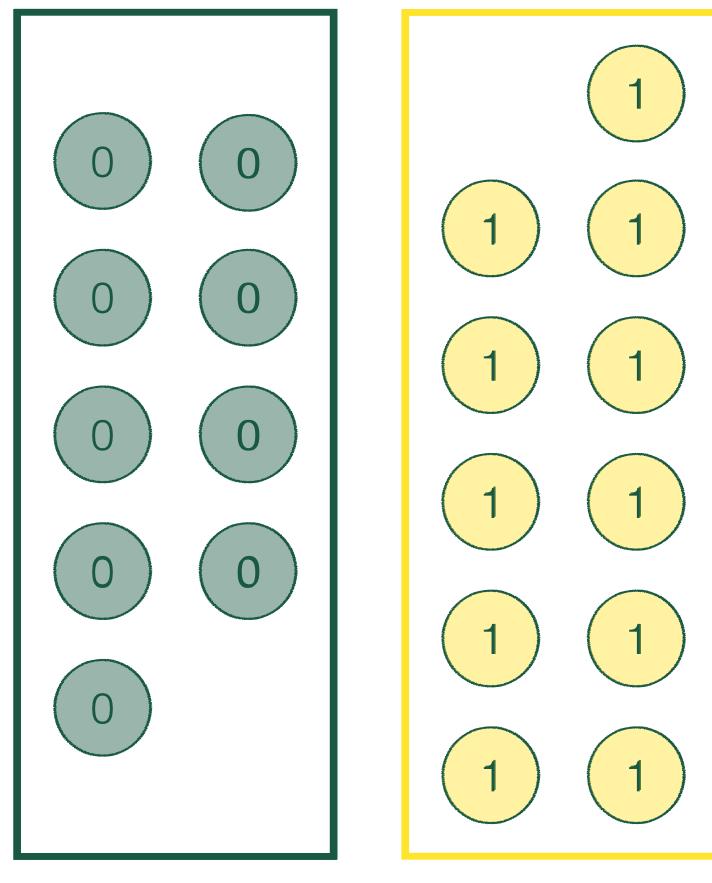
1. Introduction / Toy model

- What is weak supervision?
- How can it work?
- Is it robust?

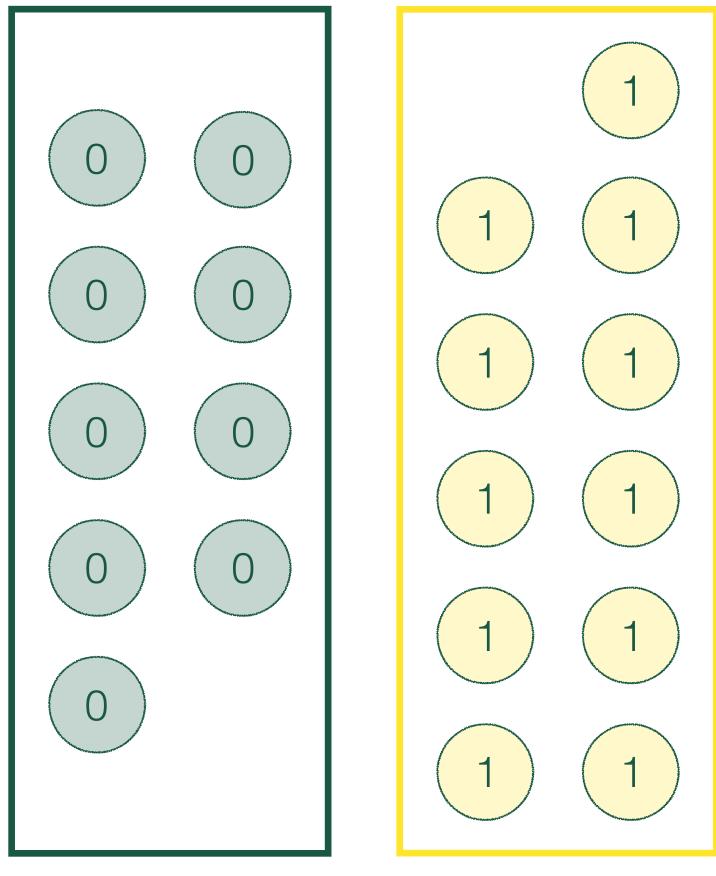
2. LHC Scenario

- Higher input dimension
- Application to unseen data
- Affects of mis-modeling
- Combination of Full and Weak

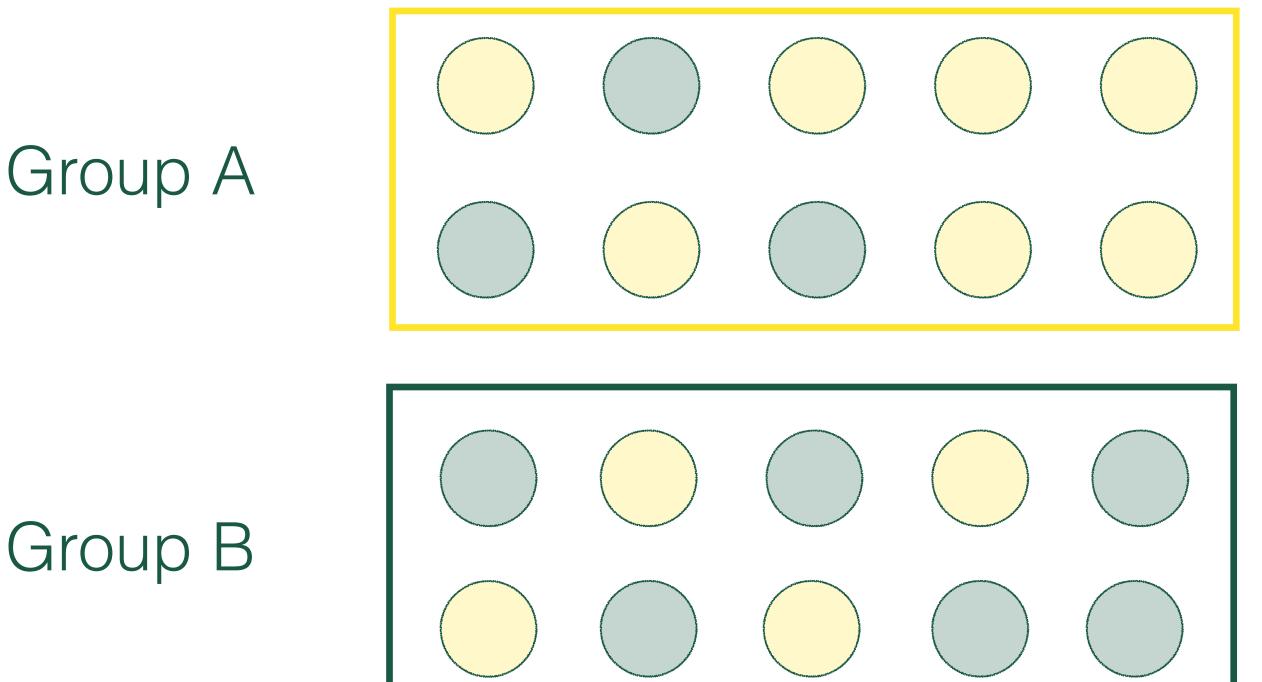
Fully supervised

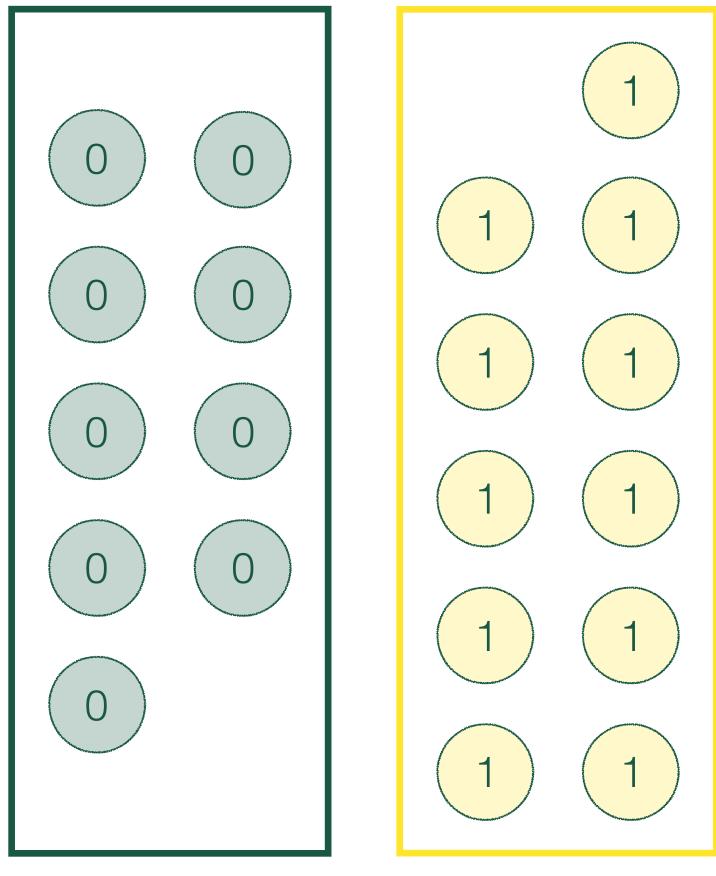


Background Signal

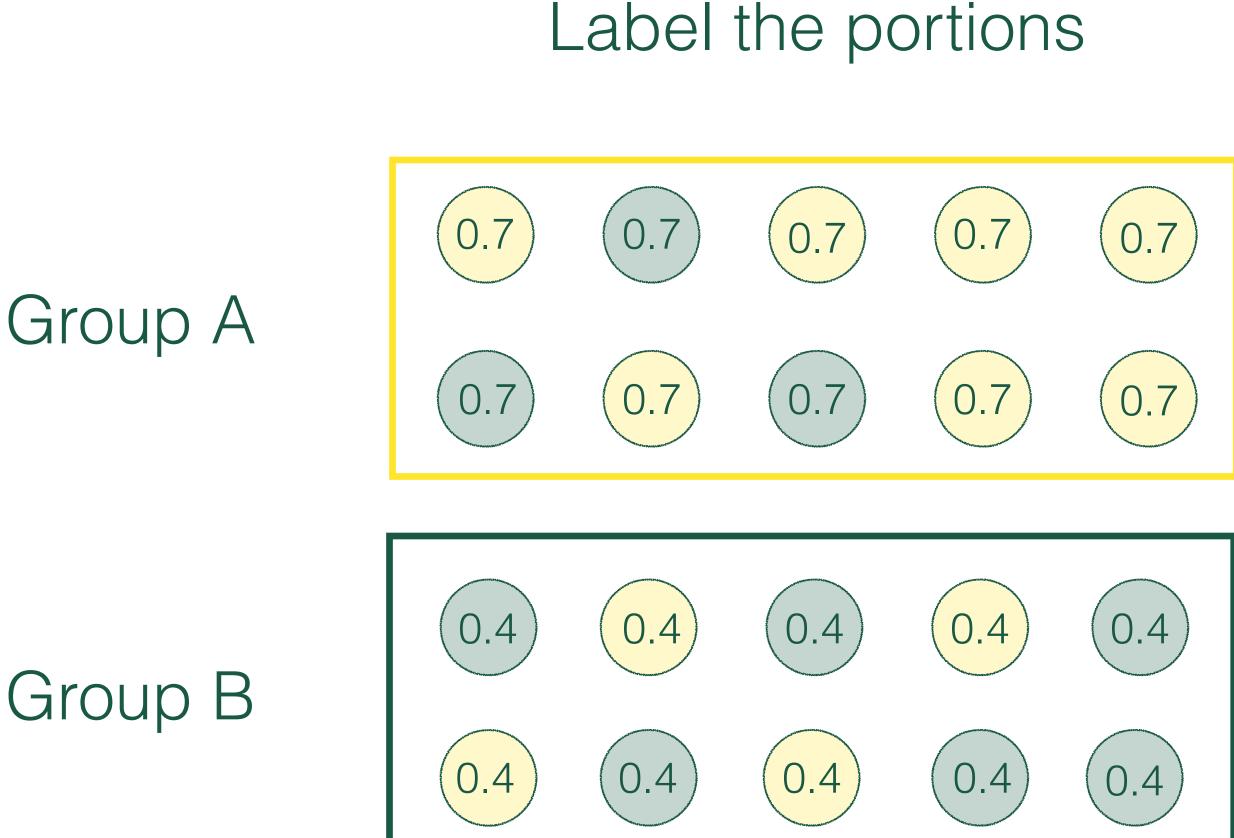


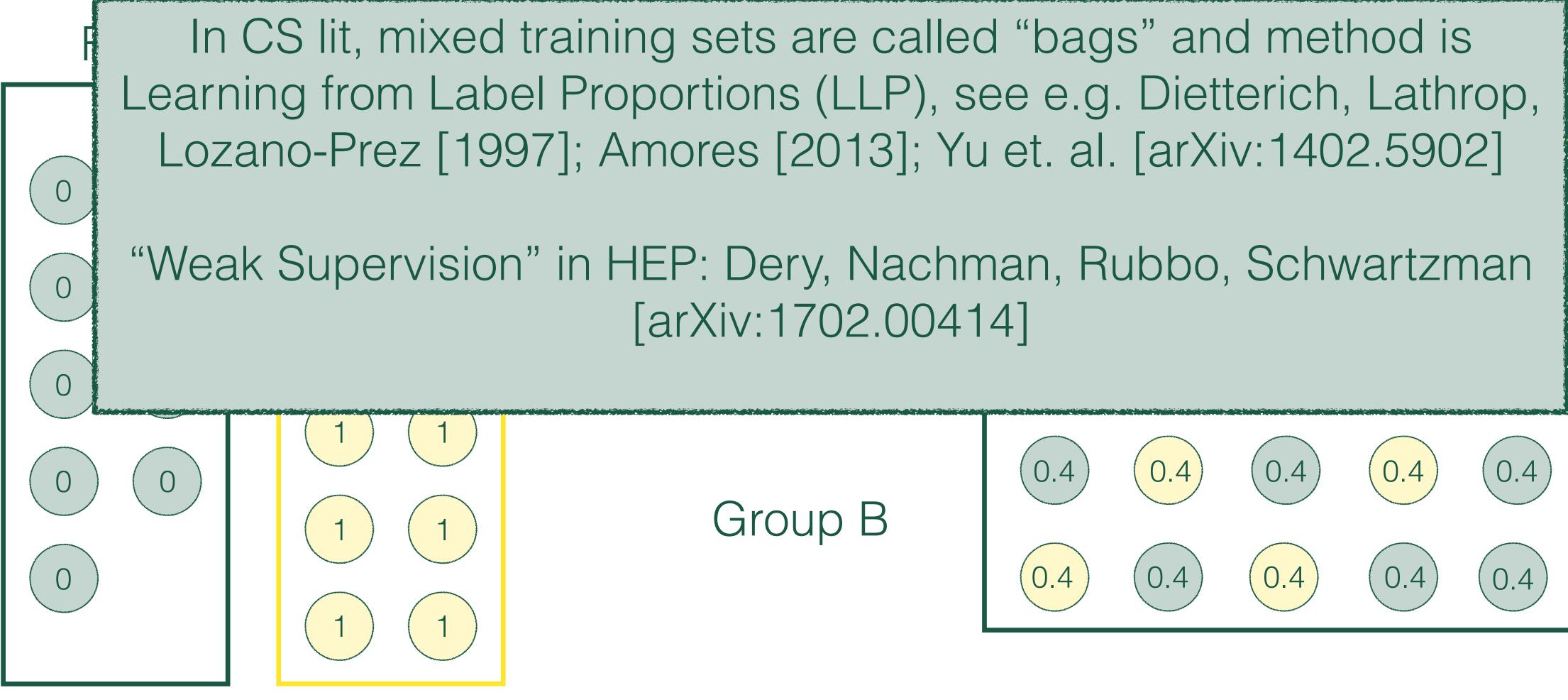
Background Signal



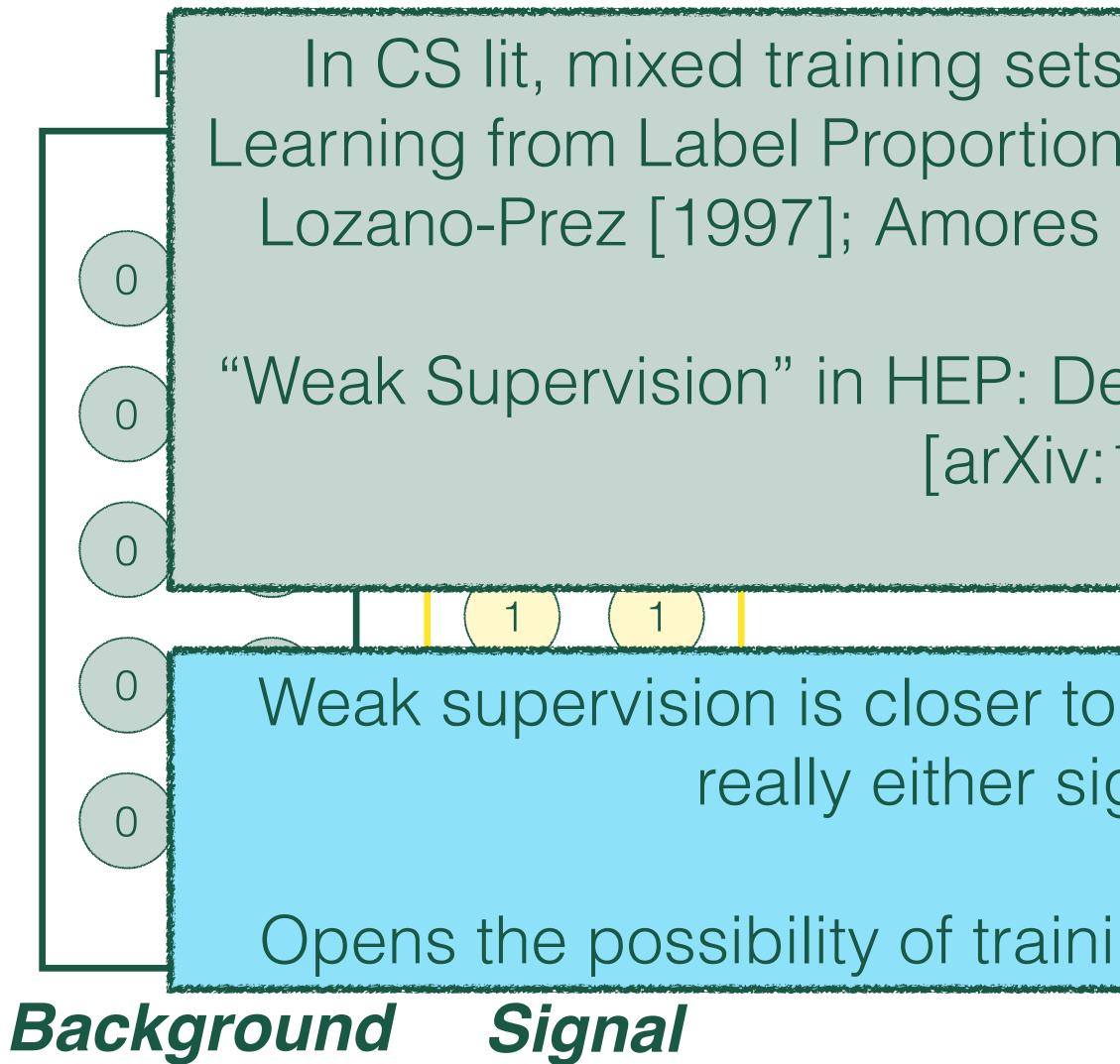


Background Signal





Background Signal

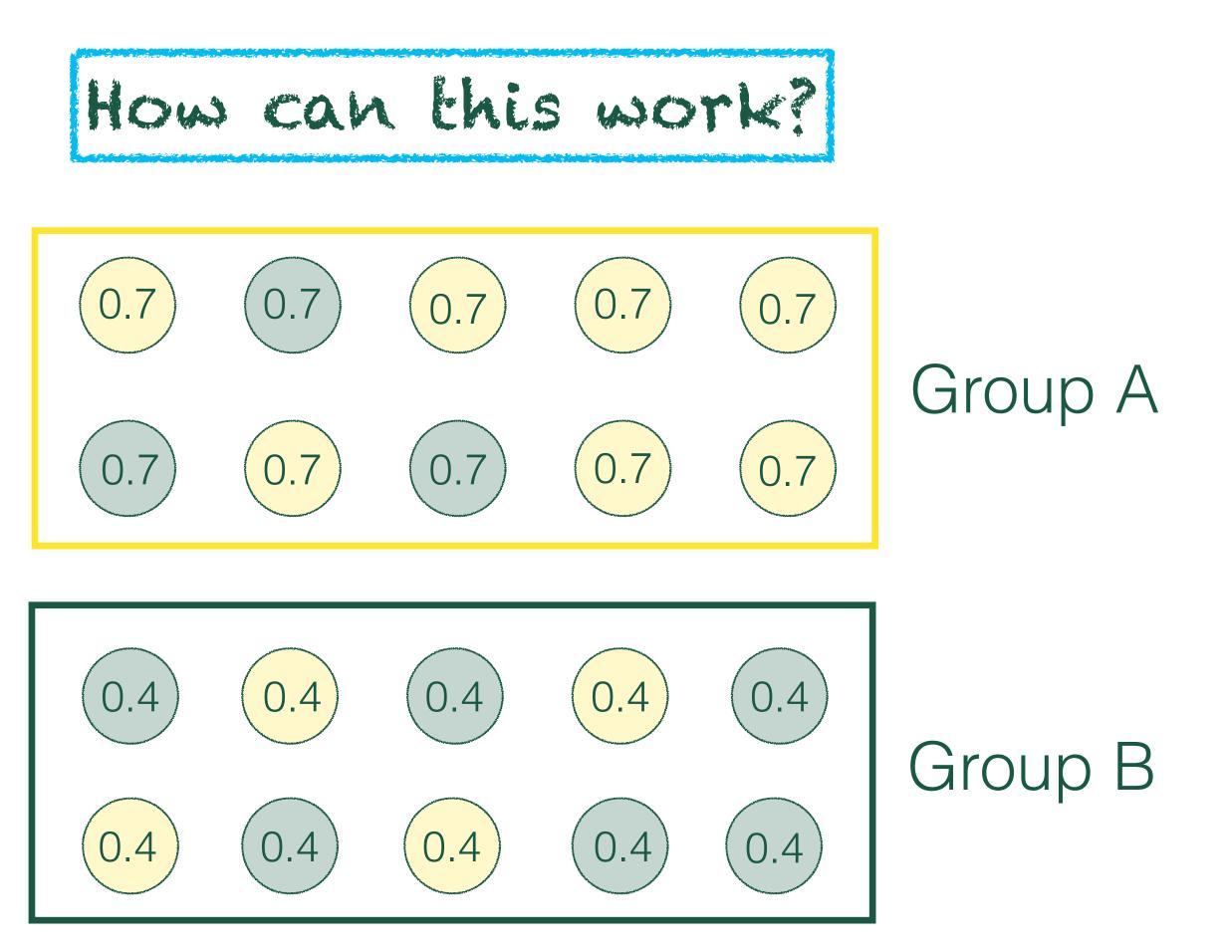


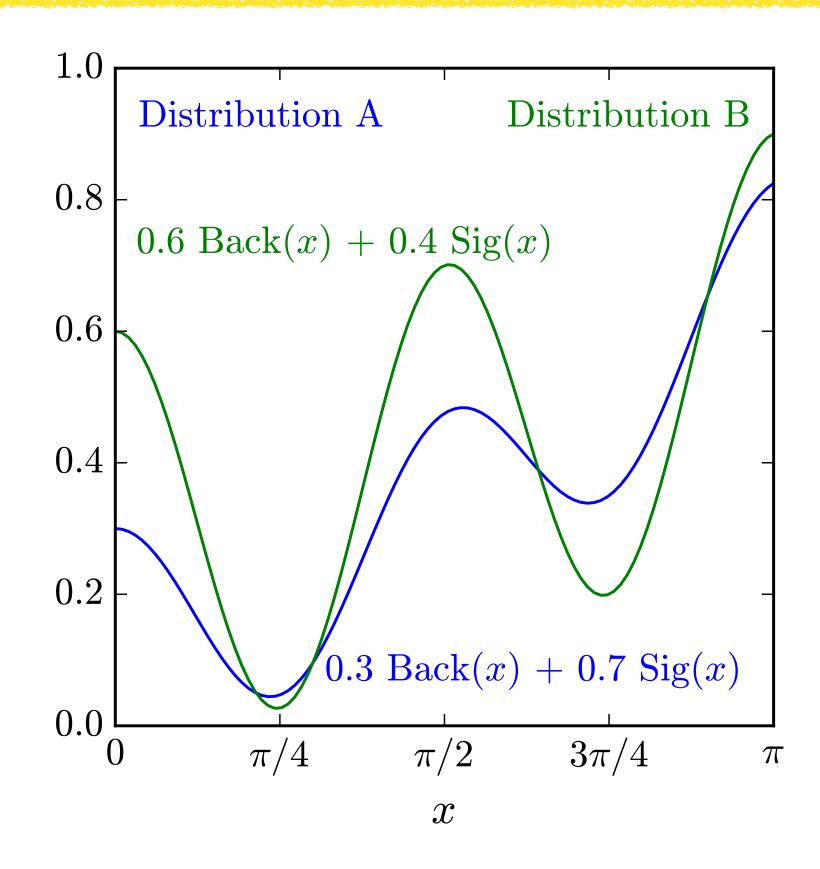
In CS lit, mixed training sets are called "bags" and method is Learning from Label Proportions (LLP), see e.g. Dietterich, Lathrop, Lozano-Prez [1997]; Amores [2013]; Yu et. al. [arXiv:1402.5902]

