Generative Modeling

Michela Paganini
Yale University & Lawrence Berkeley National Lab

@WonderMicky
michela.paganini@yale.edu
mickypaganini.github.io
Outline

1. What is generative modeling & why care about it?
2. Overview of select generative models
Generative Modeling

• Asks question - can we build a model to approximate a *data distribution*?

• Formally we are given $x \sim p_{\text{data}}(x)$ and a finite sample from this distribution

\[X = \{ x | x \sim p_{\text{data}}(x) \}, |X| = n \]

• Problem: can we find a model such that

\[p_{\text{model}}(x; \theta) \approx p_{\text{data}}(x) \]

• **Why** might this be useful?
Why care about Generative Models?

Oft over-used quote:

"What I cannot create, I do not understand"

-R. Feynman
Why care about Generative Models?

- Classic uses:
 - Through maximum likelihood, can fit to some interpretable parameters for a hand-designed $p_{\text{model}}(x; \theta)$
 - Learn a joint distribution with labels $p_{\text{data}}(x, y; \theta) \approx p_{\text{data}}(x, y)$ and transform to $p(y|x; \theta)$

- More interesting uses:
 - Fast-generation of compute-heavy tasks
 - Interpolation between distributions
• We’ll focus on models that can be *made to fit* into the Maximum Likelihood Estimation (MLE) framework

• Other models exist, but MLE covers most main ones
Traditional MLE Approach

- We are given a finite sample from a data distribution

\[X = \{ x | x \sim p_{\text{data}}(x) \}, |X| = n \]

- We construct a parametric model \(p_{\text{model}}(x; \theta) \) for the distribution, and build a likelihood

\[\mathcal{L}(\theta; X) = \prod_{x \in X} p_{\text{model}}(x; \theta) \]

- In practice, we optimize through MCMC or other means, and obtain

\[\theta_{\text{opt}} = \arg \min_{\theta} \{- \ln \mathcal{L}(\theta; X)\} \]
Now what?

- We have obtained a model $p_{\text{model}}(x; \theta)$, we can run it in “forward mode”

- Hand designed, parametric models (usually mixtures of Gaussians, Weibull, Poisson, etc.) — limited in expressivity

 - Modern deep models remove this issue

- If the likelihood is explicit, then we can use this for classification or inference through Bayes

\[
p(y|x) = \frac{p_{\text{model}}(x|y; \theta)p(y)}{p_{\text{model}}(x; \theta)}
\]
Taxonomy
Generative Model Taxonomy

- **Maximum Likelihood**
 - Explicit density
 - Tractable density
 - Fully visible belief nets:
 - NADE
 - MADE
 - Neural Autoregressive
 - Change of variables models (nonlinear ICA)
 - Approximate density
 - Variational
 - Markov Chain
 - Variational Autoencoder
 - Boltzmann machine

- Implicit density
 - Markov Chain
 - Direct
 - GAN
 - GSN
Generative Model Taxonomy

Maximum Likelihood

Explicit density

- Tractable density
 - Fully visible belief nets: NADE, MADE
 - Neural Autoregressive
 - Change of variables models (nonlinear ICA)

Implicit density

Approximate density

- Variational
 - Variational Autoencoder

- Markov Chain
 - Boltzmann machine

Markov Chain

Direct

GAN

From I. Goodfellow
Generative Adversarial Networks

Maximum Likelihood

Explicit density

Implicit density

Tractable density

Approximate density

Fully visible belief nets:
- NADE
- MADE
- Neural Autoregressive
- Change of variables models (nonlinear ICA)

Variational

Variational Autoencoder

Markov Chain

Boltzmann machine
Generative Adversarial Networks

• We cast the process of building a model of the data distribution as a two-player game between a generator and a discriminator

• Intuitively, generator maps random noise, through a model to produce a sample, and discriminator decides whether the sample is real or not
Generative Adversarial Networks

• As before, data distribution \(x \sim p_{\text{data}}(x), x \in \mathcal{X} \)

• Our **generator** has a latent prior \(z \sim p_z(z), z \in \mathcal{Z} \) and maps this to sample space \(G : \mathcal{Z} \rightarrow \mathcal{X} \)

• \(G(\cdot; \theta_G) \) **implicitly** defines a distribution \(p_{\text{model}}(x; \theta_G) \)

• Our discriminator \(D(\cdot; \theta_D) \) tells how fake or real a sample looks via a score \(D : \mathcal{X} \rightarrow \mathbb{R} \)
Generative Adversarial Networks

\[V(D, G) = \mathbb{E}_{z \sim p_z(z)}[\log(1 - D(G(z; \theta_G); \theta_D))] + \mathbb{E}_{x \sim p_{\text{data}}(x)}[\log D(x; \theta_D)] \]

- **Transform noise into a realistic sample**
- **Distinguish real samples from fake samples**

Real data

\[\min_G \max_D V(D, G) \]
GANs in Context

- GANs have shown *empirical* promise in learning complicated, high dimensional physical realizations

- Lack full theoretical understanding of *why* they work

- Can sample from, but not evaluate the likelihood (implicit model)

Figure 7: 128x128 pixel images generated by SN-GANs trained on ILSVRC2012 dataset. The inception score is 21.1±35.

