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Outline

1. What is generative modeling & why care about it? 

2. Overview of select generative models
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Generative Modeling

• Asks question - can we build a model to approximate a data 
distribution? 

• Formally we are given                         and a finite sample from this 
distribution 

• Problem: can we find a model such that                                                                                             

• Why might this be useful?
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Why care about Generative Models?

Oft over-used quote: 

“What I cannot create, I do not understand”  

-R. Feynman

4



Why care about Generative Models?

• Classic uses: 

• Through maximum likelihood, can fit to some interpretable 
parameters for a hand-designed  

• Learn a joint distribution with labels                                    
and transform to  

• More interesting uses: 

• Fast-generation of compute-heavy tasks 

• Interpolation between distributions
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Maximum Likelihood Estimation

• We’ll focus on models that can be made to fit into 
the Maximum Likelihood Estimation (MLE) 
framework 

• Other models exist, but MLE covers most main 
ones
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Traditional MLE Approach

• We are given a finite sample from a data distribution 

• We construct a parametric model                    for the 
distribution, and build a likelihood 

• In practice, we optimize through MCMC or other means, and 
obtain
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Now what?

• We have obtained a model                  , we can run it in 
“forward mode” 

• Hand designed, parametric models (usually mixtures of 
Gaussians, Weibull, Poisson, etc.) — limited in expressivity 

• Modern deep models remove this issue 

• If the likelihood is explicit, then we can use this for 
classification or inference through Bayes
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Taxonomy



Generative Model Taxonomy
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Generative 
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Generative Adversarial Networks

• We cast the process of building a model of the 
data distribution as a two-player game between a 
generator and a discriminator 

• Intuitively, generator maps random noise, through 
a model to produce a sample, and discriminator 
decides whether the sample is real or not
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Generative Adversarial Networks

• As before, data distribution  

• Our generator has a latent prior                                
and maps this to sample space 

•               implicitly defines a distribution  

• Our discriminator                tells how fake or real a 
sample looks via a score
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Generative Adversarial Networks
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Distinguish real samples from fake 
samples

Transform noise into a realistic 
sample

Real data



GANs in Context

• GANs have shown empirical promise in learning 
complicated, high dimensional physical realizations 

• Lack full theoretical understanding of why they work 

• Can sample from, but not evaluate the likelihood (implicit 
model)

arxiv:1802.05957 arxiv:1710.10196 
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Why Autoregressive?

• As before, we have                        with 

• Since     is a vector, we can factorize per dimension 

• We can now model                             with a neural 
network!
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                           predicts out distribution of 
individual pixels conditional on all pixels up 
and to the left

Pixel{RNN, CNN, CNN++}

arxiv:1601.06759 

arxiv:1606.05328 
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Wave{Net, RNN}

                           predicts out speech signal 
value at current time step conditioned on 
previous speech waveform

arxiv:1609.03499 20



Neural Autoregressive Models in Context

• State of the art in temporal signal generation 
(WaveNet / WaveRNN) 

• Autoregressive models admit a tractable and 
explicit likelihood, and can assign a probability to 
a sample 

• Often is expensive to generate samples from 
distribution
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Anatomy of a Variational Autoencoder (VAE)

• Encoder takes a data point and maps it to a latent 
code via a neural network, often called an 
information bottleneck 

• Decoder takes a latent code and maps it to a 
sample via a neural network 

• For illustrative purposes, assume we are working 
with binary images
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VAE Encoders

• From a sample   , map it (stochastically) to a latent 
vector     via               (our posterior)  

• We have a prior           on                       , usually 
normal 

• Our neural net outputs the parameters of the 
distribution to sample our latent space (assume 
normal), so we can sample 
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VAE Decoders

• Parameterized the generated reconstruction as a 
neural net  

• From a latent code   , we require the reconstructed 
sample              to be close to the data used to 
obtain the latent code,    

• We penalize the reconstructions for being wrong, 
using the binary cross entropy, 
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Training a VAE

Want to minimize:

For each datapoint and it’s 
corresponding NN-generated 

code

Make sure the decoder can 
reconstruct the sample 

faithfully

But don’t make our encoder 
output codes that don’t look 

like our prior (Normal)

Minimize this over the parameters of our encoder NN    and our decoder network



VAEs in Context

• Though not a pure generative model, sampling from 
prior and running through the decoder NN is a 
generative model! 

• Very popular, can modify simplistic framework shown 
today to enforce interpretable latent spaces, other 
desirable properties 

• They are bidirectional, i.e., I can not only sample from 
them, but encode samples (great for unsupervised 
learning)
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Conclusion

• Today: 

• High level generative modeling taxonomy 

• Detail into GANs, Neural Autoregressive Models, 
and VAEs 

• Generative have many interesting applications in 
HEP
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Thanks!



Backup



Proof of Vanilla GAN formulation

• How can we jointly optimize G and D? 

• Construct a two-person zero-sum minimax game 
with a value V 

• We have an inner maximization by D and an outer 
minimization by G
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Theoretical Guarantees

• From original paper, know that 

• Define generator solving for infinite capacity discriminator,  

• We can rewrite value as 

• Simplifying notation, and applying some algebra 

• But we recognize this as a summation of two KL-divergences 

• And can combine these into the Jenson-Shannon divergence 

• This yields a unique global minimum precisely when 

32



Theoretical Guarantees

• TL;DR from the previous proof is as follows 

• If D and G are allowed to come from the space of all continuous functions, 
then we have: 

• Unique equilibrium 

• The discriminator admits a flat posterior, i.e.,  

• The implicit distribution defined by the generator exactly recovers 
the data distribution
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