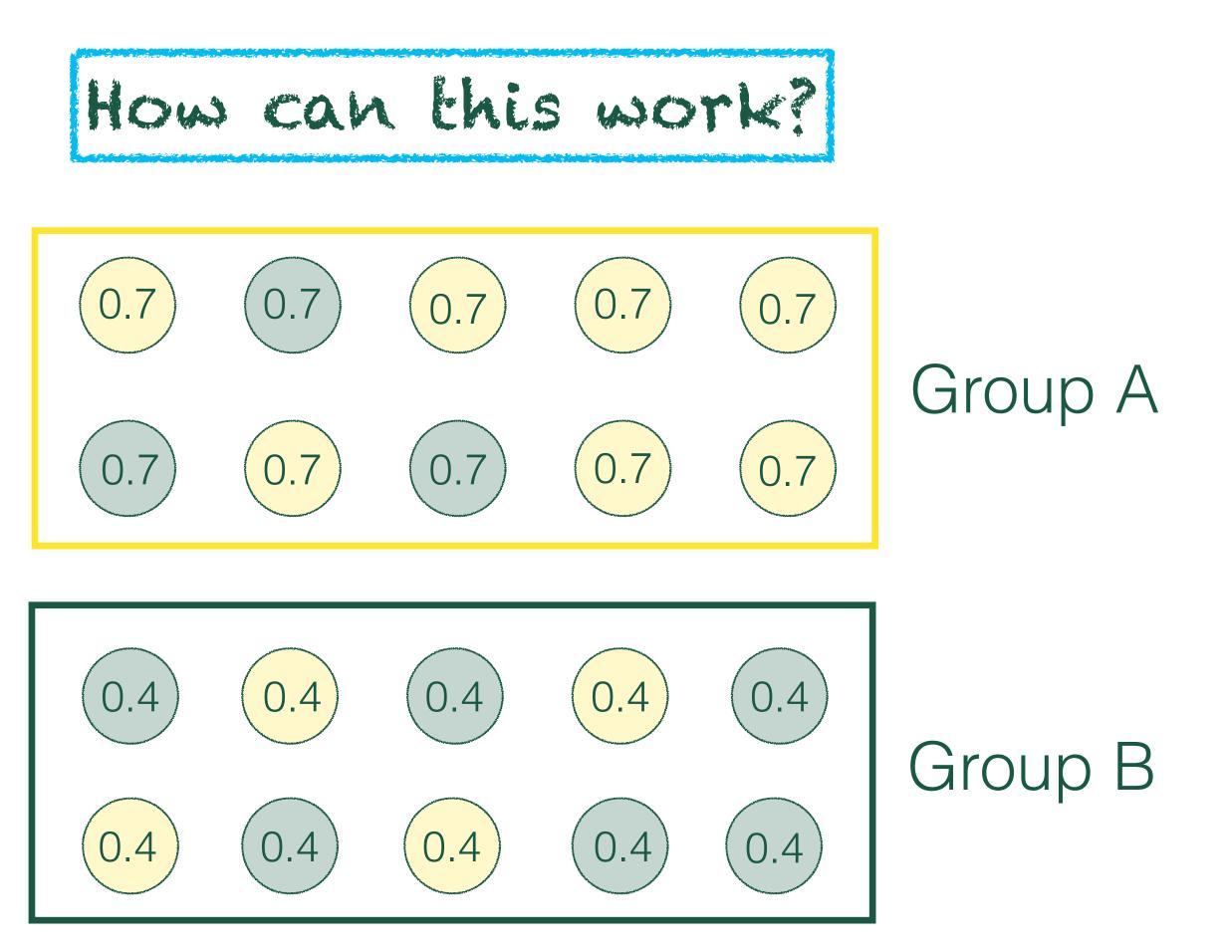
"Weak Supervision" in HEP: Dery, Nachman, Rubbo, Schwartzman [arXiv:1702.00414]

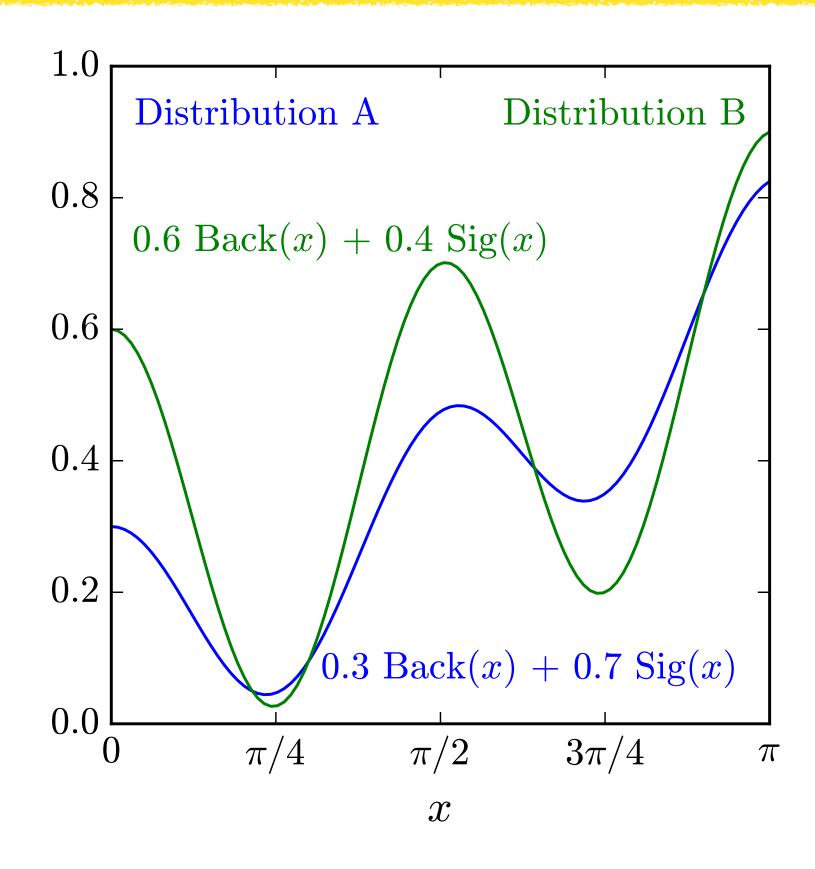
Weak supervision is closer to quantum reality: no single event is really either signal or background.

Opens the possibility of training on data instead of Monte Carlo.

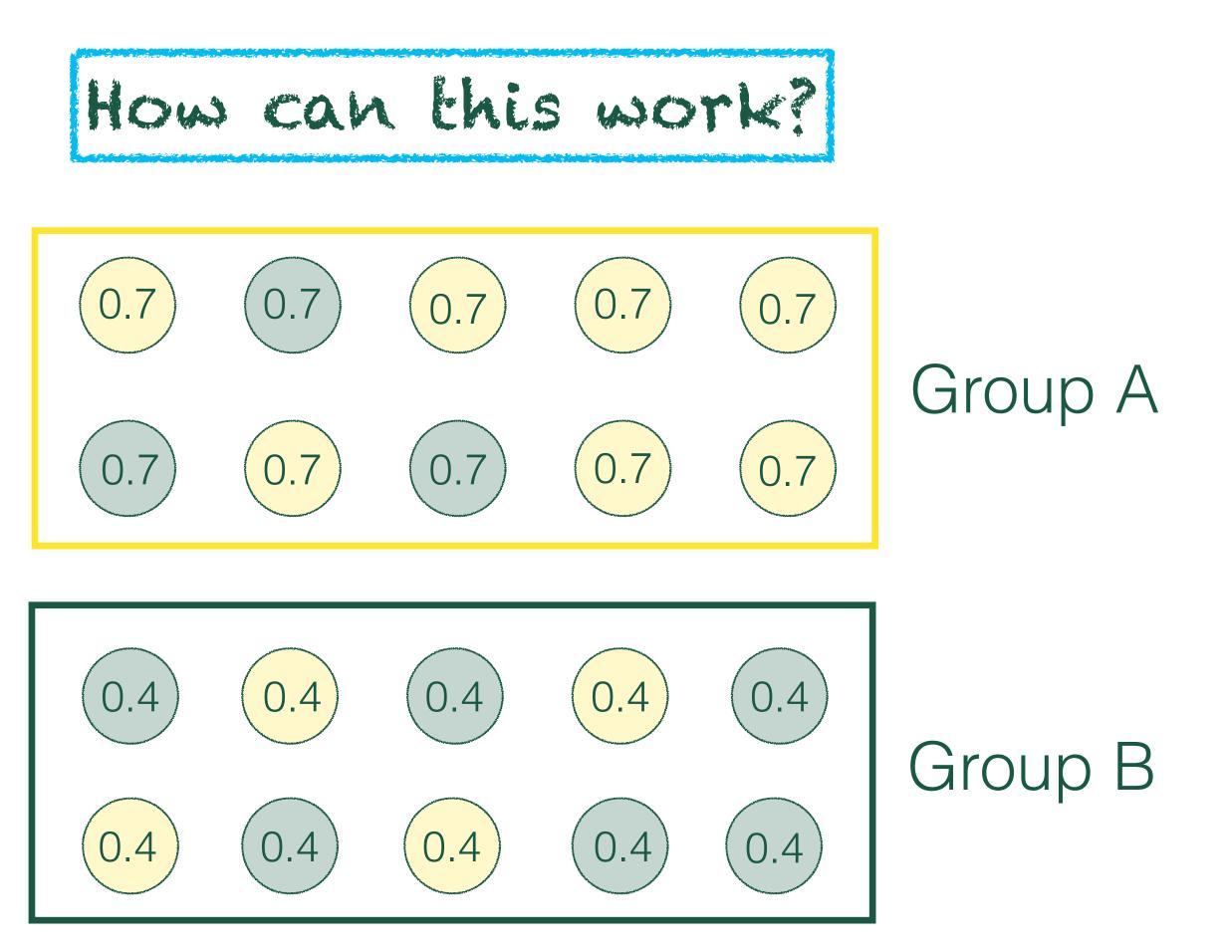


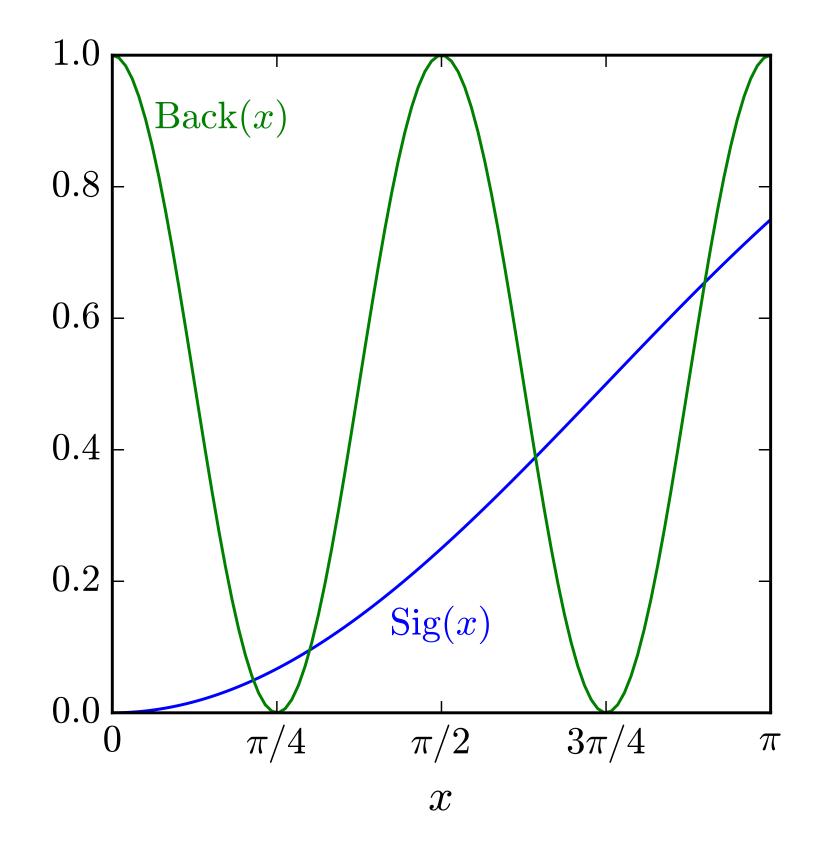




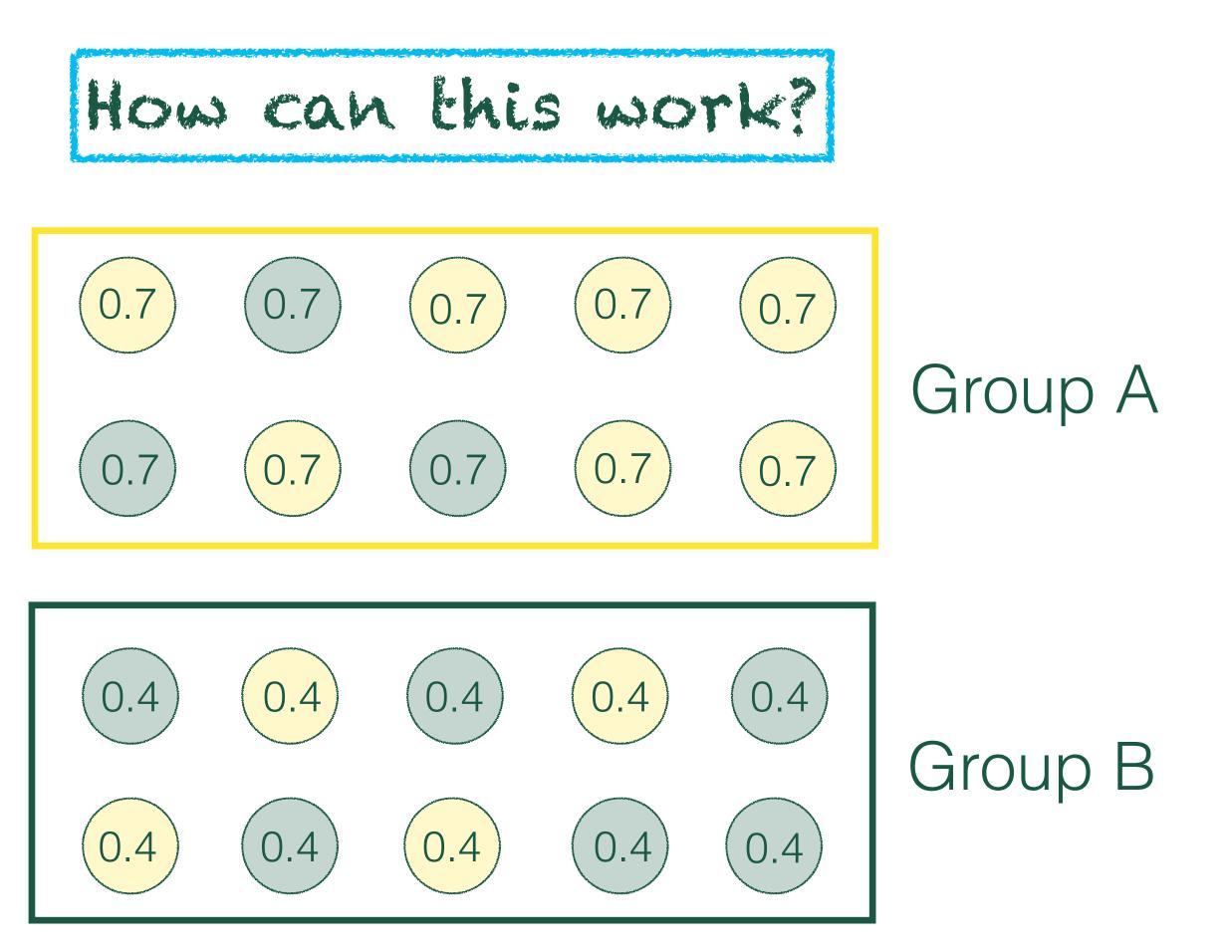


$$Sig(x) = 2A(x) - B(x)$$
$$Back(x) = \frac{1}{3} \left(-4A(x) - 7B(x)\right)$$





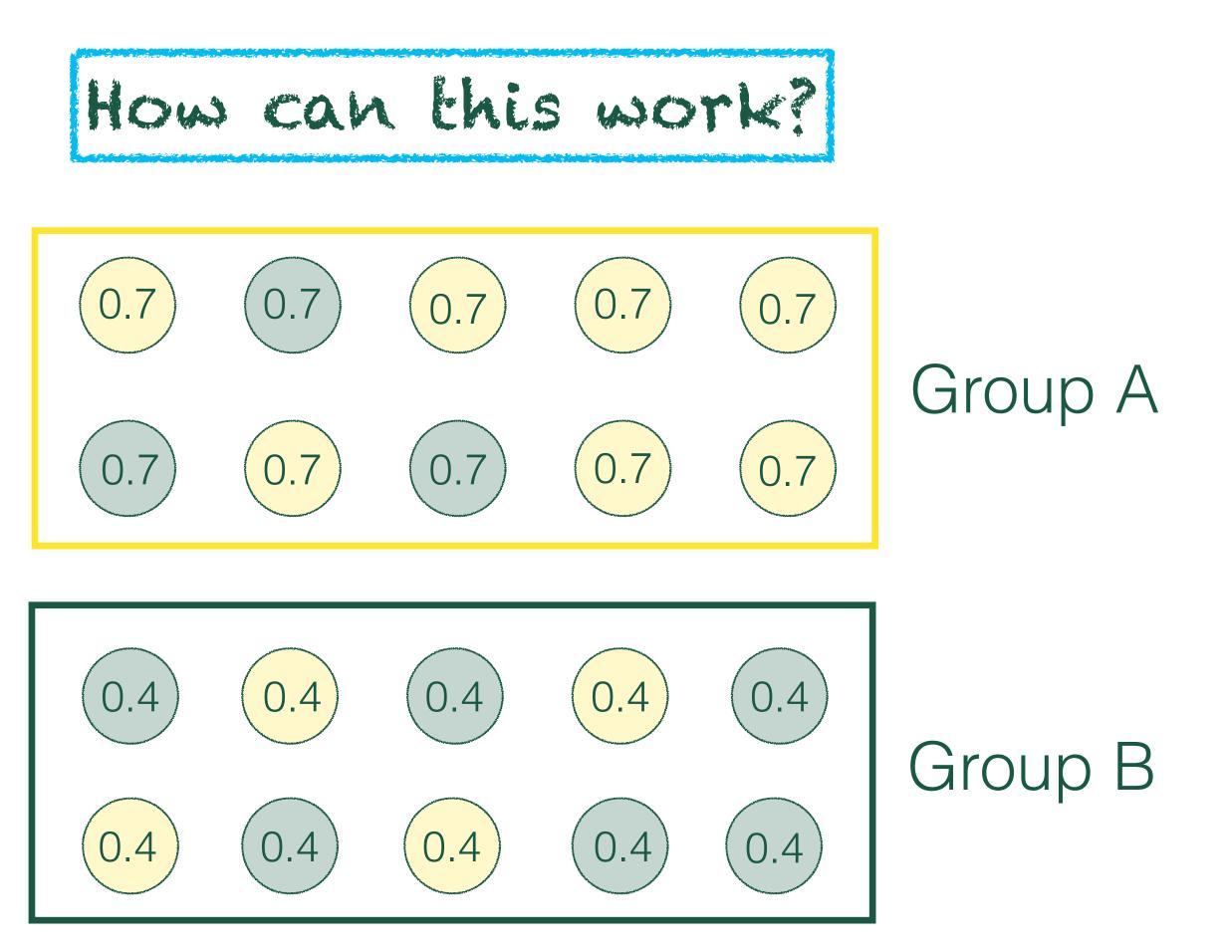
$$Sig(x) = 2A(x) - B(x)$$
$$Back(x) = \frac{1}{3} \left(-4A(x) - 7B(x)\right)$$



