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Outline

1. What is generative modeling & why care about it?

2. Overview of select generative models



Generative Modeling

* Asks question - can we build a model to approximate a data
distribution?

 Formally we are given & ~ Pdata() and a finite sample from this
distribution

X = {z|r ~ pdata(®) }, | X| =7
e Problem: can we find a model such that
pmodel(xQ 0) ~ Pdata (33)

 Why might this be useful?



Why care about Generative Models?

Oft over-used quote:
“"What | cannot create, | do not understand”

-R. Feynman



Why care about Generative Models?

e Classic uses:

e Through maximum likelihood, can fit to some interpretable
parameters for a hand-designed Pmodel (Z; )

e Learn ajoint distribution with labels pdata(Z, ¥; €) = Pdata(T, y)
and transform to p(y|z; 6)

 More interesting uses:

 Fast-generation of compute-heavy tasks

* Interpolation between distributions
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Maximum Likelihood Estimation

e We'll focus on models that can be made to fit into

the Maximum Likelihood Estimation (MLE)
framework

e Other models exist, but MLE covers most main
ones



Traditional MLE Approach

* We are given a finite sample from a data distribution

X = {z|z ~ pdata ()}, [ X| = n

» We construct a parametric model Pmodel(; 8) for the
distribution, and build a likelihood

L(0:X) = || Pmodei(z; )

reX
* In practice, we optimize through MCMC or other means, ana
obtain

Oopt = arg mgin{— In £(6; X)}

v



Now what?

 We have obtained a model Pmodel(; @), we can run it in
“forward mode”

» Hand designed, parametric models (usually mixtures ot
Gaussians, Weibull, Poisson, etc.) — limited in expressivity

* Modern deep models remove this issue

* If the likelihood is explicit, then we can use this for
classification or inference through Bayes

Pmodel (ﬂf‘y, Q)p(y)
Pmodel (ZE‘ 0)
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Taxonomy



Generative Model Taxonomy

GAN

Maximum Likelihood
Explicit density Implicit density

Markov Chain
Tractable density Approximate density
GSN
Fully visible belief nets:
NADE

MADE
Neural Autoregressive

Variational Markov Chain
Change of variables models (nonlinear

ICA) Variational
Autoencoder

Boltzmann machine

10 From |. Goodfellow
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Generative

Adversarial

Networks
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Generative Adversarial Networks

* We cast the process of building a model of the
data distribution as a two-player game between a
generator and a discriminator

* Intuitively, generator maps random noise, through
a model to produce a sample, and discriminator
decides whether the sample is real or not
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Generative Adversarial Networks

o As before, data distribution z ~ pgata(z),z € X

» Our generator has a latent prior z ~ p.(2),2 € Z
and maps this to sample space G: 2 — X

e G(;0c) implicitly defines a distribution pmedel(z; 0¢)

e Qurc

samp

iscriminator D(-;6p) tells how fake or real a
e looks viaascore D: X — R
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Generative Adversarial Networks

V(D,G) = E.np, (»)llog(l = D(G(2;06);0D))| + Egnpya(a) [log D(2; 0D)]

Real / Fake

Distinguish real samples from fake
samples

.....................

Transform noise into a realistic

=EE" - AN sample
SHETCEHeE=S
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FETONEREs P
EMR~ Ny VERS
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ANENORERENR
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dEGREESTS0

min max V' (D, G)
G D

Real data
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GANSs in Context

* GANs have shown empirical promise in learning
complicated, high dimensional physical realizations

Figure 7:  128x128 pixel inages geocraied by SN-GANs trained on ILSVRC2012 datasct. The Figure 5: 1024 x 1024 images generated esing $he CFLEBA-HQ dataset. See “H;“‘ﬁ" Ffors

mception score is 21135, Jarper se1 of resulis, and the acoompunying vados for Lt space mierpolations

| — — T — —
arxiv:1802.05957 arxiv:1710.10196

 Lack full theoretical understanding of why they work

* Can sample from, but not evaluate the likelihood (implicit
model)
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Neural
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Why Autoregressive?

* As before, we have x ~ pgata(x) with x € R

* Since ¥ is a vector, we can factorize per dimension

Pdata () = q(x1)q(z2|z1)q (23|22, 21)...q(20|T4-1,. .., 1)

d
Pdata(®) = q(1) H q(zi|zi-1,...,21)
1=2

 We can now model q(x;|zi-1,...,21) with a neural
network!
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Pixe{RNN, CNN, CNN++}

q(xi|zi—1,...,21) predicts out distribution of

individual pixels conditional on all pixels up
and to the left

Y Y e o R T R
T o i T B N R T o
SN L2 BRSNS
African elephant Coral Reef
EETEAELEdeFRUEFSENESN
AELNEfENma AP s EE LE™
Cohed L L B RS A i T 6
Sandhar Sorrel horse
FEESREFERNE TETEDRR - E.
CHGT MR 0 M % AN e
LR I ST R bt PR TR
Lhasa Apso (dog) Lawn mower
[ | 54 ) P i Sl
LR EaNy ER - SNCTLHN
LIS WORAL TS BT el R il el —
Brown bear Robin (bird)
Figure 3: Class-Conditional samples from the Conditional PixelCNN. arxiv:1601.06759

T — EE———

arxiv:1606.05328
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Wave{Net, RNN}

q(xi|lxi-1,...,21) predicts out speech signal
value at current time step conditioned on
previous speech waveform

