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Boosted Objects
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Boosted Objects
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Jet Tagging

Goal: identify initial 
particle that caused the jet
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Analysis Applications
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Analysis Applications
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W/Z/H

“Mono-X”

MET

VV resonance (heavy) Z’→tt

Generally want to enhance signal containing 
known objects over QCD background:

W+

W-
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Well-understood 
decays
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Analysis Applications

arXiv:1602.07727

Pet project:
Very low-mass resonances
• Existing direct limits were set 

in the 90’s! 

• Typically hard to access: 
trigger thresholds increase 
with luminosity and sqrt(s)!
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Solution: Trigger on something else!

https://arxiv.org/abs/1602.07727


Chase Shimmin (Yale University)

Analysis Applications
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CMS-EXO-17-001

New!

ATLAS-EXOT-2017-01

http://cms-results.web.cern.ch/cms-results/public-results/publications/EXO-17-001/
https://atlas.web.cern.ch/Atlas/GROUPS/PHYSICS/PAPERS/EXOT-2017-01/
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Jet Substructure
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QCD jet W jet

arXiv:1603.09349

In addition to possible resonance mass, 
boosted jets have distinctive structure:

https://arxiv.org/abs/1603.09349
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Substructure Variables
• Many theoretically motivated tools to quantify jet 

substructure, e.g. N-subjettiness, ECF…
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τ2/τ1 τ3/τ2

arXiv:1011.2268

https://arxiv.org/abs/1011.2268
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Multivariate Taggers

Multivariate taggers 
(BDT, NN) in general 
can do even better!
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arXiv:1511.05190

NN vs.  τ21

https://arxiv.org/abs/1511.05190
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Mass Correlation
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Problem: cutting on taggers distorts mass spectrum

https://arxiv.org/abs/1603.00027
https://arxiv.org/abs/1703.03507
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Mass Correlation
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ATL-PHYS-PUB-2017-004

Problem: cutting on taggers distorts mass spectrum

BG and Signal
look the same!

https://arxiv.org/abs/1603.00027
https://arxiv.org/abs/1703.03507
http://atlas.web.cern.ch/Atlas/GROUPS/PHYSICS/PUBNOTES/ATL-PHYS-PUB-2017-004/
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Mass Correlation
Correlation with the observable of interest is bad!
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Before cuts: 
low SNR

jet mass

what w
e want

what actually 
happens…

QCD

signal

signal

QCD

After cuts: 
improved SNR + BG sidebands

After cuts: 
BG looks like signal

jet mass

jet mass

CR looks different from SR
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De-Correlation
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arXiv:1603.00027

DDT

“DDT” (Designing Decorrelated Taggers) paper:

 Proposes explicit transformation to decorrelate τ21 variable

(τ21 from N-subjetiness substructure) 

^

https://arxiv.org/abs/1603.00027
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DDT Method
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DDT Method
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arXiv:1603.00027

Then, linear trend explicitly subtracted
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DDT Method
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arXiv:1603.00027

Then, linear trend explicitly subtracted

⌧ 021 = ⌧21 �M ⇥ ⇢0

⇢0⇢0

Determined empirically

Much Flatter!

h⌧
0 2
1
i

h⌧
0 2
1
i

https://arxiv.org/abs/1603.00027
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DDT Method

 20

Much less sculpting of background
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DDT Method

• DDT method used  
very successfully by 
CMS in low-mass Z’ 
search

 21

CMS-PAS-EXO-16-030

http://cms-results.web.cern.ch/cms-results/public-results/preliminary-results/EXO-16-030/
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DDT Method

 22

arXiv:1603.09349

However:

• It has been shown that 
combining more 
information in tagger gives 
better results 

• DDT is doesn’t seem to 
work well for other 
variables 

• Difficult to generalize to 
multiple variables

τ21 tagger Multivariate tagger

https://arxiv.org/abs/1603.09349
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Generalization

• We would like to generalize this decorrelation approach for 
arbitrary classifiers 

• Some proposed approaches: 

• multivariate DDT via PCA arXiv:1603.00027 

• uGBoost: add loss to enforce “flatness” arXiv:1410.4140 

★ Adversarial “pivot” / domain adaptation: arXiv:1611.01046
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We investigate this approach

https://arxiv.org/abs/1603.00027
https://arxiv.org/abs/1410.4140
https://arxiv.org/abs/1611.01046
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Adversarial Decorrelation
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Classifier