Figure 5: 1024 x 1024 images generated using the CelebA-HQ dataset. See Appendix F for a larger set of results, and the accompanying video for latent space interpolations.

arxiv:1802.05957

arxiv:1710.10196
Neural Autoregressive Models

Explicit density

Tractable density
- Fully visible belief nets:
 - NADE
 - MADE
- Neural Autoregressive
 - Change of variables models (nonlinearICA)

Implicit density

Approximate density
- Variational
 - Variational Autoencoder
- Markov Chain

Maximum Likelihood

Markov Chain

Direct
- GAN

GSN
Why Autoregressive?

- As before, we have $x \sim p_{\text{data}}(x)$ with $x \in \mathbb{R}^d$

- Since x is a vector, we can factorize per dimension

$$p_{\text{data}}(x) = q(x_1)q(x_2|x_1)q(x_3|x_2, x_1)\ldots q(x_d|x_{d-1}, \ldots, x_1)$$

$$p_{\text{data}}(x) = q(x_1) \prod_{i=2}^{d} q(x_i|x_{i-1}, \ldots, x_1)$$

- We can now model $q(x_i|x_{i-1}, \ldots, x_1)$ with a neural network!
$q(x_i | x_{i-1}, \ldots, x_1)$ predicts out distribution of individual pixels conditional on all pixels up and to the left.
WaveNet, RNN

\[q(x_i | x_{i-1}, \ldots, x_1) \] predicts out speech signal value at current time step conditioned on previous speech waveform

Figure 1: A second of generated speech.

Figure 3: Visualization of a stack of dilated causal convolutional layers.

\[\text{arxiv:1609.03499} \]
Neural Autoregressive Models in Context

- State of the art in temporal signal generation (WaveNet / WaveRNN)

- Autoregressive models admit a **tractable and explicit likelihood**, and can assign a probability to a sample

- Often is expensive to generate samples from distribution
Variational Autoencoders

Maximum Likelihood

Explicit density

Implicit density

Approximate density

Tractable density

Fully visible belief nets:
- NADE
- MADE
- Neural Autoregressive
- Change of variables models (nonlinear ICA)

Variational Autoencoder

Markov Chain

Direct
- GAN

Markov Chain

GSN

Boltzmann machine
Anatomy of a Variational Autoencoder (VAE)

- Encoder takes a data point and maps it to a latent code via a neural network, often called an information bottleneck.
- Decoder takes a latent code and maps it to a sample via a neural network.
- For illustrative purposes, assume we are working with binary images.
• From a sample x, map it (stochastically) to a latent vector z via $q_\theta(z|x)$ (our posterior)

• We have a prior $p(z)$ on $z \sim q_\theta(z|x)$, usually normal

• Our neural net outputs the parameters of the distribution to sample our latent space (assume normal), so we can sample $z \sim q_\theta(z|x)$
VAE Decoders

- Parameterized the generated reconstruction as a neural net $r_\omega(\tilde{x}|z)$

- From a latent code z, we require the reconstructed sample $r_\omega(\tilde{x}|z)$ to be close to the data used to obtain the latent code, x

- We penalize the reconstructions for being wrong, using the binary cross entropy, $\text{BCE}(x, r_\omega(\tilde{x}|z))$
Training a VAE

Want to minimize:

\[
\mathbb{E}_{z \sim q_\theta(z|x), x \sim p_{\text{data}}(x)} \left[\text{BCE}(x, r_\omega(\tilde{x}|z)) \right] + \text{KL}(q_\theta(z|x) \| p(z))
\]
Training a VAE

Want to minimize:

\[\mathbb{E}_{z \sim q_\theta(z|x), x \sim p_{data}(x)} \left[\text{BCE}(x, r_\omega(\tilde{x}|z)) \right] + \text{KL}(q_\theta(z|x) || p(z)) \]

For each datapoint and it’s corresponding NN-generated code.
Training a VAE

Want to minimize:

\[
\mathbb{E}_{z \sim q_\theta(z|x), x \sim p_{data}(x)} \left[\text{BCE}(x, r_\omega(\tilde{x}|z)) \right] + \text{KL}(q_\theta(z|x) \parallel p(z))
\]

Make sure the decoder can reconstruct the sample faithfully.