Make a histogram of the multi-dimensional data

$$h_{A,i} = y_A h_{1,i} + (1 - y_A) h_{0,i}$$

$$h_{B,i} = y_B h_{1,i} + (1 - y_B) h_{0,i}$$



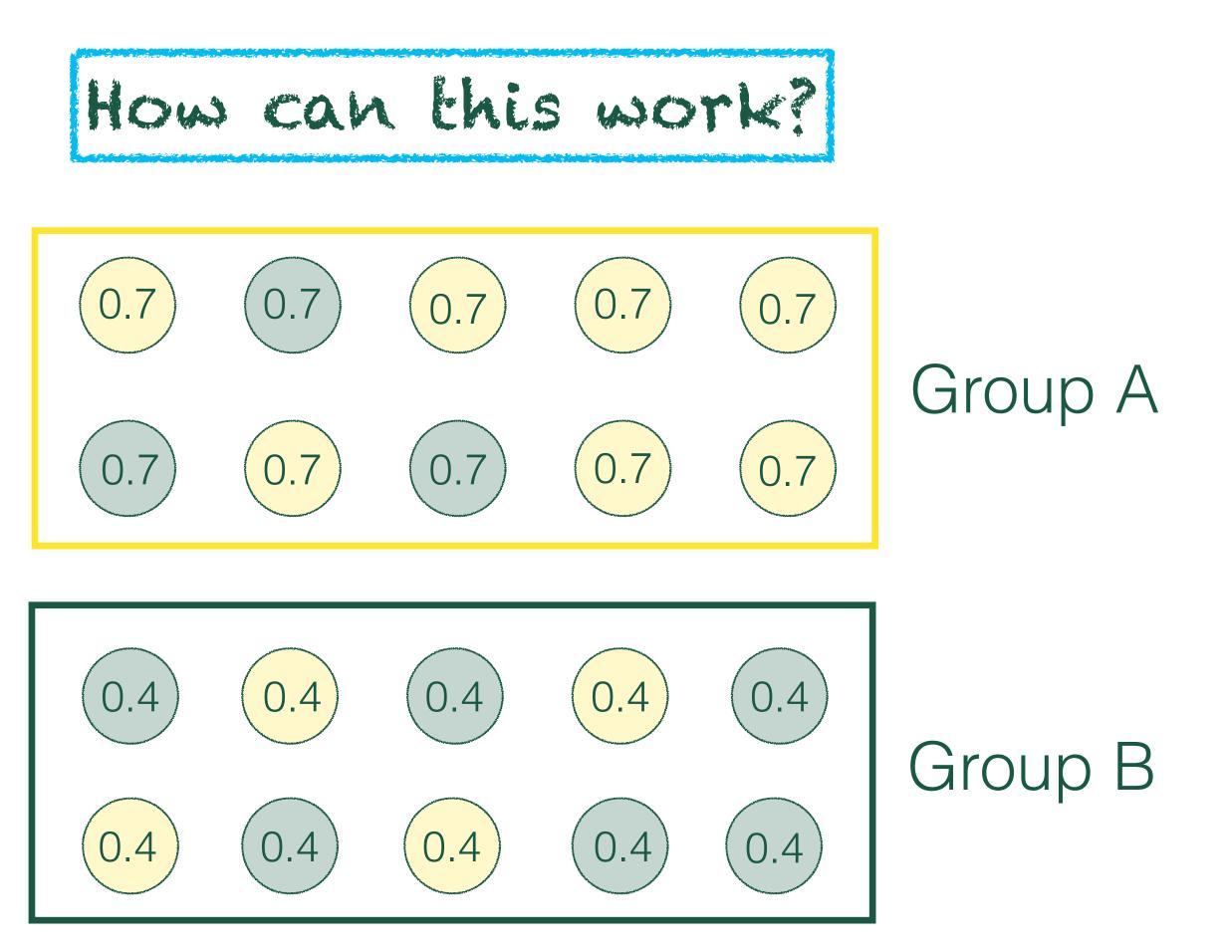
Make a histogram of the multi-dimensional data

$$h_{A,i} = y_A h_{1,i} + (1 - y_A) h_{0,i}$$

$$h_{B,i} = y_B h_{1,i} + (1 - y_B) h_{0,i}$$

<u>Invert</u>

 $h_{0,i} = \frac{y_A \ h_{B,i} - y_B \ h_{A,i}}{y_A - y_B}$ $h_{1,i} = \frac{(1 - y_B)h_{A,i} - (1 - y_A)h_{B,i}}{y_A - y_B}$



Make a histogram of the multi-dimensional data

$$h_{A,i} = y_A h_{1,i} + (1 - y_A) h_{0,i}$$

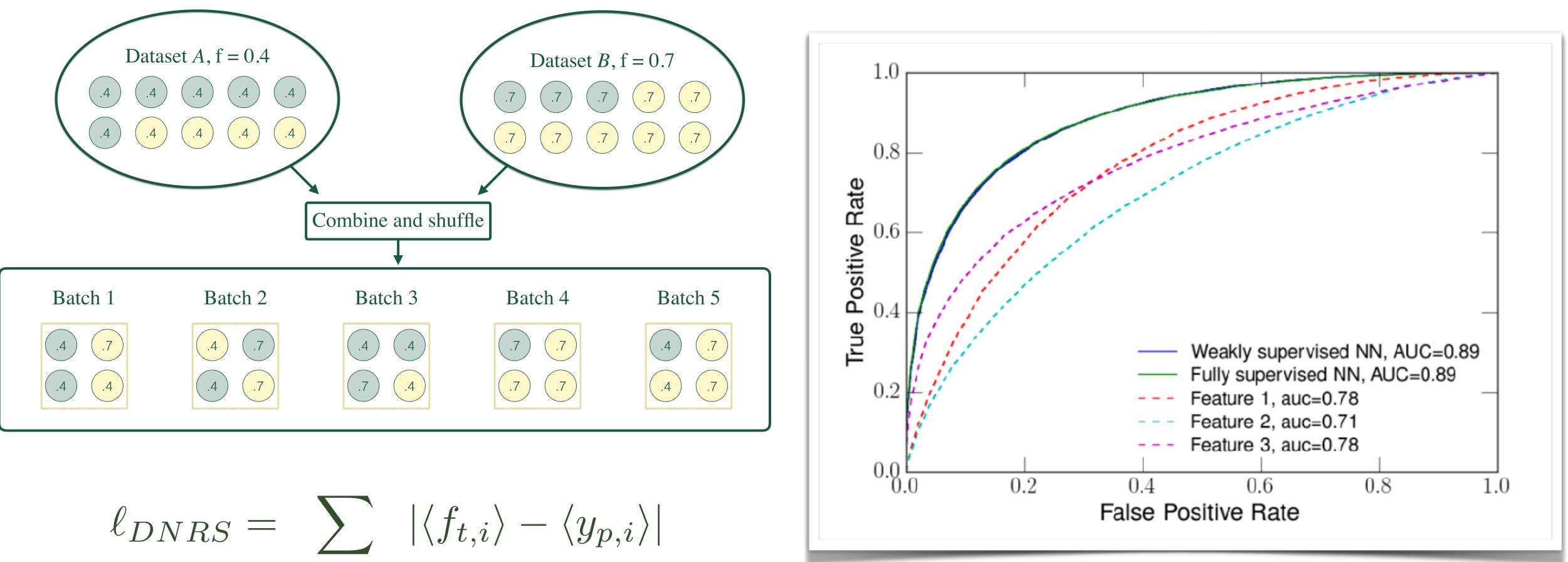
$$h_{B,i} = y_B h_{1,i} + (1 - y_B) h_{0,i}$$

Invert

 $y_A h_{B,i} - y_B h_{A,i}$ $h_{0,i} =$ $y_A - y_B$ $\frac{(1 - y_B)h_{A,i} - (1 - y_A)h_{B,i}}{y_A - y_B}$ $h_{1,i} =$

Machine learning helps with:

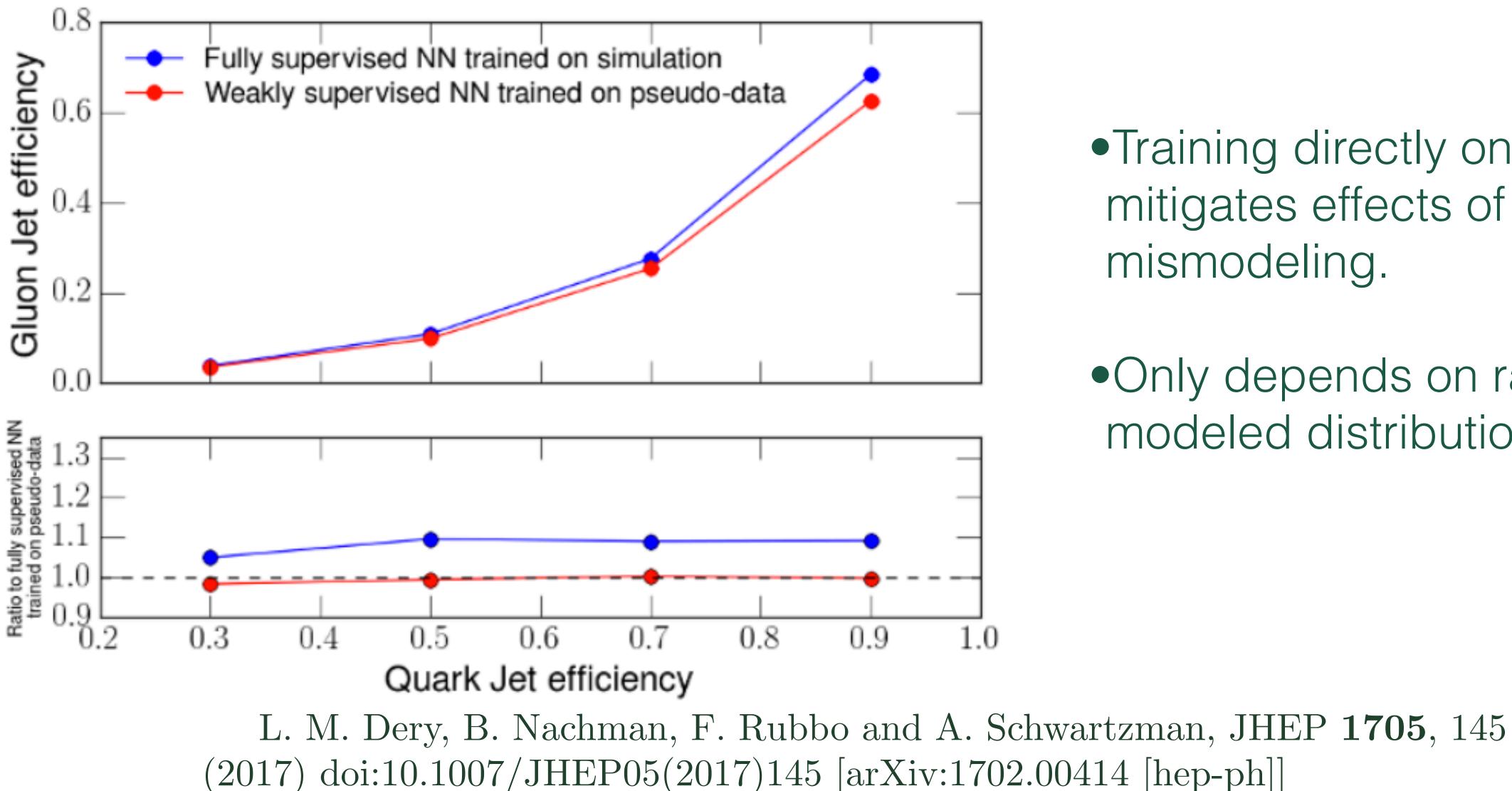
- Large dimensionality
- Over-constrained (more groups)
- Finite statistics



$$\ell_{DNRS} = \sum_{batches} |\langle f_{t,i} \rangle - \langle y_{p,i} \rangle|$$

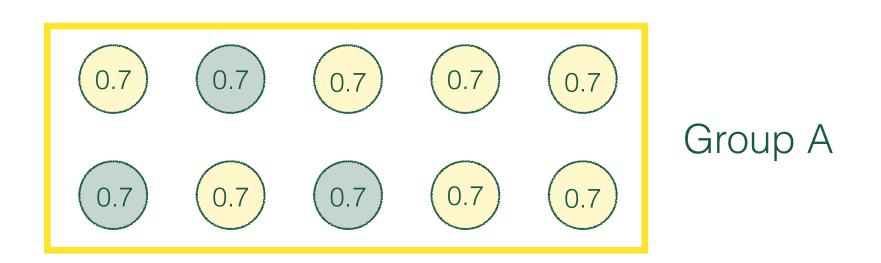
(2017) doi:10.1007/JHEP05(2017)145 [arXiv:1702.00414 [hep-ph]]

L. M. Dery, B. Nachman, F. Rubbo and A. Schwartzman, JHEP 1705, 145

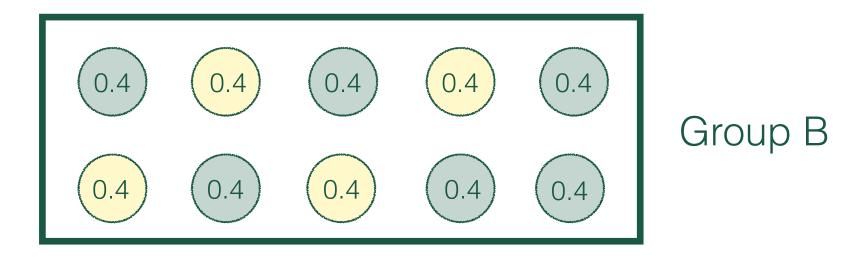


 Training directly on 'data' mitigates effects of mismodeling.

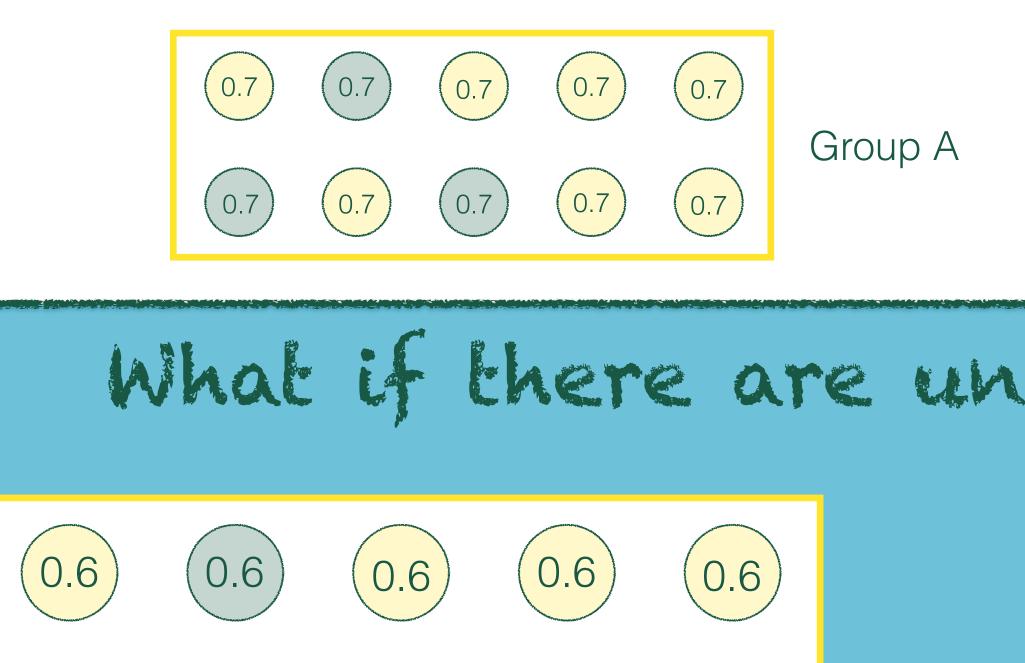
•Only depends on ratios, not modeled distribution.



Only depends on ratios, not modeled distribution.



0.6



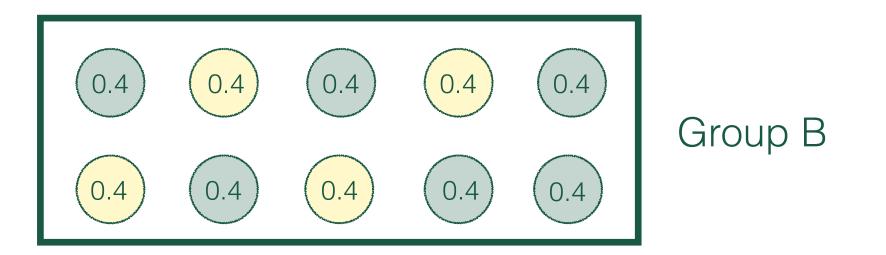
0.6

0.6

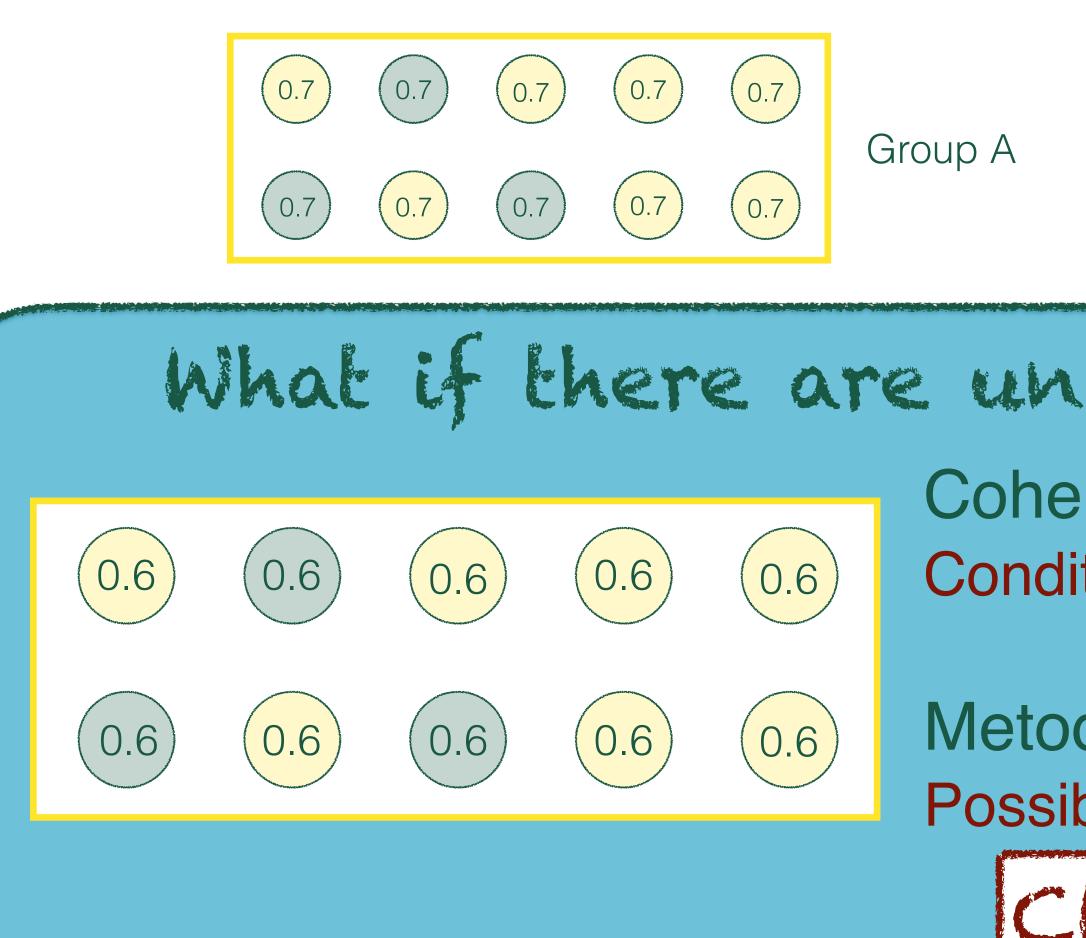
0.6

0.6

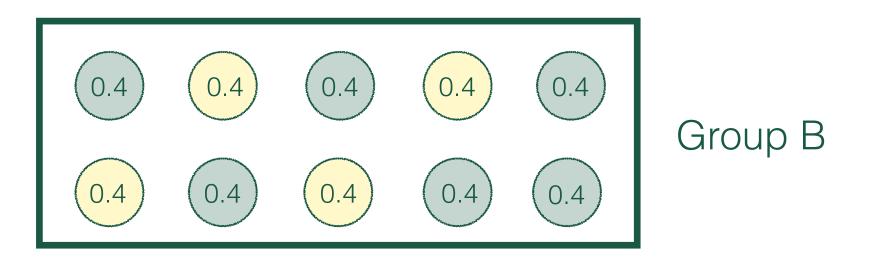
Only depends on ratios, not modeled distribution.



What if there are uncertainties on the ratios?



Only depends on ratios, not modeled distribution.



What if there are uncertainties on the ratios?

Cohen, Freytsis, and BO [arXiv:1706.09451] Condition for when label errors do not affect classifier

Metodiev, Nachman, and Thaler [arXiv:1708.02949] Possible to do classification with arbitrary labels

CNOLA

Theorem 1 Given mixed samples M_1 and M_2 defined in terms of pure samples S and B with signal fractions $f_1 > f_2$, an optimal classifier trained to distinguish M_1 from M_2 is also optimal for distinguishing S from B.

Metodiev, Nachman, and Thaler [arXiv:1708.02949]

Theorem 1 Given mixed samples M_1 and M_2 defined in terms of pure samples S and B with signal fractions $f_1 > f_2$, an optimal classifier trained to distinguish M_1 from M_2 is also optimal for distinguishing S from B.