Basic idea:

X fc(X)

Classifier is trained to identify signal jets

Jet features 
(pT, m, τ21, …)

Prob(signal)
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Adversarial Decorrelation
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Classifier

Adversary is trained to 
                         predict jet mass

X fc(X)

Adversary

fa(fc(X))

Jet Mass 
Regression

(binned)
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Adversarial Decorrelation
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Adversarial Decorrelation
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Classifier

X fc(X) fa(fc(X))

Lclassifier Ladversary

Loss functions for 
each subnet 

(e.g. categorical x-entropy)

Adversary
Binary cross-entropy 

(i.e. boson or not boson)
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Adversarial Decorrelation
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Classifier

X fc(X) fa(fc(X))

Lclassifier Ladversary

Loss functions for 
each subnet 

(e.g. categorical x-entropy)

Adversary
Mean-squared error 

(i.e. guess the true mass)
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Adversarial Decorrelation
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Classifier

X fc(X) fa(fc(X))

Lclassifier Ladversary

Simultaneously minimize:

Ladversary 
and 

Ltagger = Lclassifier - λLadversary

Adversary
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Adversarial Decorrelation

 30

Classifier

X fc(X) fa(fc(X))

Lclassifier Ladversary

Simultaneously minimize:

Ladversary 
and 

Ltagger = Lclassifier - λLadversary

Adversary

Translation: 
The adversary penalizes the 

classifier for providing outputs 
that can be used to infer mass.
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Training
• Simultaneous optimization achieved with gradient scaling layer

• Signal events are given zero weight in adversary loss
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Classifier

X fc(X) fa(fc(X))

Lclassifier Ladversary

Adversary

-λ ∂L/∂θ
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Implementation Note
• In Keras, this is implemented as a network with two outputs and two loss 

functions 

• The whole network is trained w/ loss: 
Lfull = L1 + w2L2 

• So the effective value of λ for gradient-reversal scaling of g will be: 
λ = g/w2

 32
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Results

 34

✓ Tagger profile 
  much flatter

Training on ~200k 
MC events:  

    Sherpa γ+jet 
    MG5 γ+Z’ 
    Pythia + Delphes

(BG) 
(Signal) 
(Both)
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Results

 35

✓ BG distortion considerably reduced

Sherpa γ+jet Sherpa γ+jet
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BG Distortion
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ROC Performance
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… however this is not 
our figure of merit!
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The conventionally-trained NN is “greedy” 
➡ Signal and BG distributions end up identical!

Conventional NN Adv. NN.         
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Statistical Significance
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✓ Adversarial method attains 
highest discovery significance 

• Larger systematics 
       ⇒ stronger improvement
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Statistical Significance
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• Toy statistical model: 

‣ MC template fit 
‣ BG normalization uncertainty 

✓ Adversarial method attains 
highest discovery significance 

• Larger systematics 
       ⇒ stronger improvement

Background Uncertainty [%]
0 10 20 30 40 50

]σ
D

is
co

ve
ry

 S
ig

ni
fic

an
ce

 [ 
 

2.5

3

3.5

4

4.5

5

5.5 21τ

21
'τ

Adversarial NN
Classifier NN



Chase Shimmin (Yale University)

Parameter Scans

➡ Architecture can be 
extended to include 
parametric dependence 
on hypothesis mass, MZ’

 43
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Parameterizing Mass
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Often the case that we want to scan 
a range of hypothetical mass points

m1

m2

… however, the NN tagger  
is trained for a specific mass

m3

(See arXiv:1601.07913 for treatment of this issue)

https://arxiv.org/abs/1601.07913
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Parameterizing Mass
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Simple generalization: tell (both) Neural Nets 
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Parameterizing Mass
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Parameterizing Mass
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Summary / Conclusion
• Multivariate taggers are powerful tools for many signals 

• However, correlation with analysis observables results in reduced 
sensitivity in the presence of BG modeling systematics

• Adversarial techniques can enforce decorrelation for  
arbitrarily complex classifiers

• Resulting classifiers may outperform both theoretically-motivated 
variables as well as conventional multivariate methods 

• Method is generic and should work for different object taggers 
and/or analysis observables
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