For each datapoint and it’s corresponding NN-generated code.
Training a VAE

Want to minimize:

\[\mathbb{E}_{z \sim q_\theta(z|x), x \sim p_{\text{data}}(x)} [\text{BCE}(x, r_\omega(\tilde{x}|z))] + \text{KL}(q_\theta(z|x) \parallel p(z)) \]

For each datapoint and it’s corresponding NN-generated code

Make sure the decoder can reconstruct the sample faithfully

But don’t make our encoder output codes that don’t look like our prior (Normal)
Training a VAE

Want to minimize:

$E_{z \sim q_\theta(z|x), x \sim p_{\text{data}}(x)} \left[\text{BCE}(x, r_\omega(\tilde{x}|z)) \right] + \text{KL}(q_\theta(z|x) \| p(z))$

For each datapoint and its corresponding NN-generated code

Make sure the decoder can reconstruct the sample faithfully

But don’t make our encoder output codes that don’t look like our prior (Normal)

Minimize this over the parameters of our encoder NN θ and our decoder network ω
• Though not a pure generative model, sampling from prior and running through the decoder NN is a generative model!

• Very popular, can modify simplistic framework shown today to enforce interpretable latent spaces, other desirable properties

• They are **bidirectional**, i.e., I can not only sample from them, but encode samples (great for unsupervised learning)
Conclusion

• Today:

 • High level generative modeling taxonomy

 • Detail into GANs, Neural Autoregressive Models, and VAEs

 • Generative have many interesting applications in HEP
Thanks!
Backup
Proof of Vanilla GAN formulation

• How can we jointly optimize G and D?

• Construct a two-person zero-sum minimax game with a value V

$$V(D, G) = \mathbb{E}_{x \sim p_{\text{data}}(x)}[\log D(x; \theta_D)] + \mathbb{E}_{z \sim p_z(z)}[\log (1 - D(G(z; \theta_G); \theta_D))]$$

• We have an inner maximization by D and an outer minimization by G

$$\min_G \max_D V(D, G)$$
Theoretical Guarantees

• From original paper, know that \(D^*(x) = \frac{p_{\text{data}}(x)}{p_{\text{data}}(x) + p_{\text{model}}(x; \theta_G)} \)

• Define generator solving for infinite capacity discriminator, \(C(G) = V(D^*, G) \)

• We can rewrite value as

\[
C(G) = \mathbb{E}_{x \sim p_{\text{data}}} \left[\log \frac{p_{\text{data}}(x)}{p_{\text{data}}(x) + p_{\text{model}}(x; \theta_G)} \right] + \mathbb{E}_{x \sim p_{\text{model}}(x; \theta_G)} \left[\log \frac{p_{\text{model}}(x; \theta_G)}{p_{\text{data}}(x) + p_{\text{model}}(x; \theta_G)} \right]
\]

• Simplifying notation, and applying some algebra

\[
C(G) = \mathbb{E}_{x \sim p_{\text{data}}} \left[\log \frac{p_{\text{data}}}{p_{\text{data}} + p_{\text{model}}} \right] + \mathbb{E}_{x \sim p_{\text{model}}} \left[\log \frac{p_{\text{model}}}{p_{\text{data}} + p_{\text{model}}} \right]
\]

\[
C(G) = \mathbb{E}_{x \sim p_{\text{data}}} \left[\log \frac{p_{\text{data}}}{p_{\text{data}}/2 + p_{\text{model}}/2} \right] + \mathbb{E}_{x \sim p_{\text{model}}} \left[\log \frac{p_{\text{model}}}{p_{\text{data}}/2 + p_{\text{model}}/2} \right] - \log(4)
\]

• But we recognize this as a summation of two KL-divergences

\[
C(G) = D_{\text{KL}} \left(p_{\text{data}} \parallel \frac{p_{\text{data}} + p_{\text{model}}}{2} \right) + D_{\text{KL}} \left(p_{\text{model}} \parallel \frac{p_{\text{data}} + p_{\text{model}}}{2} \right) - \log(4)
\]

• And can combine these into the Jenson-Shannon divergence

\[
C(G) = 2 \cdot \text{JSD} \left(p_{\text{data}} \parallel p_{\text{model}} \right) - \log(4)
\]

• This yields a unique global minimum precisely when

\(p_{\text{model}} = p_{\text{data}} \implies C(G) = -\log(4) \)
Theoretical Guarantees

• TL;DR from the previous proof is as follows

• If \(D \) and \(G \) are allowed to come from the space of all continuous functions, then we have:

• Unique equilibrium \((\theta_G^{\text{opt}}, \theta_D^{\text{opt}}) \)

• The discriminator admits a flat posterior, i.e.,

\[
D(x; \theta_D^{\text{opt}}) = 1/2 \quad D(G(z; \theta_G^{\text{opt}}); \theta_D^{\text{opt}}) = 1/2 \\
\forall x \sim p_{\text{data}}(x) \quad \forall z \sim p_z(z)
\]

• The implicit distribution defined by the generator exactly recovers the data distribution \(p_{\text{model}}(x; \theta_G^{\text{opt}}) = p_{\text{data}}(x) \)