Proof. The optimal classifier to distinguish examples drawn from p_{M_1} and p_{M_2} is the likelihood ratio $L_{M_1/M_2}(\vec{x}) = p_{M_1}(\vec{x})/p_{M_2}(\vec{x})$. Similarly, the optimal classifier to distinguish examples drawn from p_S and p_B is the likelihood ratio $L_{S/B}(\vec{x}) = p_S(\vec{x})/p_B(\vec{x})$. Where p_B has support, we can relate these two likelihood ratios algebraically:

$$L_{M_1/M_2} = \frac{p_{M_1}}{p_{M_2}} = \frac{f_1 \, p_S + (1 - f_1) \, p_B}{f_2 \, p_S + (1 - f_2) \, p_B} = \frac{f_1 \, L_{S/B} + (1 - f_1)}{f_2 \, L_{S/B} + (1 - f_2)},$$

which is a monotonically increasing rescaling of the likelihood $L_{S/B}$ as long as $f_1 > f_2$, since $\partial_{L_{S/B}} L_{M_1/M_2} = (f_1 - f_2)/(f_2 L_{S/B} - f_2 + 1)^2 > 0$. If $f_1 < f_2$, then one obtains the reversed classifier. Therefore, $L_{S/B}$ and L_{M_1/M_2} define the same classifier.

Metodiev, Nachman, and Thaler [arXiv:1708.02949]

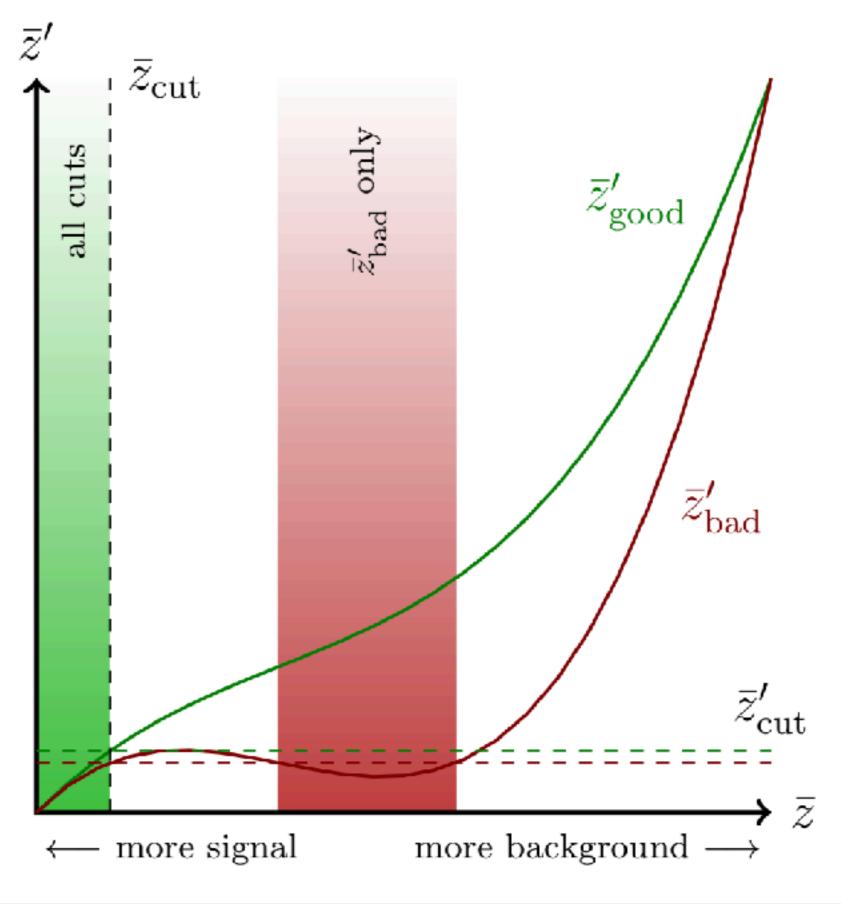
Theorem 1 GiiS and B with sign M_1 from M_2 is c

Metod

Proof. The optimal c ratio $L_{M_1/M_2}(\vec{x}) = p$ drawn from p_S and p_I we can relate these t

 L_{M_1}

which is a monotonic $\partial_{L_{S/B}} L_{M_1/M_2} = (f_1$ classifier. Therefore, $L_{S/B}$ and L_{M_1/M_2} define the same classifier.



s of pure samples ned to distinguish

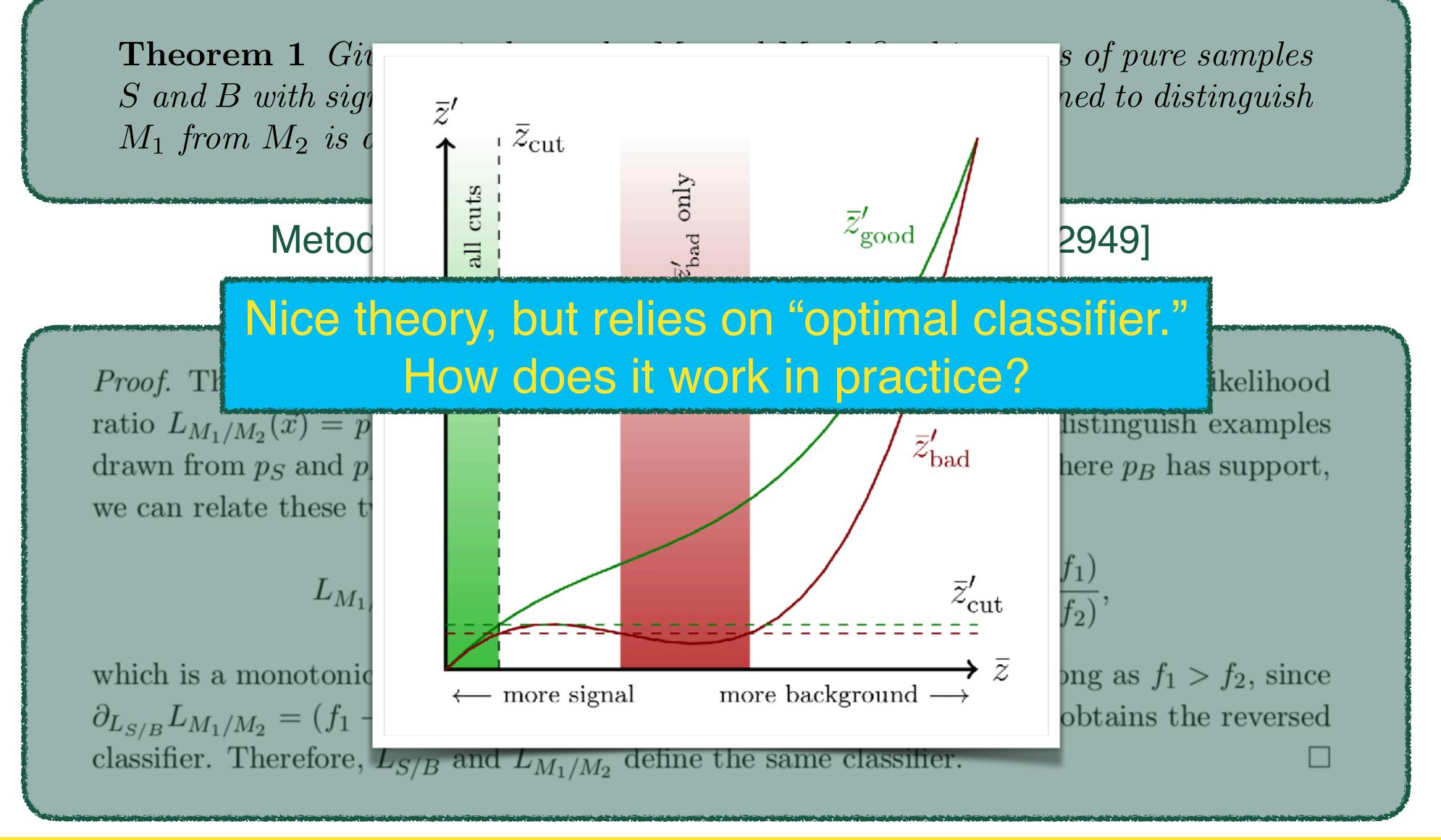
2949]

 p_{M_2} is the likelihood listinguish examples here p_B has support,

$$\frac{f_1)}{f_2},$$

ong as $f_1 > f_2$, since obtains the reversed

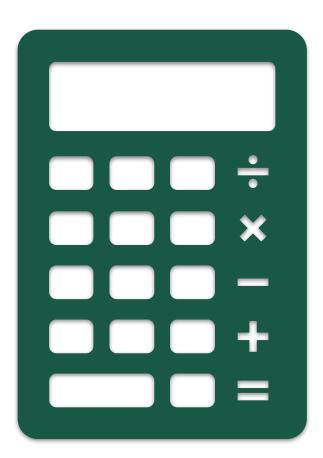
Bryan Ostdiek

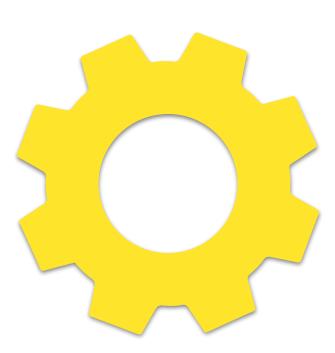


Bryan Ostdiek

Technical Aspects

Learning implemented with Keras. TensorFlow backend scikit-learn used to compute metrics. Particle physics events generated with MadGraph + pythia + Delphes.

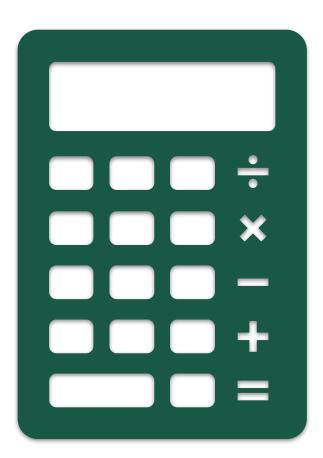


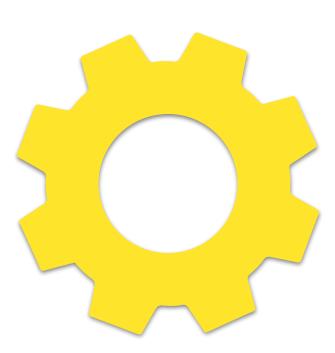


Choice	Toy Models	BSM Scenario
Loss function	BCE	BCE
$n_{ m input}$	3	11
Hidden Nodes	30	30
Activation	Sigmoid	Sigmoid
Initialization	Normal	Normal
Learning algorithm	Adam	SGD
Learning rate	0.0015	0.01
Batch size	32	64
Epochs	100	20

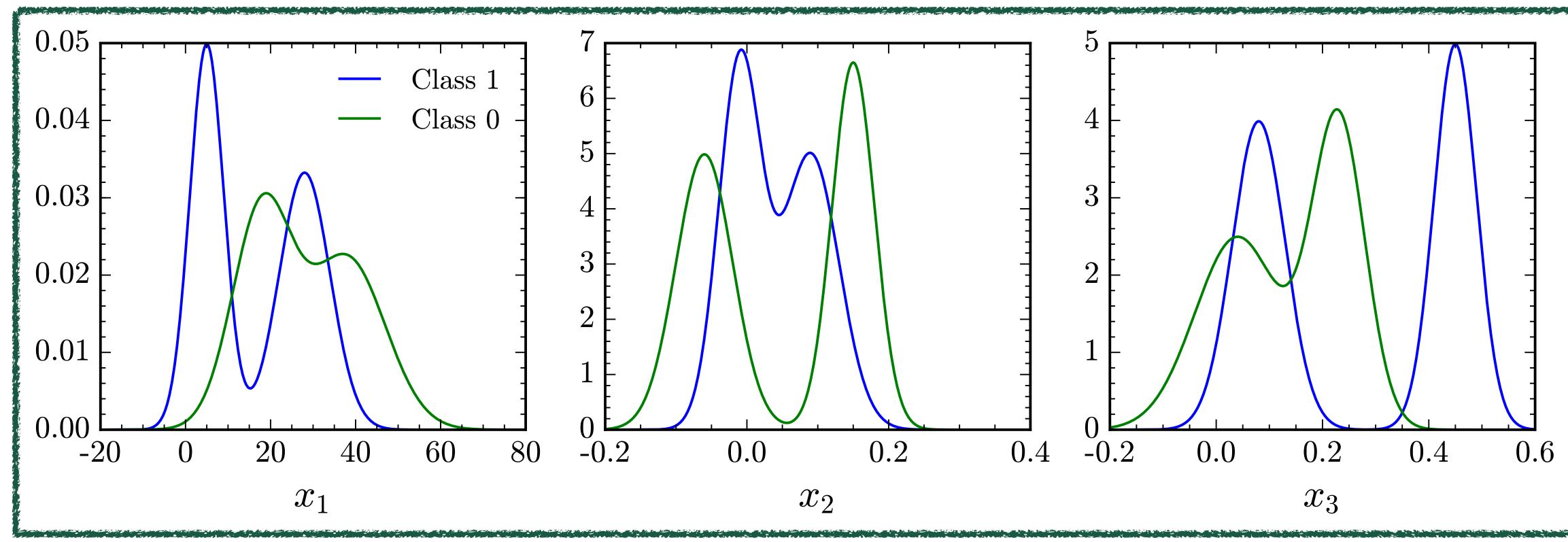
Technical Aspects

Learning implemented with Keras. TensorFlow backend scikit-learn used to compute metrics. Particle physics events generated with MadGraph + pythia + Delphes.



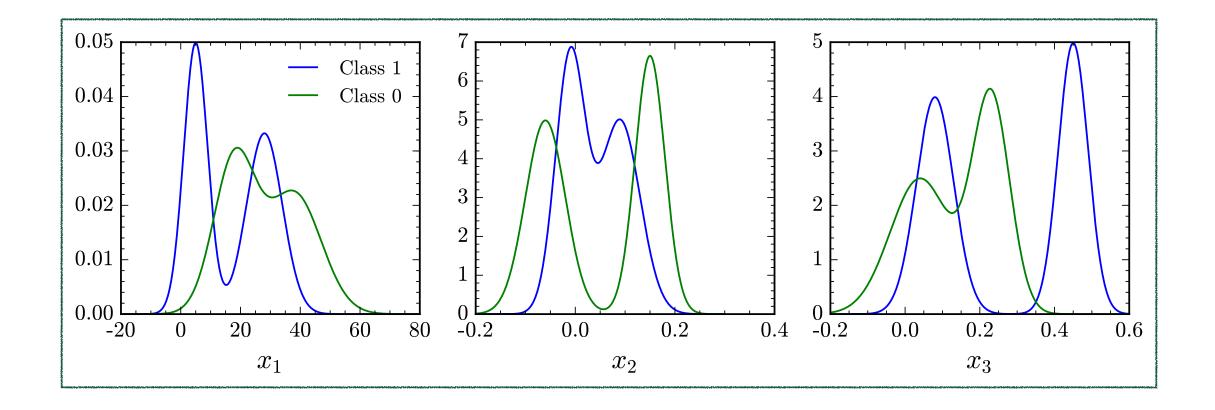


Choice	Toy Models	BSM Scenarie
Loss function	BCE	BCE
$n_{ m input}$	3	11
Hidden Nodes	30	30
Activation	Sigmoid	Sigmoid
Initialization	Normal	Normal
Learning algorithm	Adam	SGD
Learning rate	0.0015	0.01
Batch size	32	64
Epochs	100	20

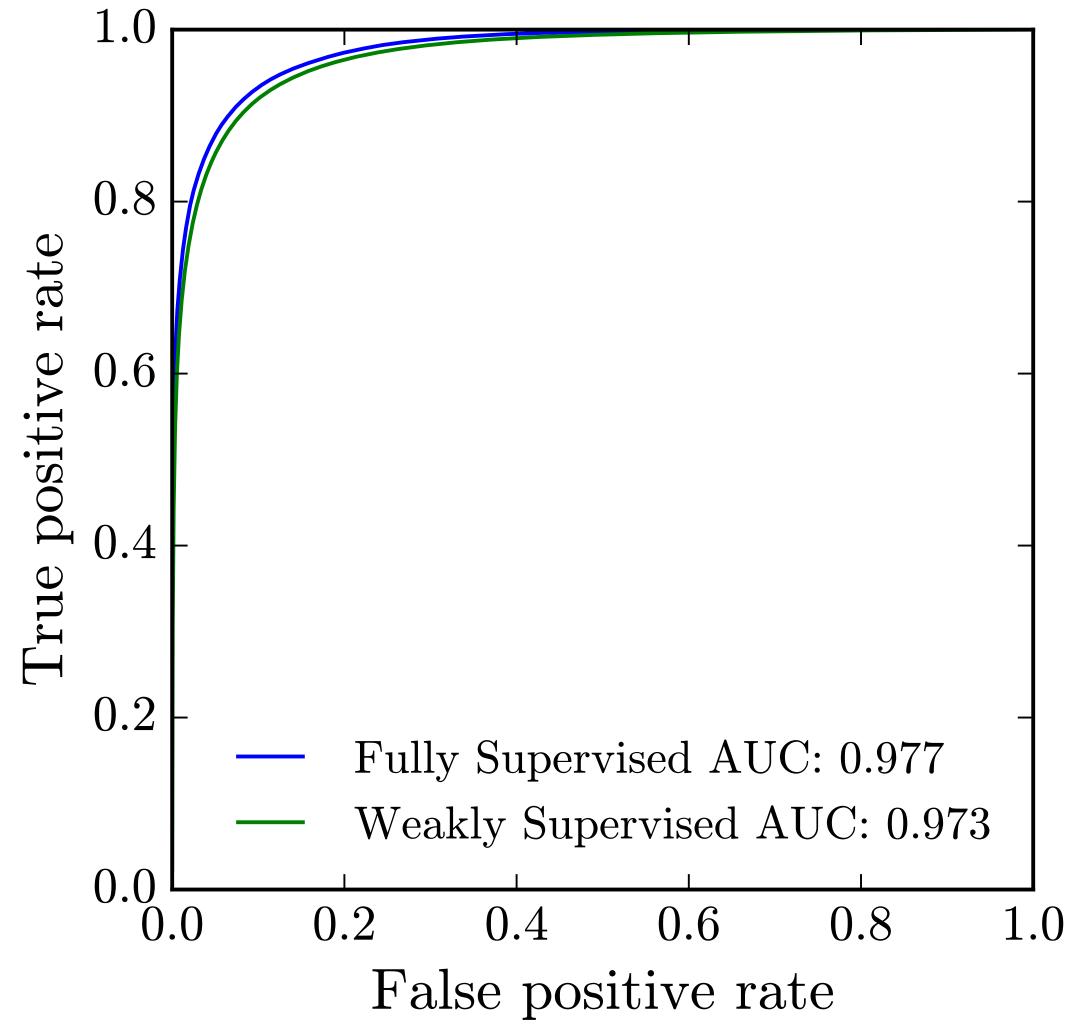


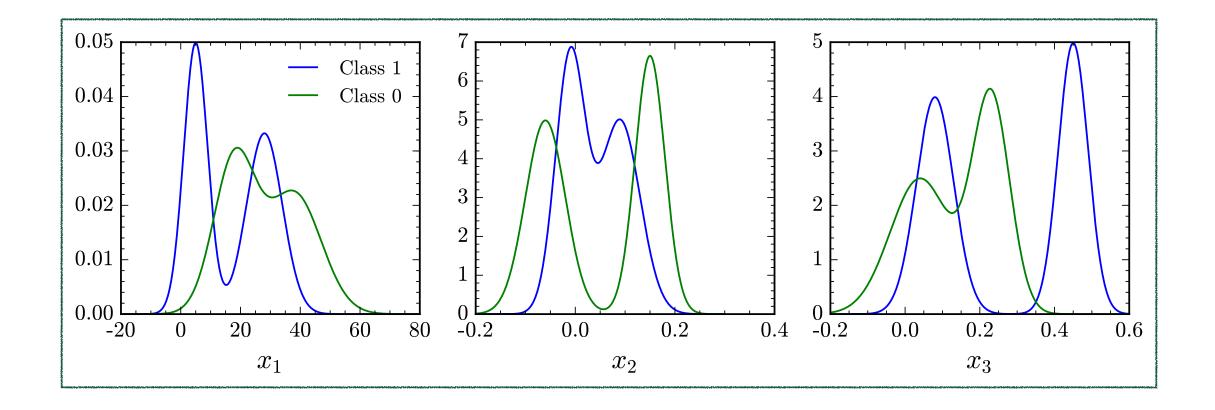
200,000 samples with 70% signal 200,000 samples with 40% signal Test on 200,000 samples with 55% signal