NTDERS—senane M

Figure 1: A second of generated speech.
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Figure 3: Visvalization of a stack of dilated causal convolutional layers.
T — T

arxiv:1609.03499 20



Neural Autoregressive Models in Context

 State of the art in temporal signal generation
(WaveNet / WaveRNN)

» Autoregressive models admit a tractable and
explicit likelihood, and can assign a probability to
a sample

» Often is expensive to generate samples from
distribution
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Variational
Autoencoders
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Anatomy of a Variational Autoencoder (VAE)

* Encoder takes a data point and maps it to a latent
code via a neural network, often called an

information bottleneck

* Decoder takes a latent code and maps it to a
sample via a neural network

 For illustrative purposes, assume we are working
with binary images
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VAE Encoders

» From a sample z, map it (stochastically) to a latent
vector 2 via qg(z|x) (our posterior)

+ We have a prior p(z) on z ~ qg(z|x), usually
normal

* Our neural net outputs the parameters of the
distribution to sample our latent space (assume
normal), so we can sample z ~ qy(z|x)
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VAE Decoders

e Parameterized t

ne generated reconstruction as a

neural net 7w (&

2)

* From a latent code 2, we require the reconstructea

sample 7, (Z|z)

to be close to the data used to

obtain the latent code, x

* We penalize the reconstructions for being wrong,
using the binary cross entropy, BCE(z, r,,(Z|2))
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Training a VAE

Want to minimize:

4:z~q49 (z|),z~Pdata(T) [BCE(ZB, Tw (i‘z))] T
KL(go(2|2)|[p(2))




Training a VAE

Want to minimize:

{:ZNQG (z‘x)aw’\’pdata(m) [BCE(:B7 Fw (513‘2))] ™
KL(go(z|z)||p(2))




Training a VAE

Want to minimize:

Make sure the decoder can
reconstruct the sample
faithfully

4:*:e:que (z]z),x~Ppdata () [BCE(Z‘, Tw (félz))] T
KL(gs(z|2)[[p(2))



Training a VAE

Want to minimize:

Make sure the decoder can
reconstruct the sample
faithfully

43z~qG(Z|$),$diata(w) [BCE(CE, ’I“w (ilZ))] —|_

But don’t make our encoder
output codes that don’t look
like our prior (Normal)



Training a VAE

Want to minimize:

Make sure the decoder can
reconstruct the sample
faithfully

43z~qG(Z|$),$diata(w) [BCE(CE, ’I“w (ilZ))] —|_

But don’t make our encoder
output codes that don’t look
like our prior (Normal)

Minimize this over the parameters of our encoder NN # and our decoder network W



VAEs in Context

* Though not a pure generative model, sampling from
prior and running through the decoder NN is a
generative model!

* Very popular, can modity simplistic framework shown
today to enforce interpretable latent spaces, other
desirable properties

» They are bidirectional, i.e., | can not only sample from
them, but encode samples (great for unsupervised
learning)
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Conclusion

* Today:
* High level generative modeling taxonomy

* Detail into GANs, Neural Autoregressive Models,
and VAEs

* Generative have many interesting applications in
HEP
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Thanks!






Proot of Vanilla GAN formulation

* How can we jointly optimize G and D?

» Construct a two-person zero-sum minimax game
with a value V

VD, G) = Eznpga(a) 108 D(#;0D)] + Erep, () [log(1 — D(G(2;0¢); 0p))]

* We have an inner maximization by D and an outer
minimization by G

min max V (D, G)
G D
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Theoretical Guarantees

| Pdata ()
Pdata () + Pmodel (_-"-': 0(.'_)

* From original paper, know that D*(x)
 Define generator solving for infinite capacity discriminator, C(G') = V(D*, ()

 \We can rewrite value as
| Pmodel(Z: 0;)
C(G) = Eznpgua(z) 108 —

Pdata () + Pmodel(ip; 9(.‘)

Pdata(T)
Pdata (17) + Pmodel (1'3 0c)

: + IEI’“Pmcdel(l’;UG ) []Og

* Simplifying notation, and applying some algebra

C(G) - ]EI~I)d°‘° []Og Pata ] L E.’l?'\'l)modcl [10g il ]

Pdata + Pmodel Pdata + Pmodel
Pdata Pmodel |
C(G) = E;mp,..[log - —| + Epmp, oo [10g - —| — log(4
( ) b [ ‘ Pdata/2+pmodel/2] Pmad [ ‘ pdata/z +pmodel/2] ( )

« But we recognize this as a summation of two KL-divergences

Pdata T Pmodel
0(G) = D, (pana[ 222525} - Dy, (e

* And can combine these into the Jenson-Shannon divergence

C(G) =2-JSD (pdata |pmodel) — log(4)

* This yields a unique global minimum precisely when |
Pmodel = Pdata = C(G) = —log(4)
32
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Theoretical Guarantees

* TL;DR from the previous proof is as follows

|t D and G are allowed to come from the space of all continuous functions,
then we have:

t t
 Unigue equilibrium (ez;p 79(1))p )

* The discriminator admits a flat posterior, i.e.,

D(z; 6% =1/2  D(G(%65);675) = 1/2
VI ~ Ddata (:13) Vz ~ pz(Z)

» The implicit distribution defined by the generator exactly recovers
the data distribution Pmodel (; ()Z?t) = Pdata(Z)
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