Toy model with 3 inputs

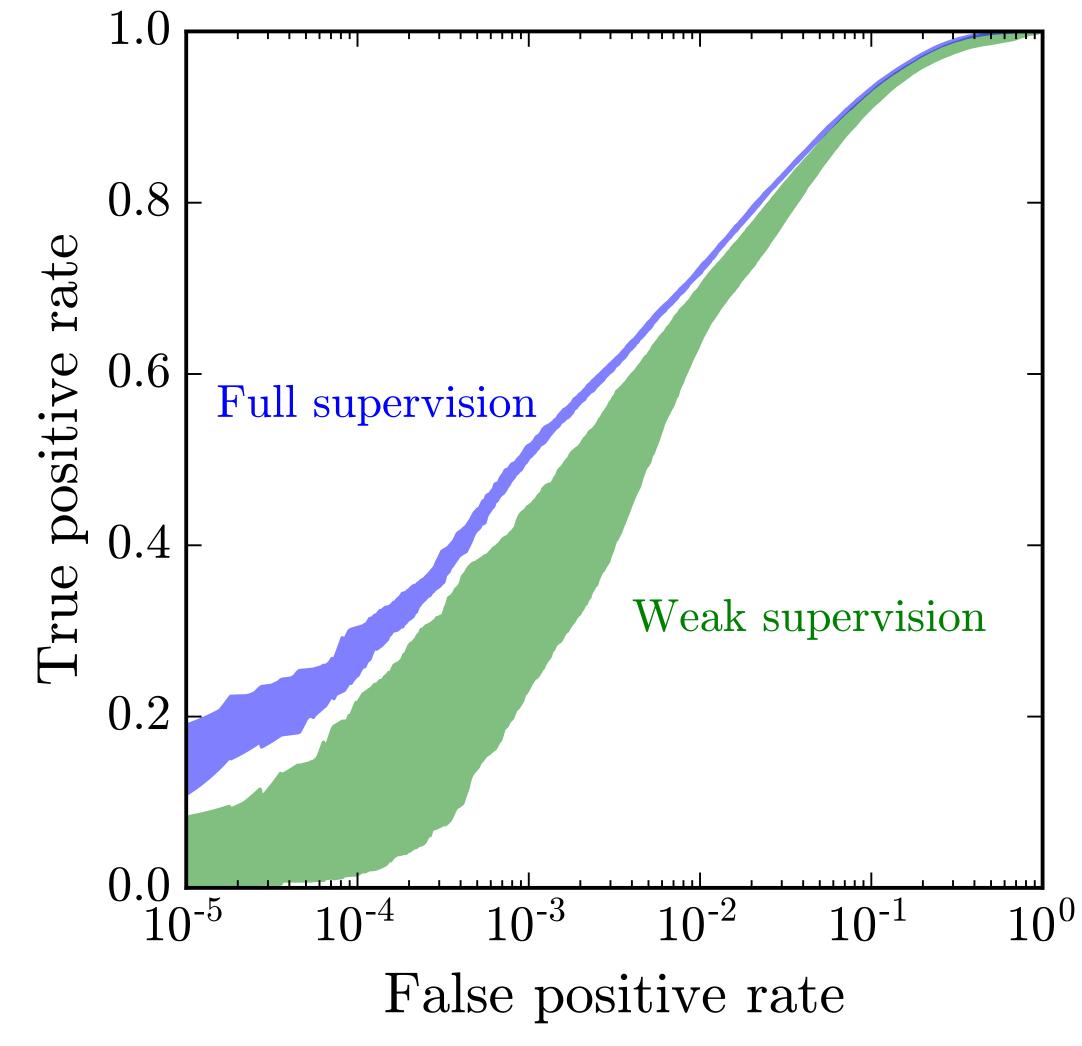


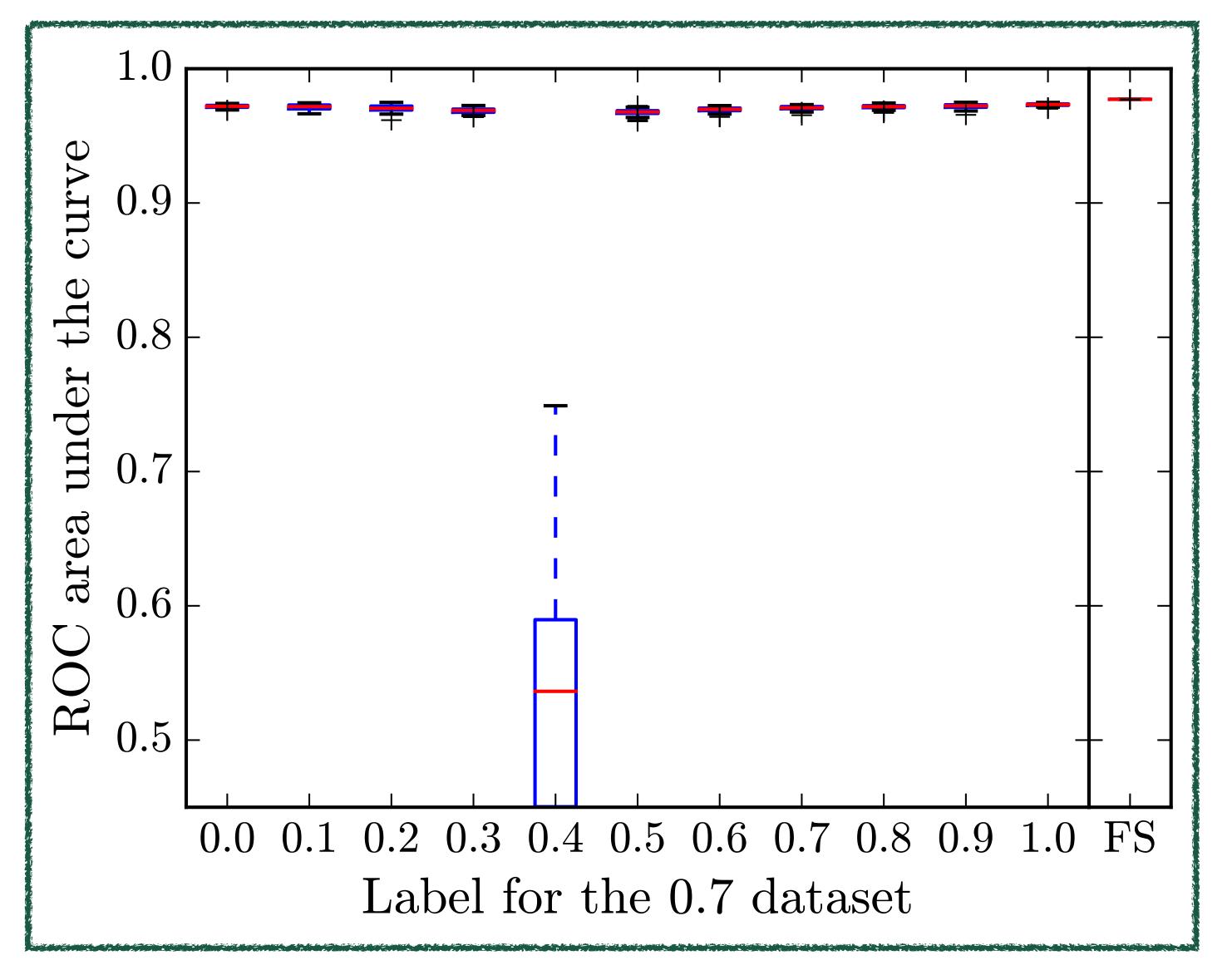
- Each event labeled with 0.4 or 0.7
- Using a loss function other than DNRS (LLP) works
- Weak and full supervision yield similar results





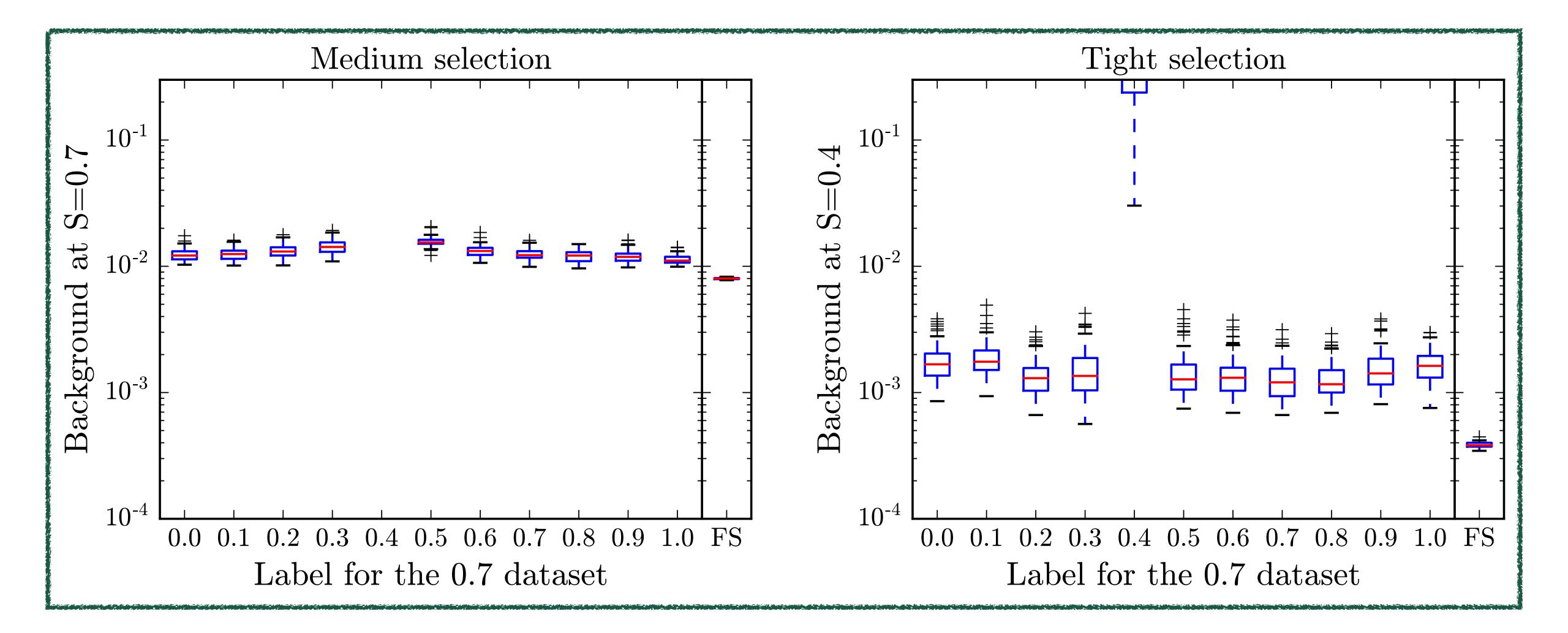
- Each event labeled with 0.4 or 0.7
- Using a loss function other than DNRS (LLP) works
- Weak and full supervision yield similar results



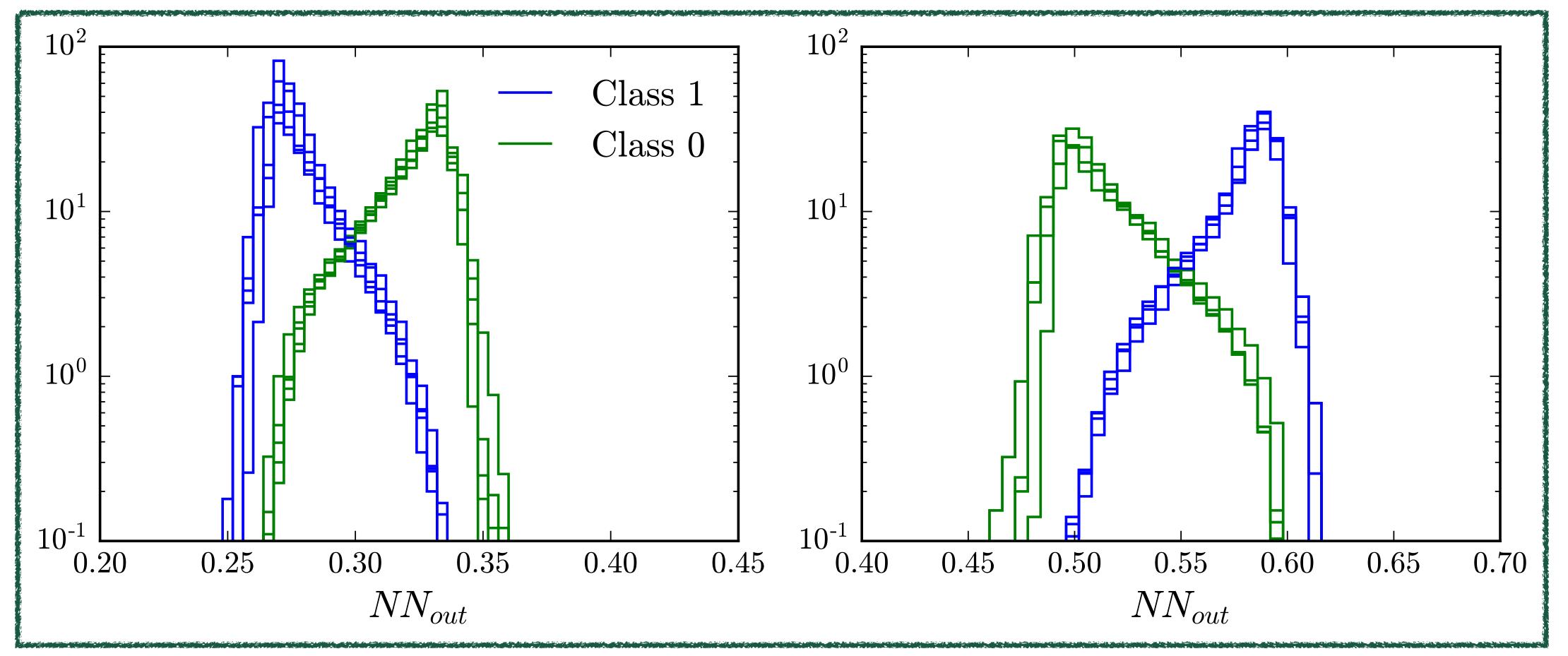


- Keep ratios fixed at 0.4 and 0.7 • Label the 0.7 set with a different number
- Test on original test set

Almost no dependence on the label!



How can the weak networks achieve similar results with the wrong information? Examine the output of the networks

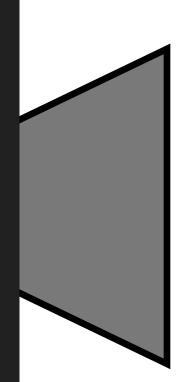


Toy model with 3 inputs

Bryan Ostdiek

ACME

Multi-variate analyzer



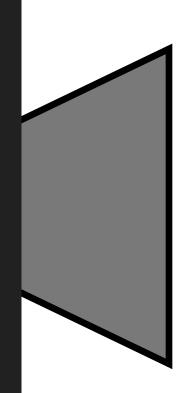
Outline

1. Introduction / Toy model

- What is weak supervision?
- How can it work?
- Is it robust?

ACME

Multi-variate analyzer



Outline

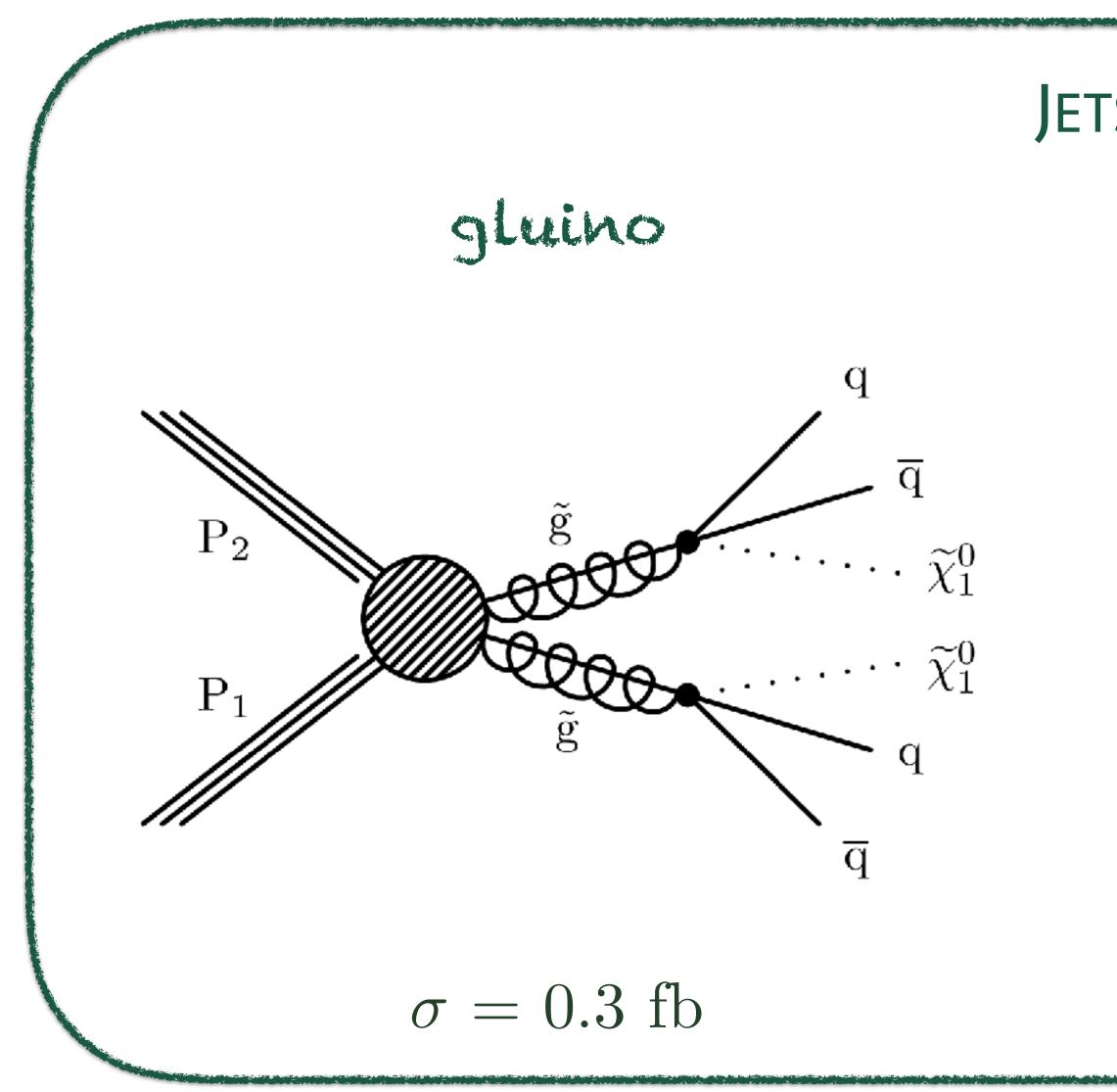
1. Introduction / Toy model

- What is weak supervision?
- How can it work?
- Is it robust?

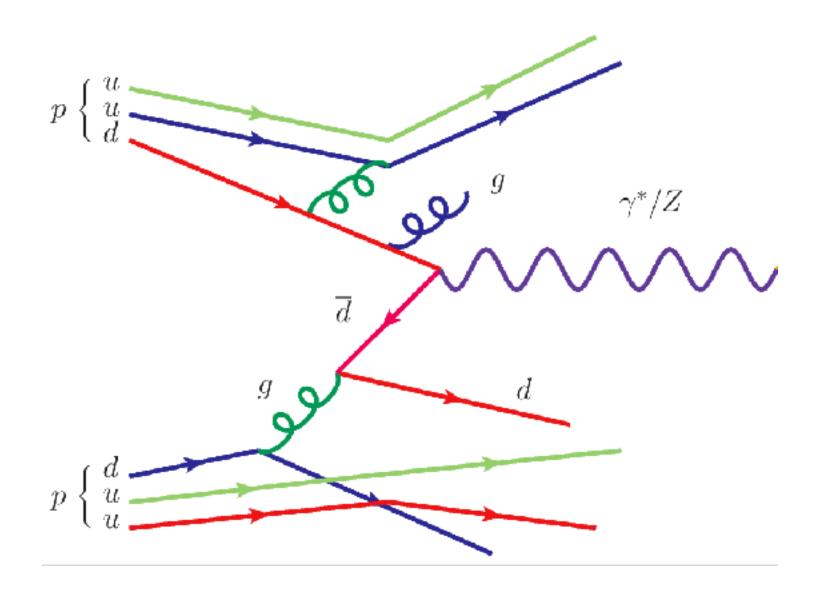
2. LHC Scenario

- Higher input dimension
- Application to unseen data
- Affects of mis-modeling
- Combination of Full and Weak

LHC Scenario



JETS + MET



 $\sigma = 28800 \text{ fb}$

VS

LHC Scenario



JETS + MET

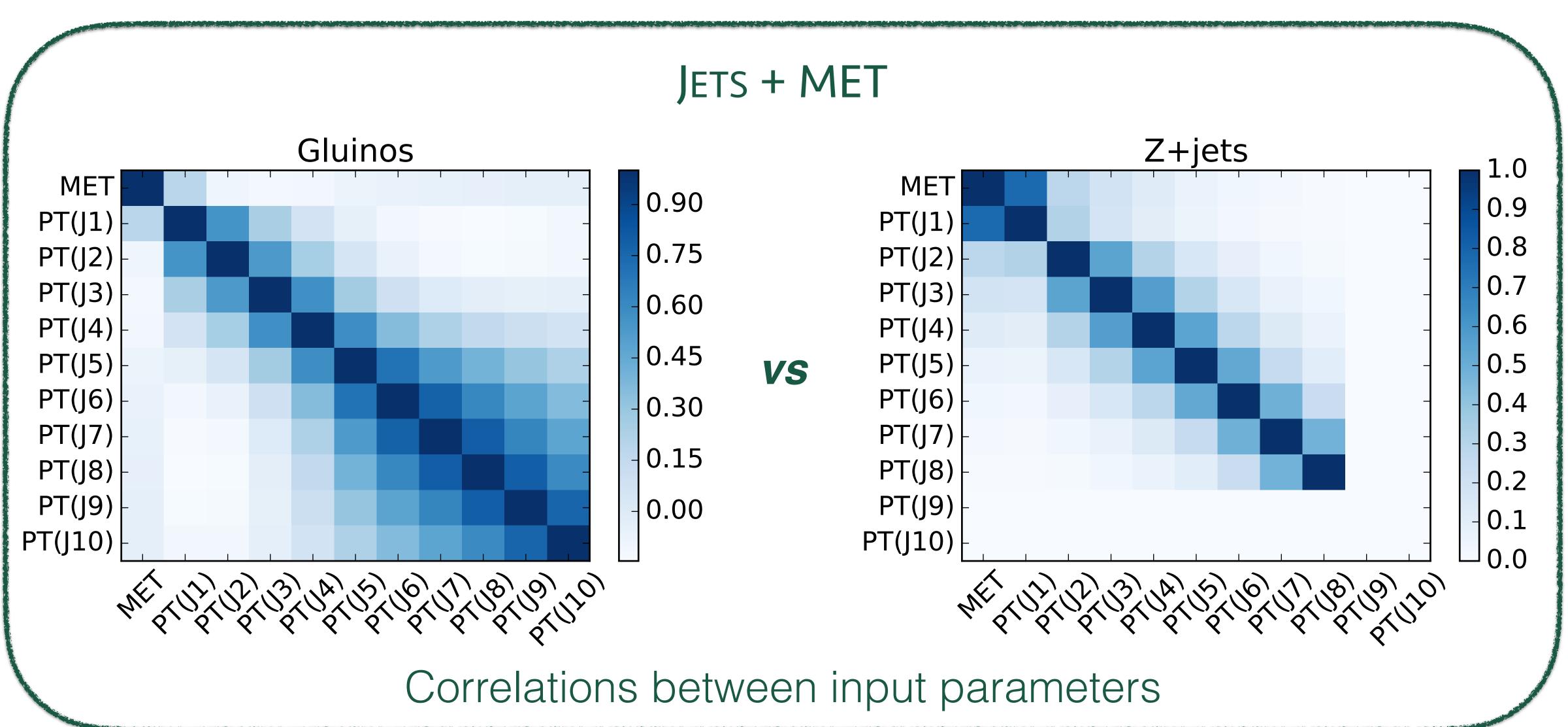
Z + iets Not trying to get the best, realistic search possible

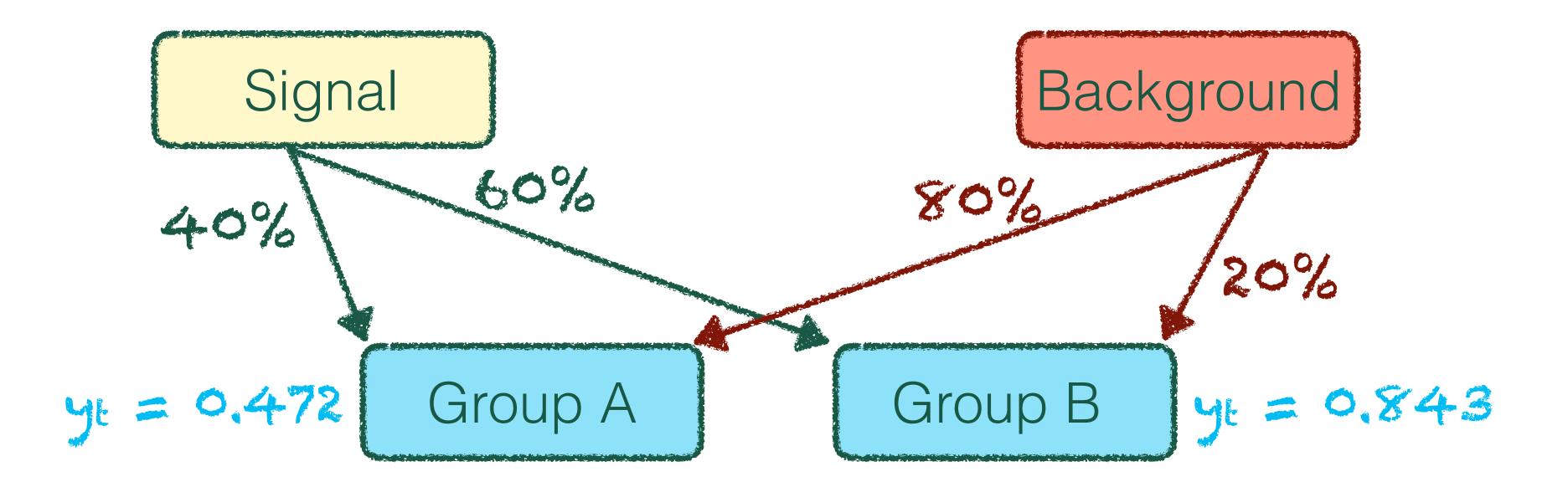
After basic cuts, 264K and 473K events left

 $E_T^{miss} > 200 \text{ GeV}$

 γ^*/Z

 $\sigma = 28800 \, {\rm fb}$





เสมสาขางที่สินในสีของให้เป็อหัสของหัวโองเสมส์สีวร์หนีได้	general con a si ha ha de la sana a de la concera con esta da ha de la constancia da con esta a con	n Ri da kulan sa kana da sa ang kana na kana na kana kana kana kan
Network	AUC	Signal efficiency
Full	0.99992393(31)	0.999373(17)
Weak	0.9998978(35)	0.999286(30)
\mathbf{U}	\mathbf{O}	gluino pair product
		t $Z + jet$ background acceptance of 0.

ays al

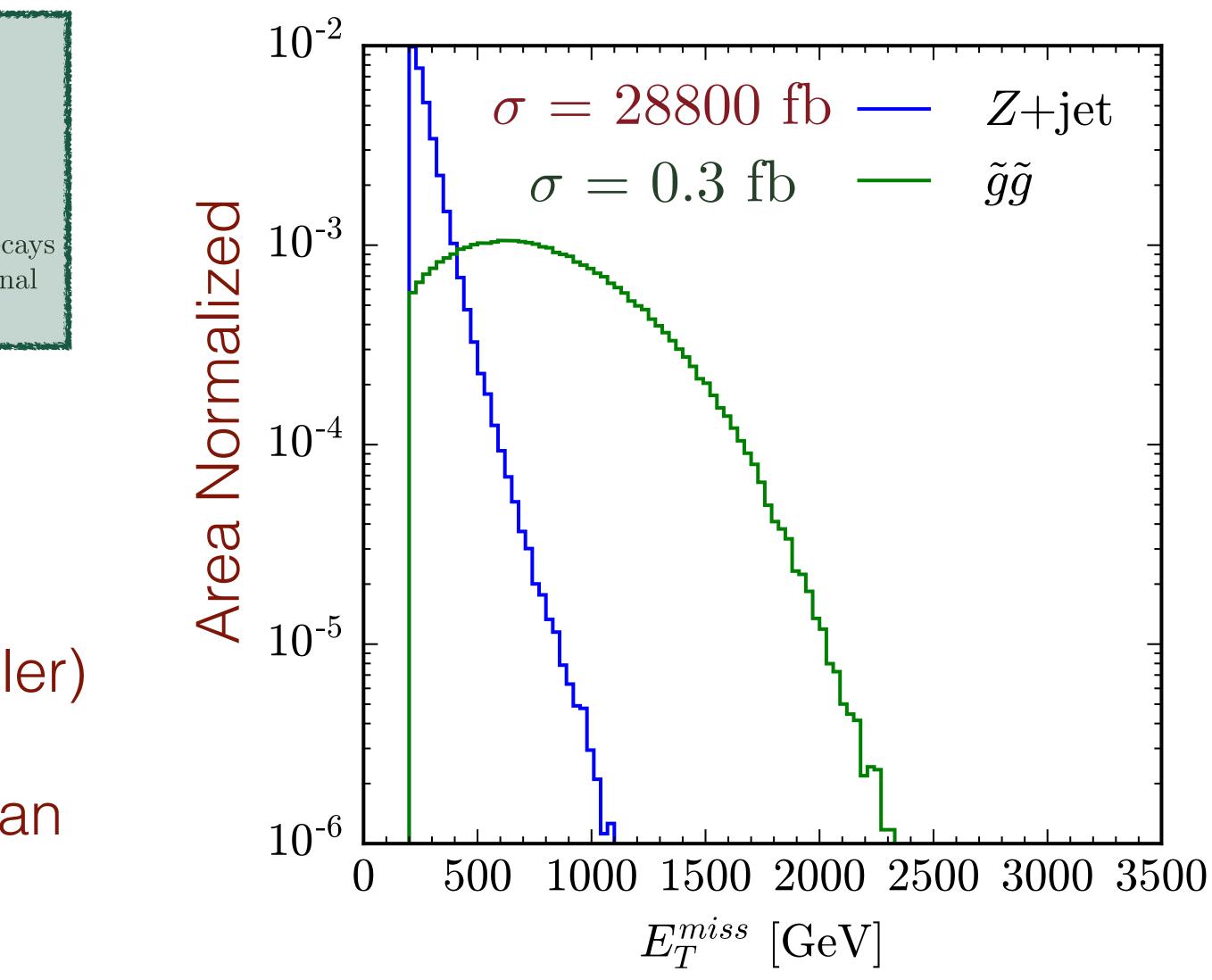
Networ		AUC	Signal efficiency
	Full	0.99992393(31)	0.999373(17)
	Weak	0.9998978(35)	0.999286(30)

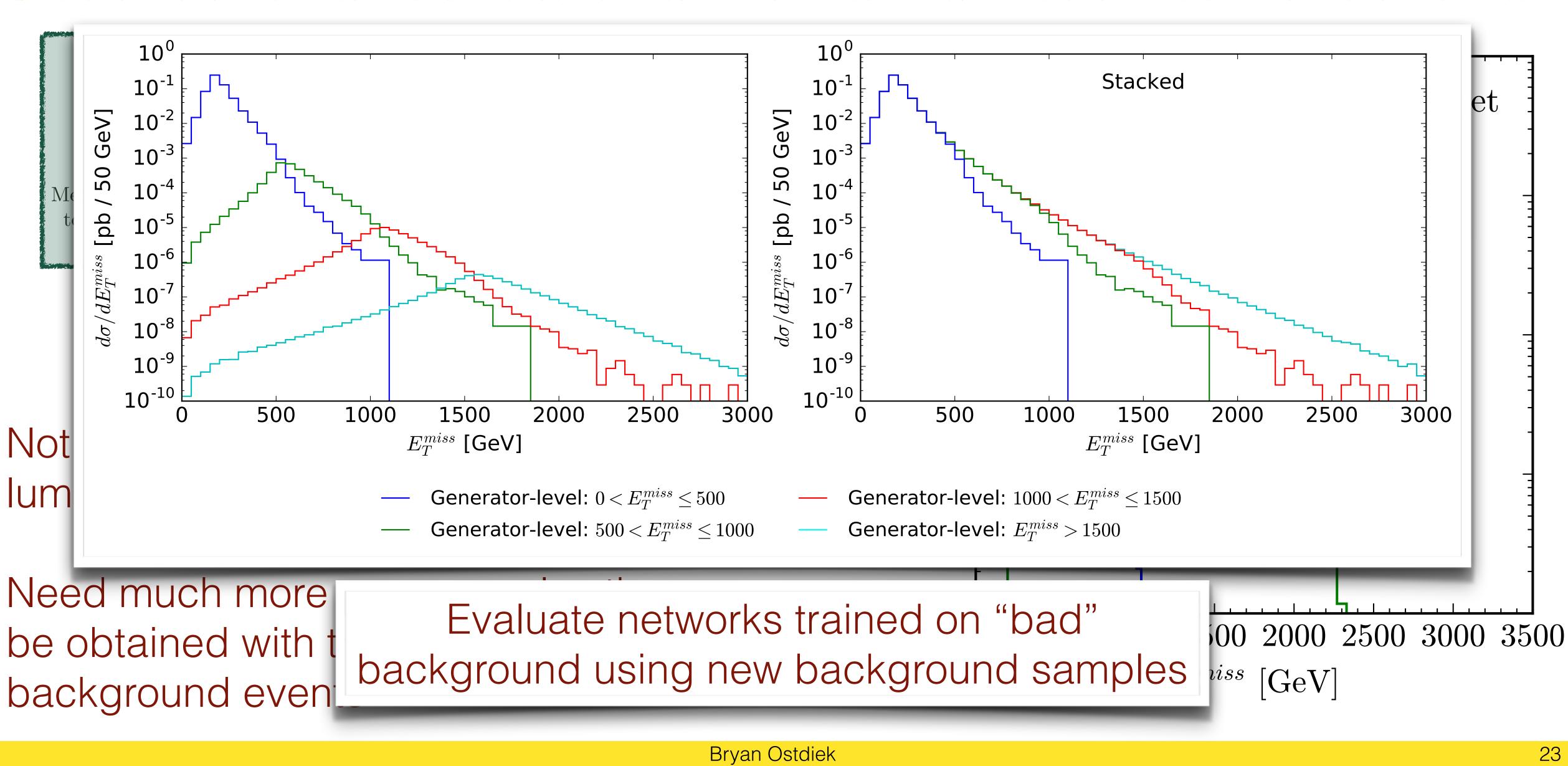
Metrics for training networks to distinguish gluino pair production with decays to 1st generation quarks from the dominant Z + jet background. The signal efficiency is given for a background acceptance of 0.01.

Can we trust this performance?

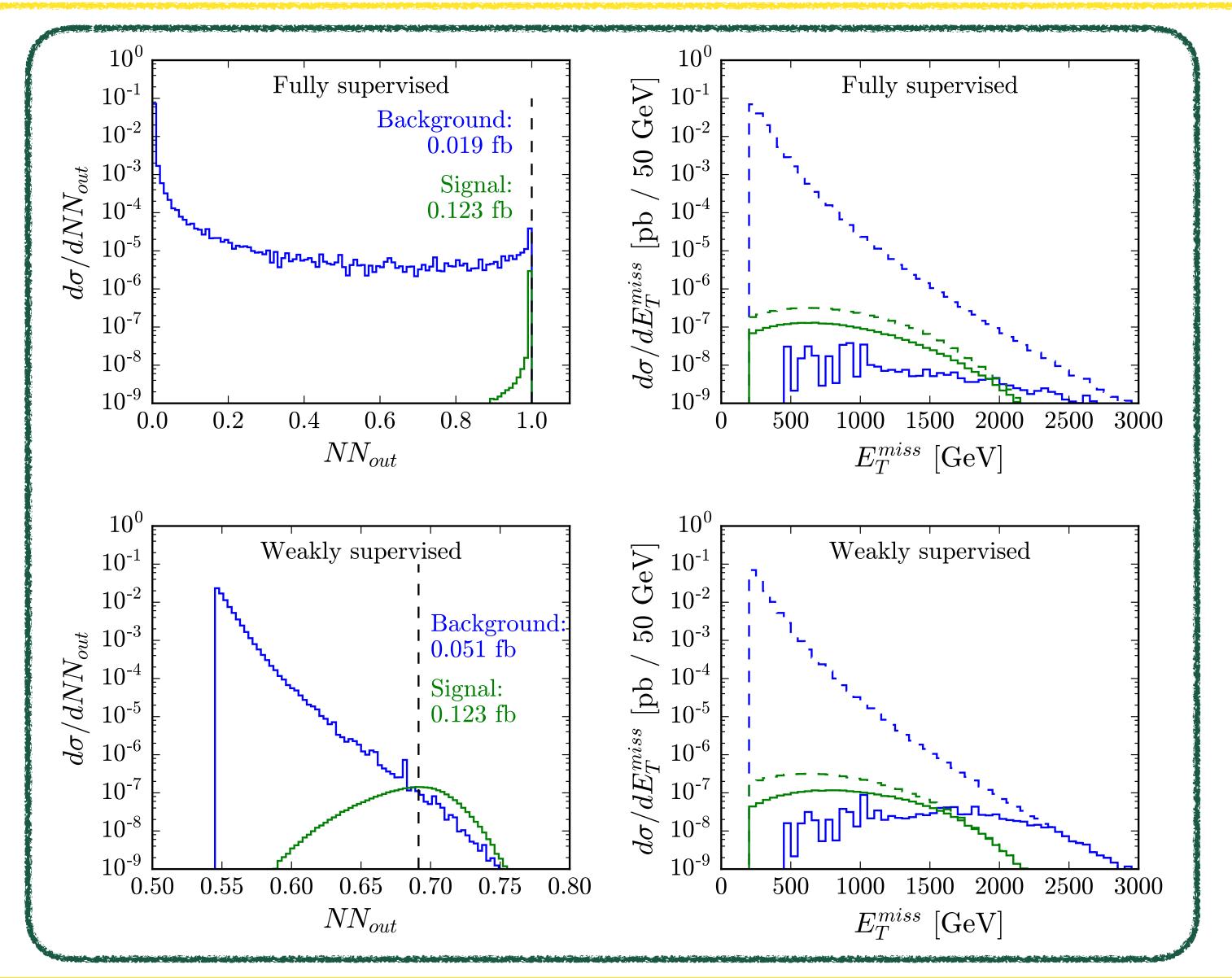
Not enough backgrounds (effective luminosity for backgrounds much smaller)

Need much more pure samples than can be obtained with the given number of background events





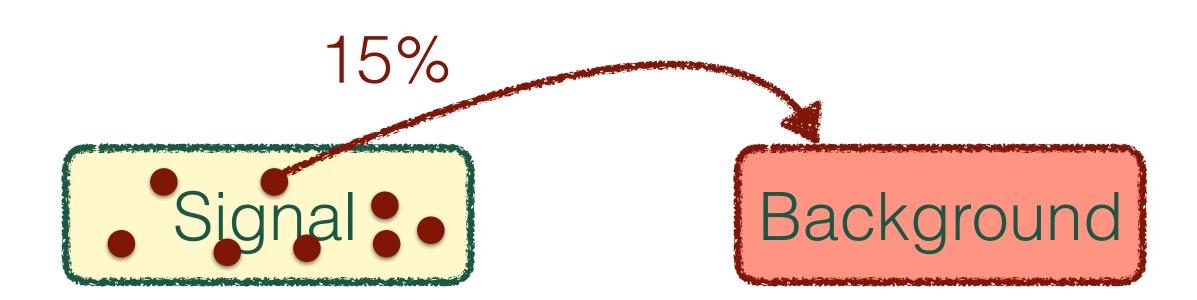
be obtained with t background even

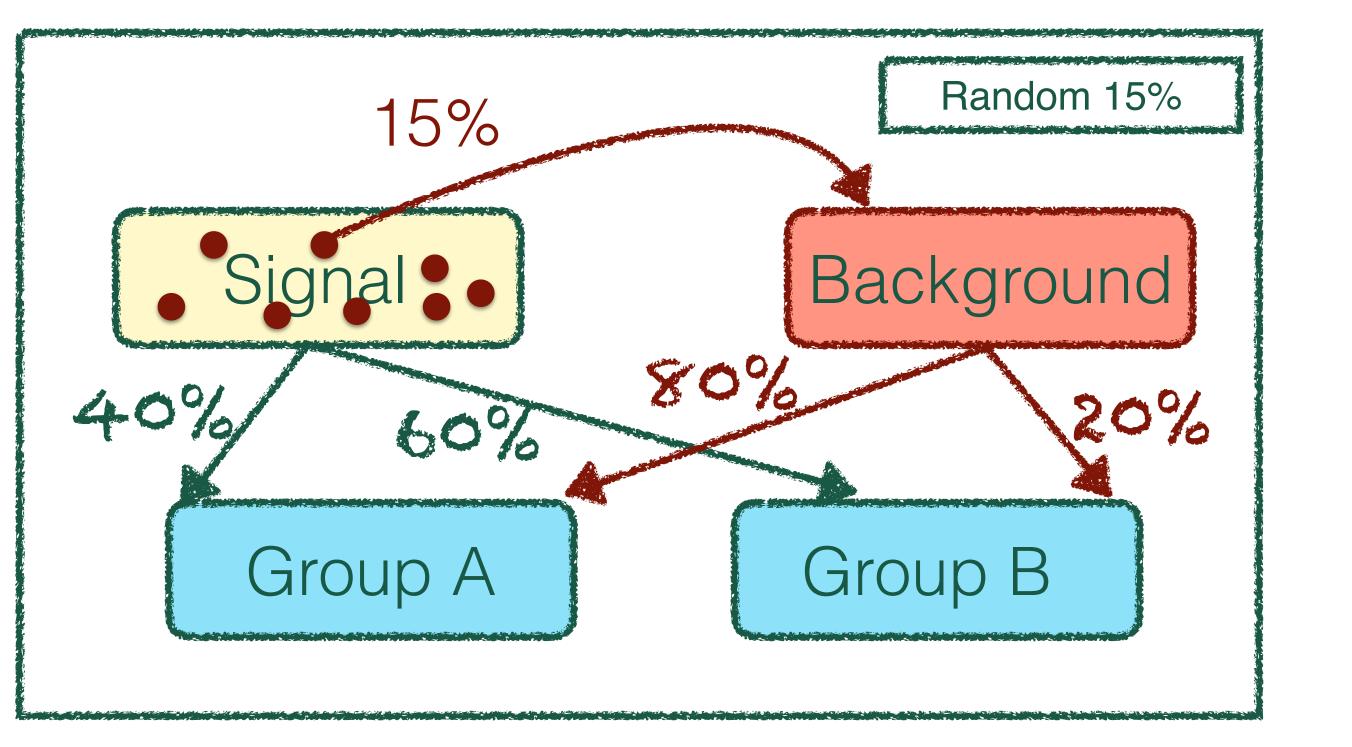


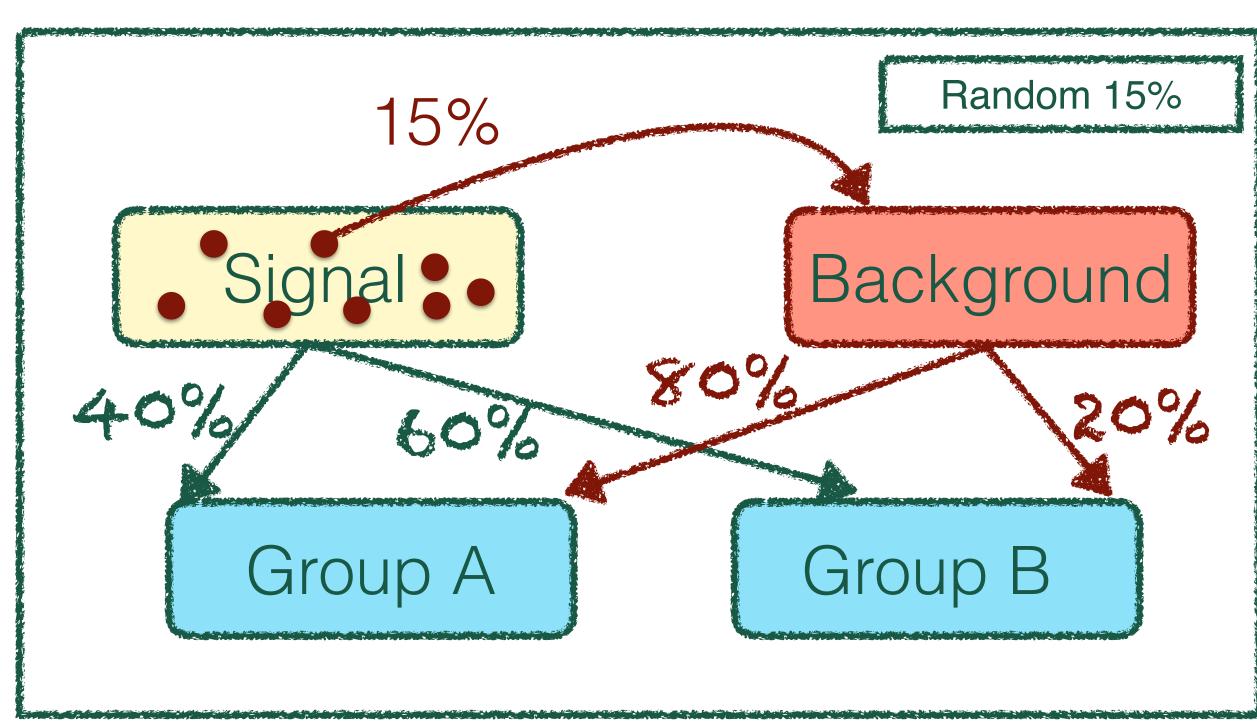
Cuts on network to give same signal count for both full and weak supervision.

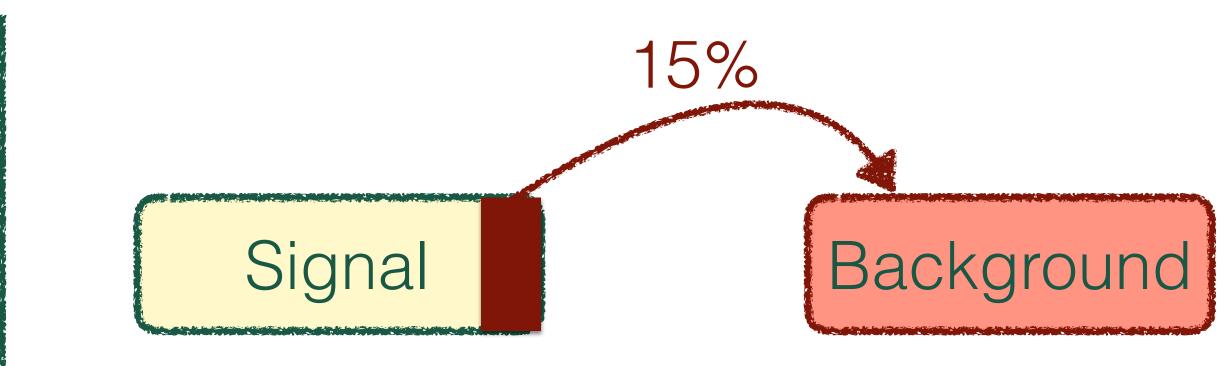
Dashed = before cut Solid = after cut

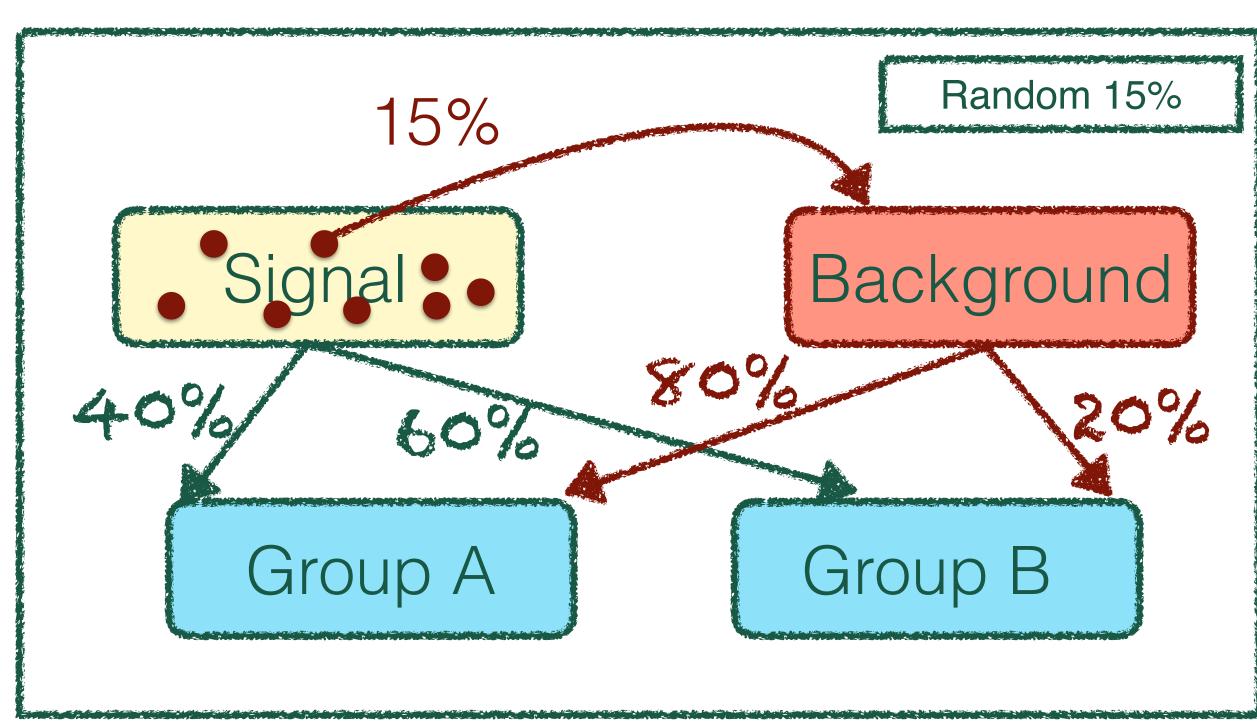
Signal

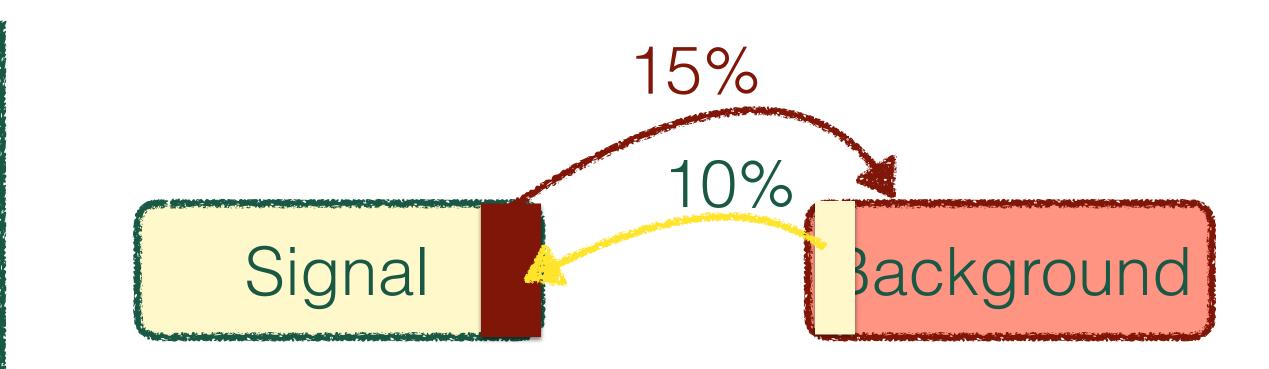


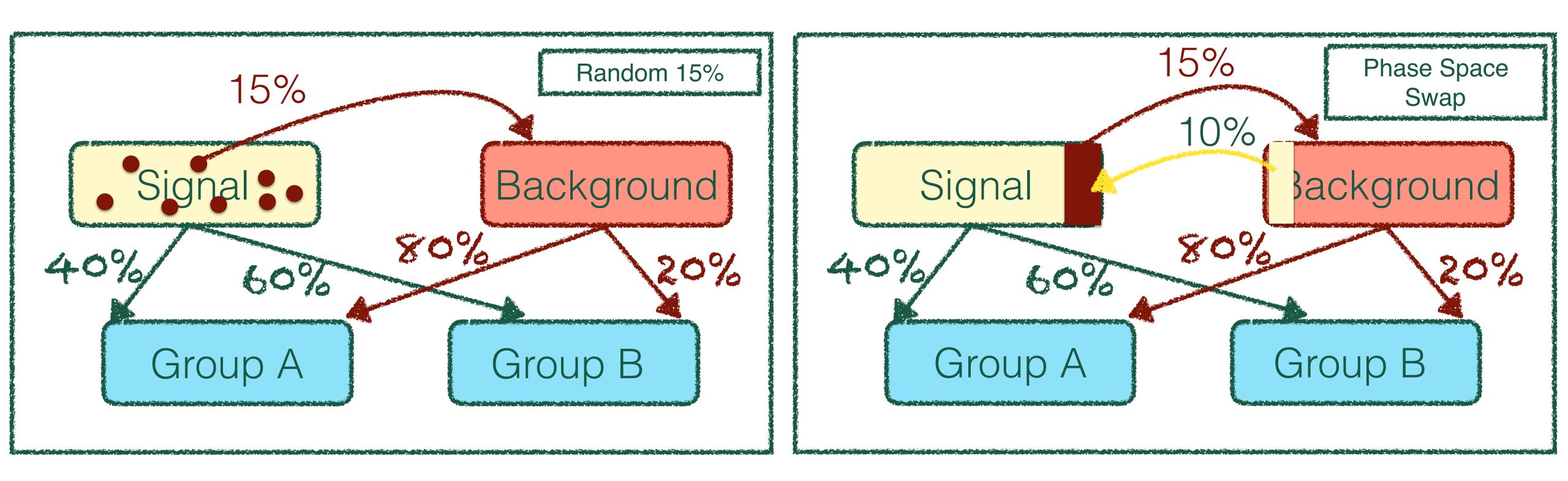




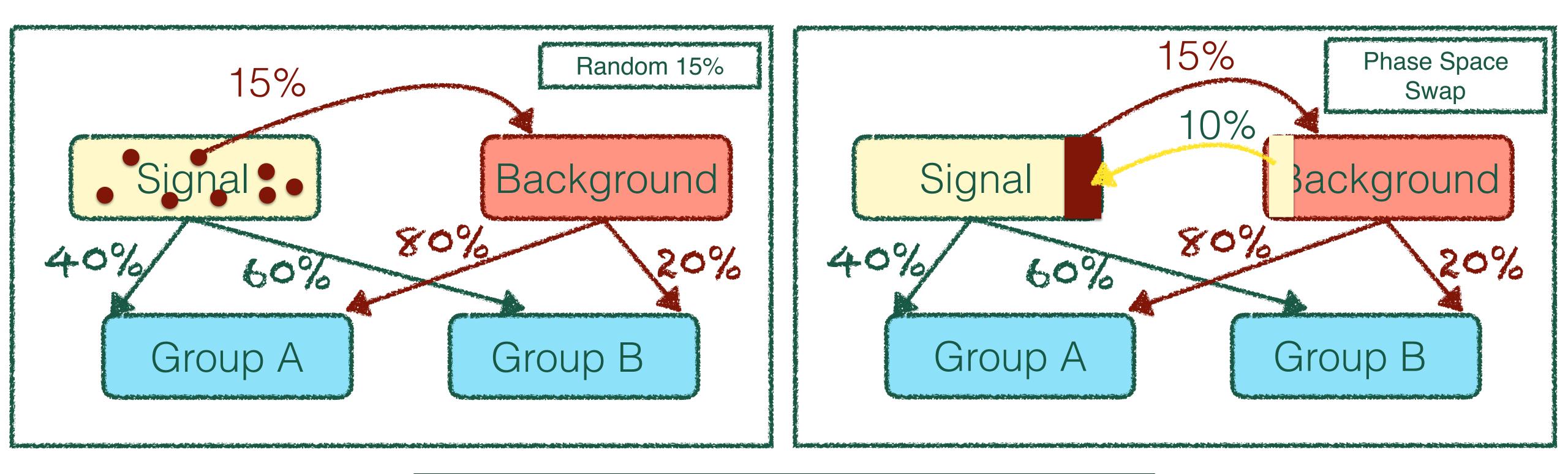






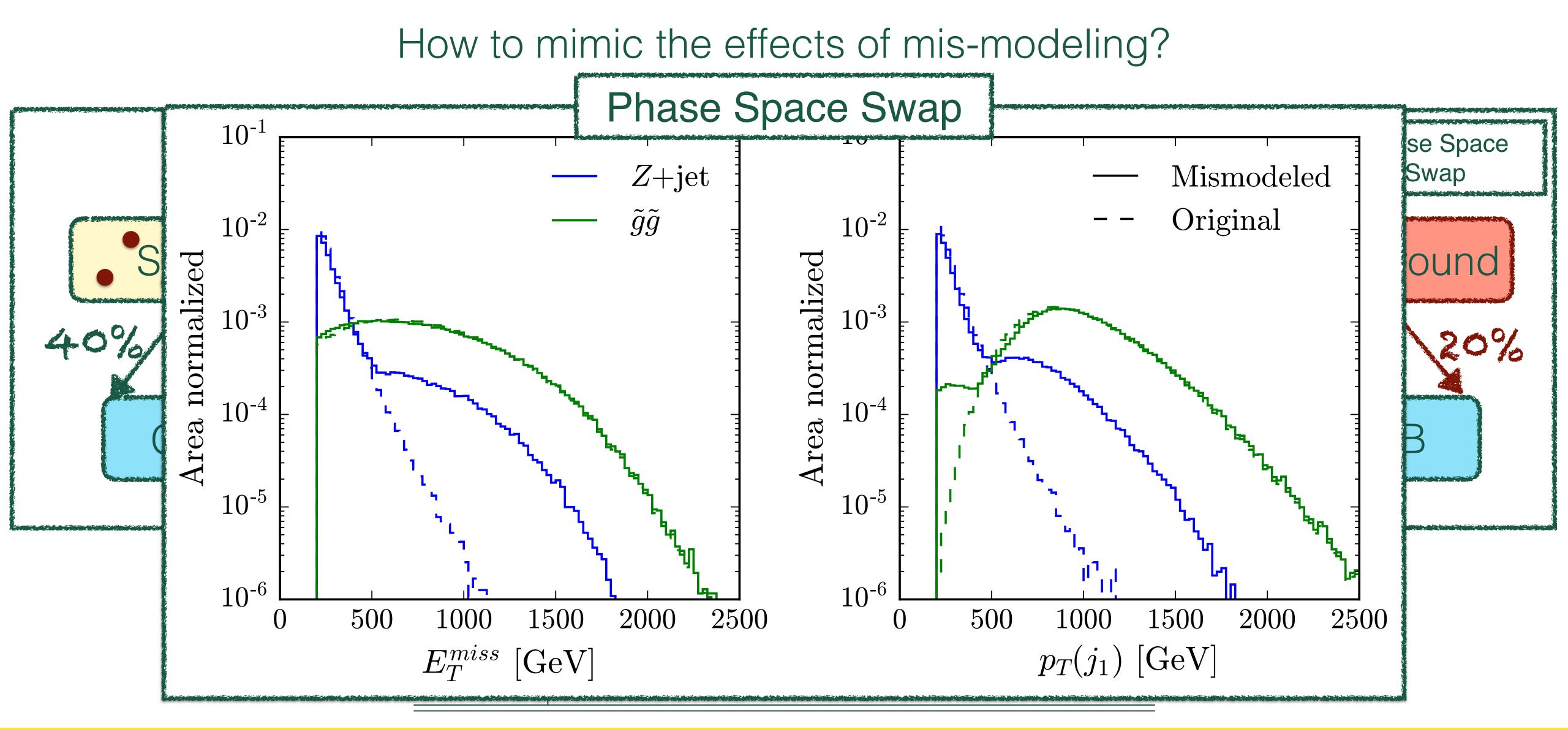


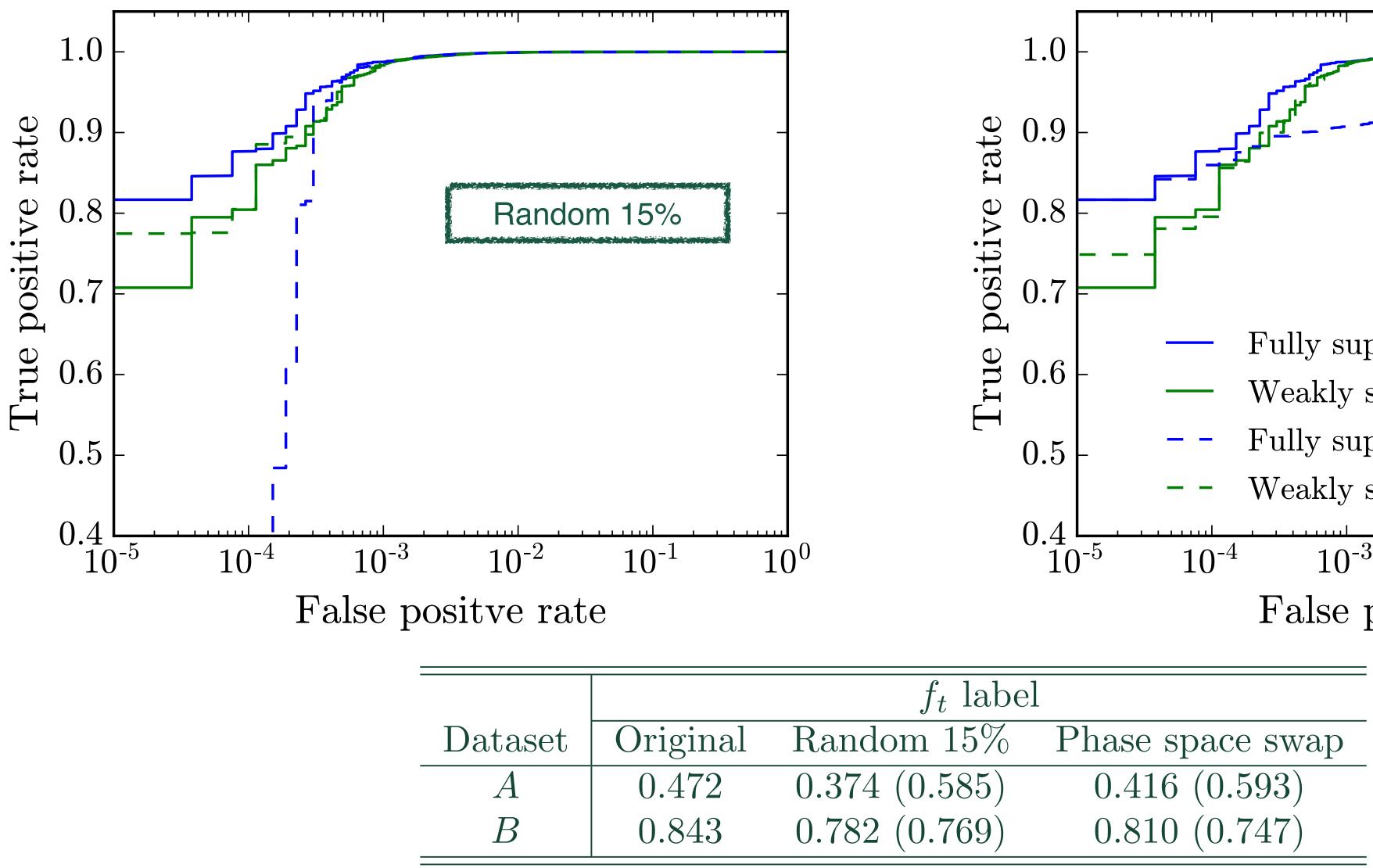
How to mimic the effects of mis-modeling?

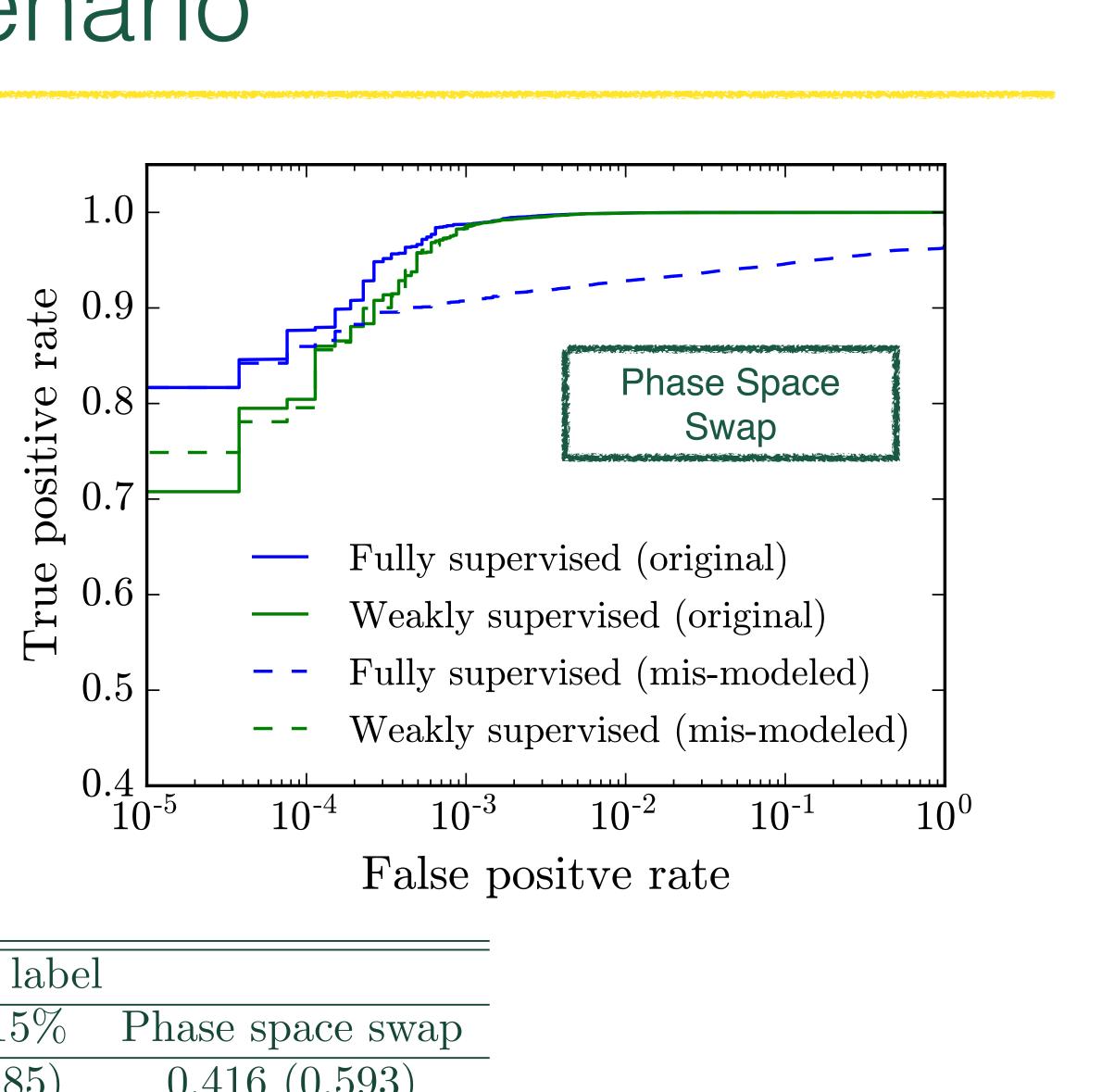


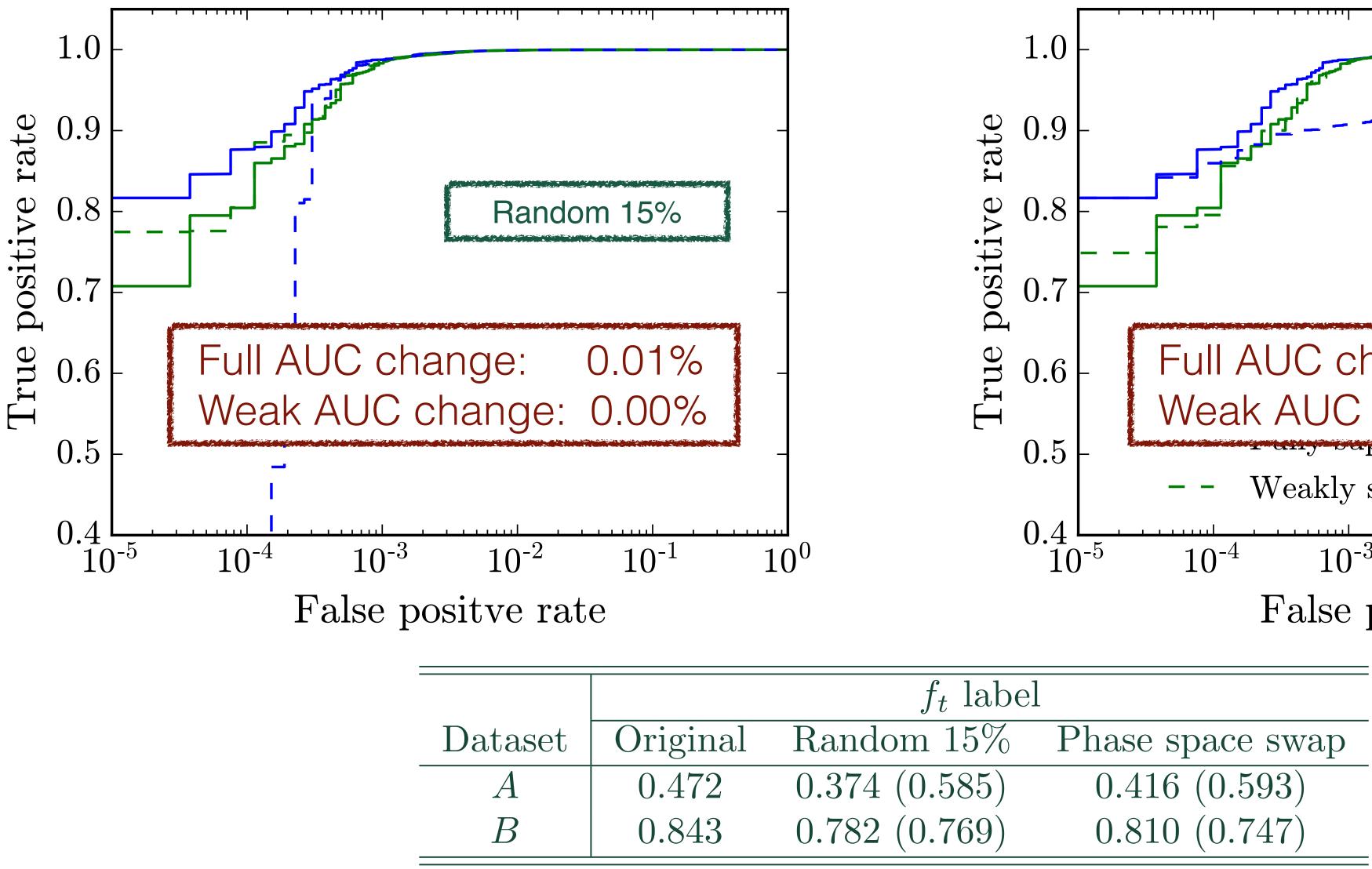
Dataset	Original	Ra
A	0.472	0.6
B	0.843	0.7

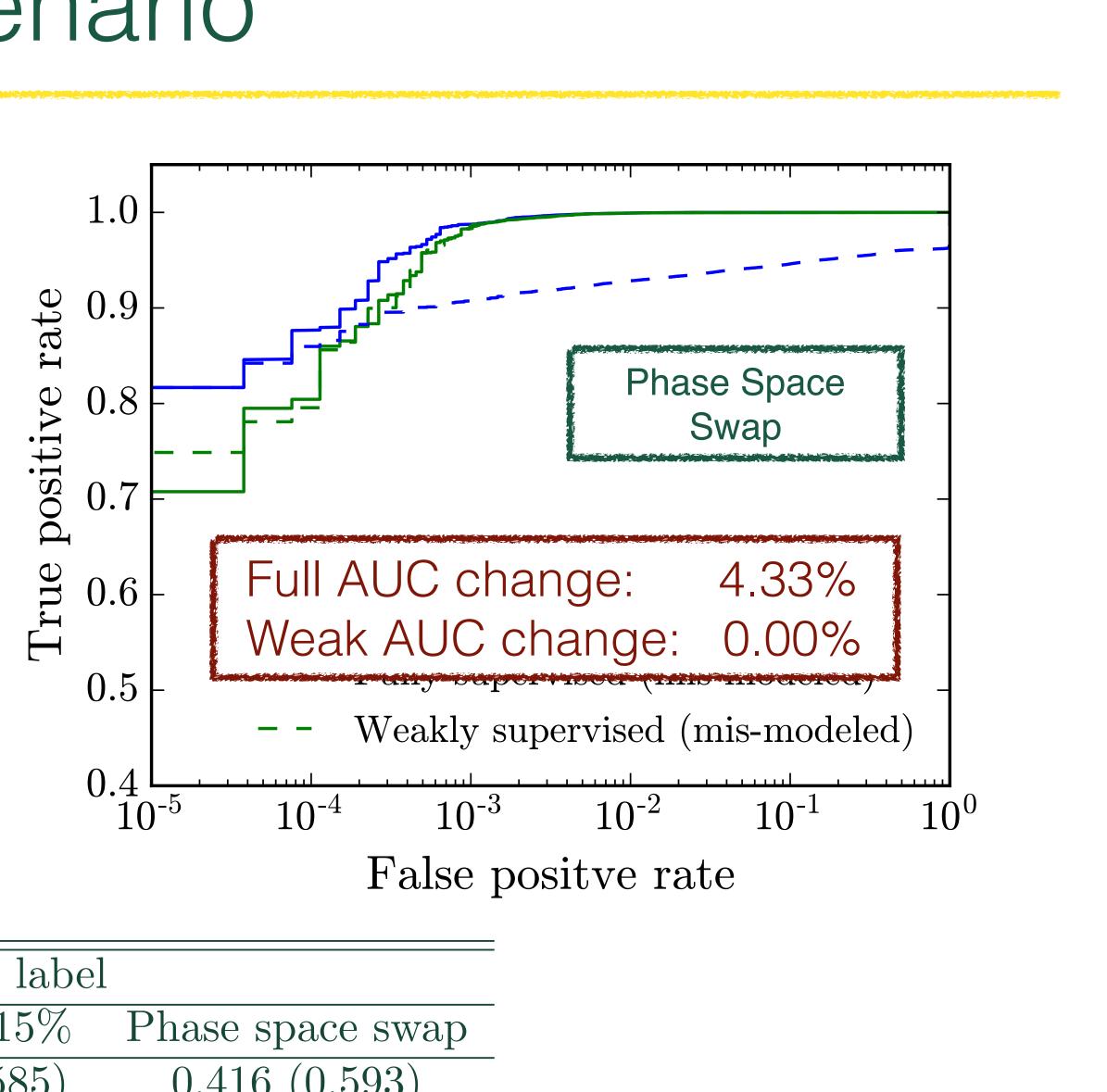
f_t label	
ndom 15%	Phase space swap
$374 \ (0.585)$	$0.416 \ (0.593)$
$782 \ (0.769)$	$0.810 \ (0.747)$







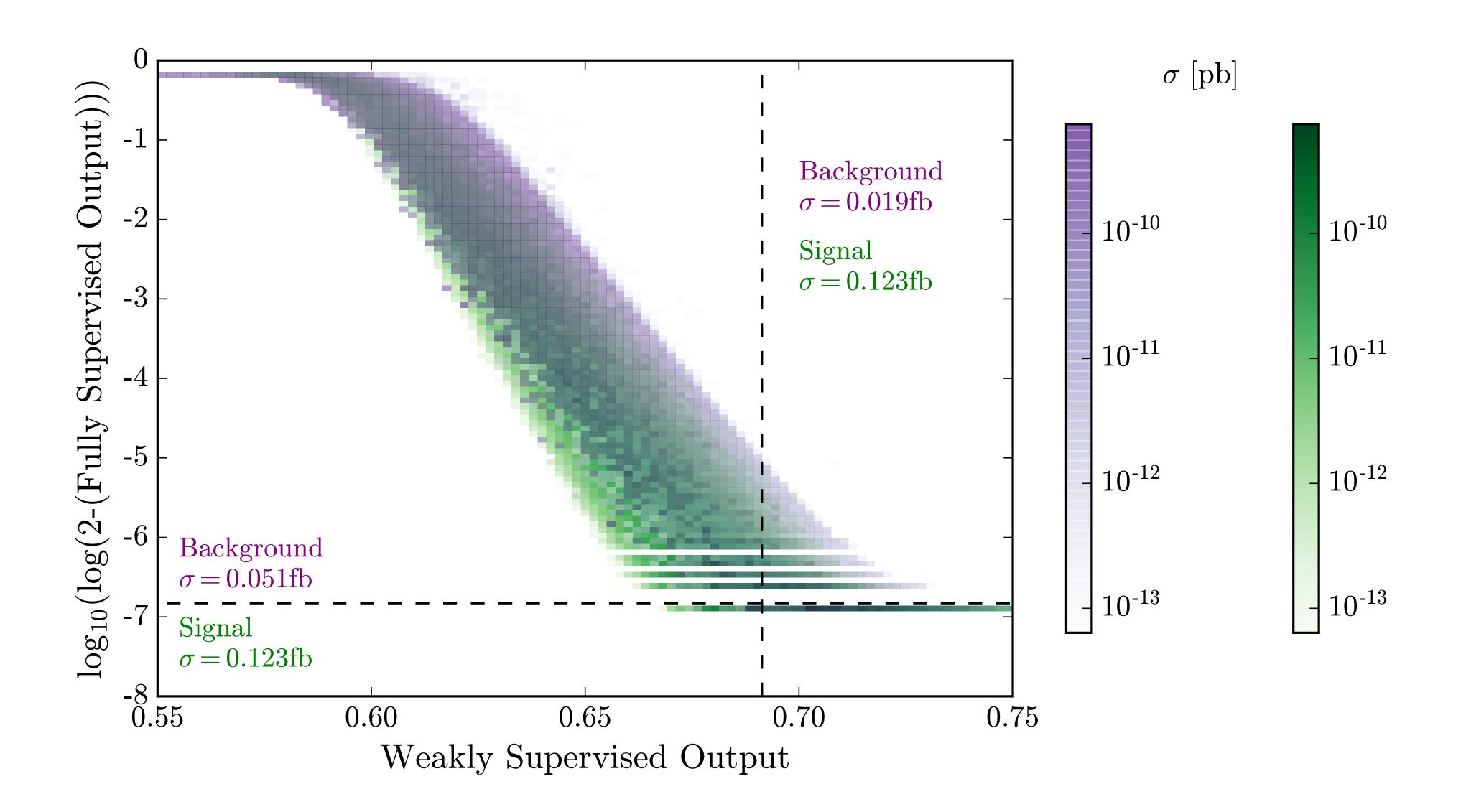


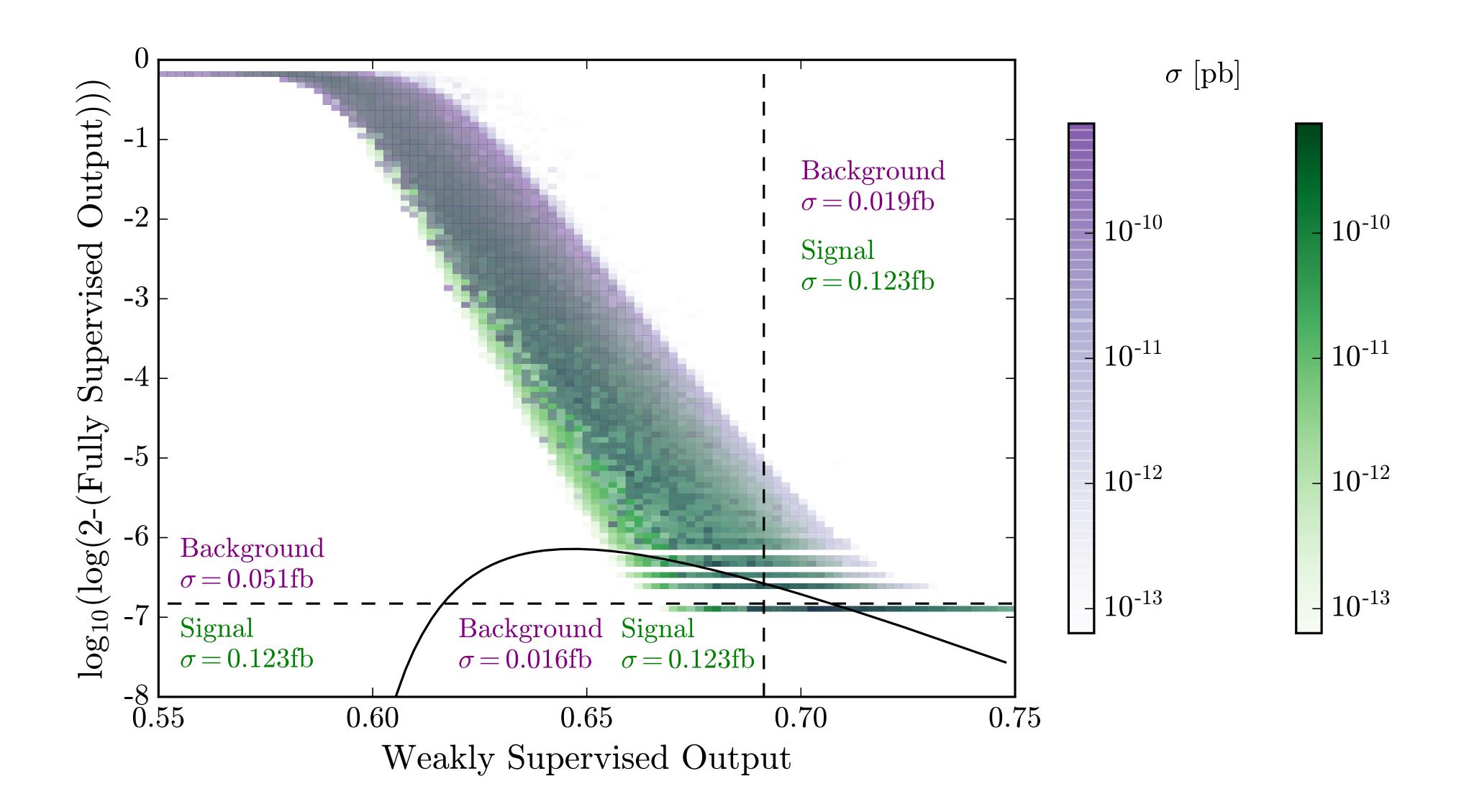


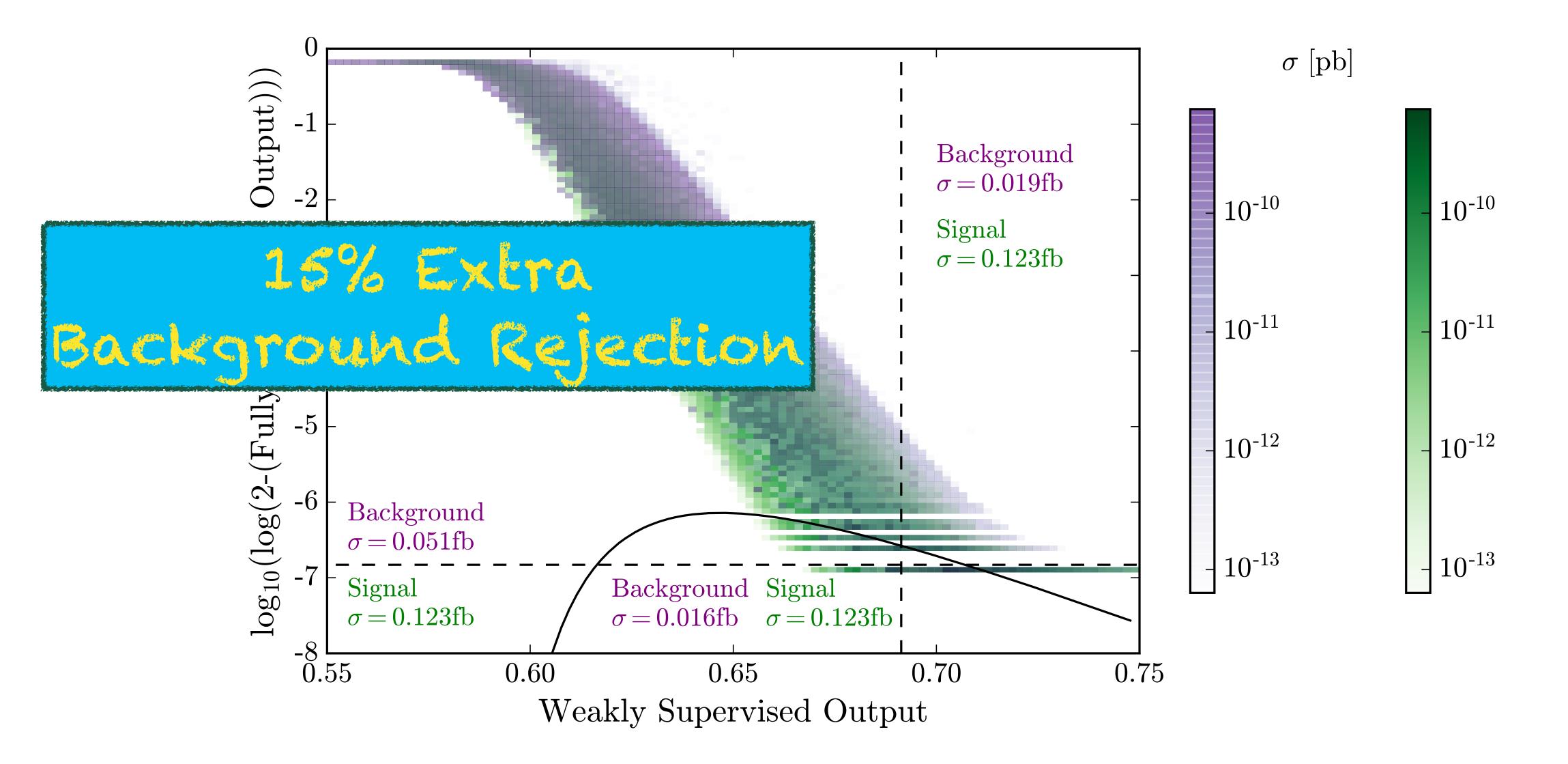
Event-by-event do both networks vield same classification?

- Both full and weak supervision capable of great classification
- Same network architecture, training method, and loss function are used

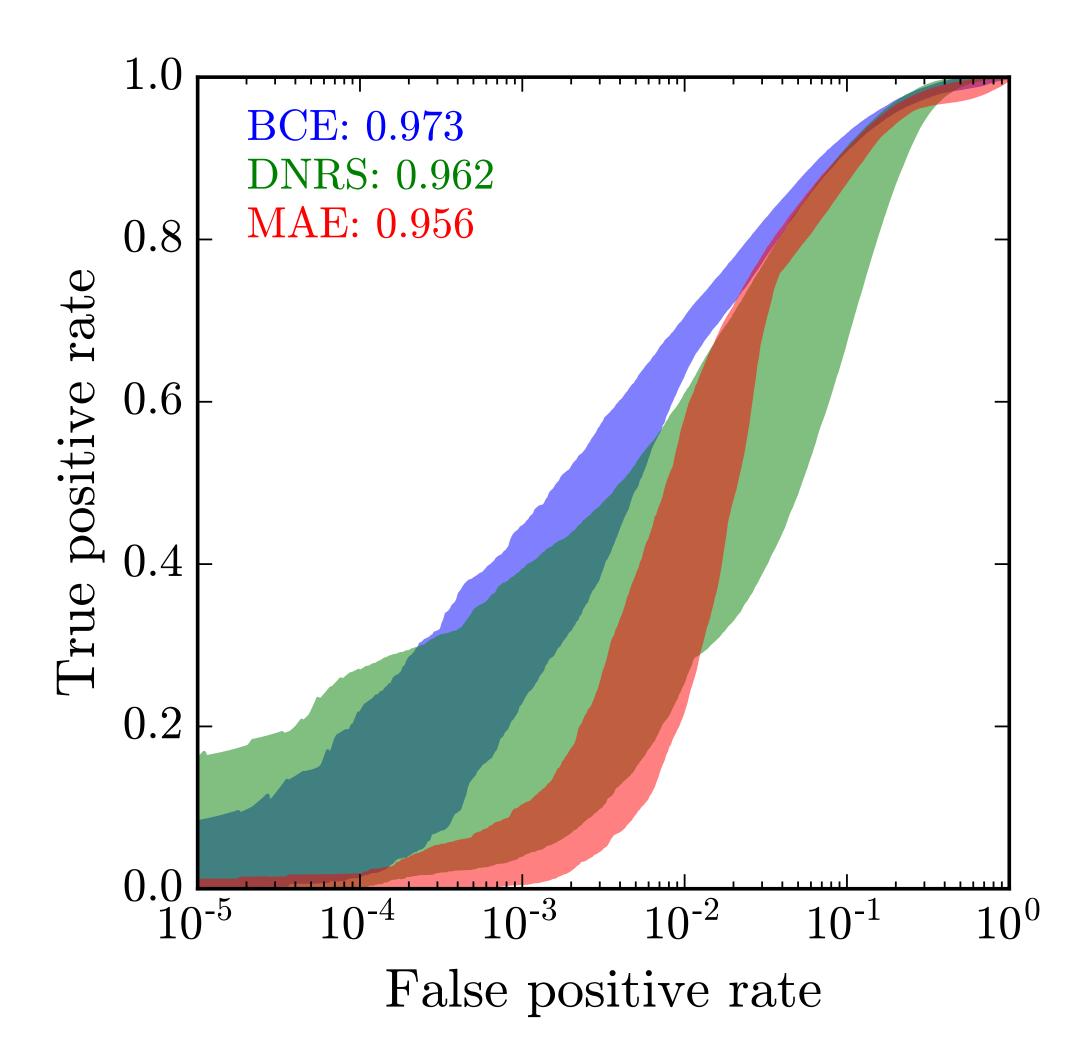
27







Choice of loss function matters



Property	LLP	CWoLa
No need for fully-labeled samples	 ✓ 	✓
Compatible with any trainable model	1	1
No training modifications needed	×	✓
Training does not need fractions	×	✓
Smooth limit to full supervision	×	✓
Works for > 2 mixed samples	1	?

TABLE I. The essential pros (\checkmark), cons (\checkmark), and open questions (?) of the CWoLa and LLP weak supervision paradigms.

Komiske, Metodiev, Nachman, and Schwartz [<u>1801.10158</u>]

Highlights

- Weak supervision: training on mixed data sets.
- Closer model of quantum reality.
- Robust to mismodeling.
- Analytic arguments.

Conclusion

Open Questions

- Why does weak supervision not match full supervision performance?
- Can weak supervision be done on multi-class problems?
- Particular LHC scenarios which would work?
- How to validate?
- Can this work with small amounts of data?

