
Use of Machine Learning Techniques for
improved Monte Carlo Integration

Josh Bendavid (CERN)

Apr. 4, 2018
Machine learning for phenomenology

IPPP Durham

Josh Bendavid (CERN) ML MC Integration 1

Introduction

R&D Project Growing out of work on Multivariate Regression:
New algorithms for Monte Carlo integration and event
generation

Outline
Brief intro to Monte Carlo integration/generation and
(non-exhaustive) look at existing algorithms (VEGAS and FOAM)
Brief intro on Boosted Decision Trees and their conventional
classification/regression applications
Adaptation to Monte Carlo integration/generation
Preliminary comparisons with existing algorithms

Implementation and performance of Deep Neural

Network-based alternative

J. Bendavid, “Efficient Monte Carlo Integration Using Boosted Decision

Trees and Generative Deep Neural Networks”

https://arxiv.org/abs/1707.00028

Josh Bendavid (CERN) ML MC Integration 2

https://arxiv.org/abs/1707.00028

Monte Carlo Integration and Generation

Monte Carlo integration: Given an arbitrary/black box
multidimensional function f (x̄), find the integral

∫
f (x̄)dx̄

Monte Carlo generation: Given an arbitrary/black box
multidimensional function f (x̄), generate an unweighted set of
vectors x̄ with a probability density p(x̄) = f (x̄)/

∫
f (x̄)dx̄

Typical HEP use case: Given a numerical implementation for
a matrix element fully differential in incoming/outgoing
four-vectors, compute the total cross section (integral), and
generate a set of unweighted events

Josh Bendavid (CERN) ML MC Integration 3

Monte Carlo Integration and Generation: Example
Function

S. Jadach, physics/0203033

This is the “camel” function from the original VEGAS paper,
which can be generalized to N dimensions
Factorized approach will not work well
Significant low-density regions which cannot be easily
excluded a-priori

Josh Bendavid (CERN) ML MC Integration 4

Monte Carlo Integration: Brute Force Approach

Simplest possible algorithm:

Randomly sample from a (multidimensional) Uniform
distribution
Integration weight w = Vf (x̄) (where V is the total volume of
the space)
Integral I = (1/N)

∑
w , σI = σw/

√
N

Generation: Use simple accept-reject sampling
(ε = wmax/ < w >)

End result: Huge variance for weights → need a huge number
of samples to get reasonable numerical precision (and very low
unweighting efficiency for generation)

Josh Bendavid (CERN) ML MC Integration 5

Monte Carlo Integration: Importance Sampling

General idea, sample from some generating probability density
g(x̄) instead of uniformly:

Integration weight w = f (x̄)/g(x̄)
Integral I = (1/N)

∑
w , σI = σw/

√
N

Generation: Use accept-reject sampling (ε = wmax/ < w >)

Ideal case: g(x̄) = f (x̄)/
∫
f (x̄)dx̄ → try to construct some

g(x̄) that is easy to sample from and well approximates f (x̄)

Different considerations for integration (minimize variance) vs
generation (balance between variance and maximum weight)

Josh Bendavid (CERN) ML MC Integration 6

Monte Carlo Integration: Importance Sampling

Typical algorithm divided in two stages
1 Construct appropriate sampling function g(x̄) which

approximates f (x̄)
2 Generate a large number of events to evaluate the integral with

maximum precision (or unweight with maximum efficiency)

Josh Bendavid (CERN) ML MC Integration 7

VEGAS

G.P. Lepage, A New Algorithm for Adaptive Multidimensional Integration,

Journal of Computational Physics 27, 192-203, (1978)

Iterative algorithm

Start from uniform sampling distribution

At each iteration, build an adaptive-binned histogram to
approximate f (x̄)

Multidimensional functions are handled as a simple product of
one-dimensional histograms

Building histograms is fast and relatively simple, but for
higher-dimensional functions with non-trivial correlations there
is a hard limit to the achievable weight variance/unweighting
efficiency

Carefully choosing/transforming integration basis can help
(but not always possible)

Josh Bendavid (CERN) ML MC Integration 8

Foam

S. Jadach, physics/0203033

Improving on limitations of VEGAS requires true multi-dimensional
sampling function

Foam algorithm based on a single decision tree → divide up phase space
into hyper-rectangles with optimized boundaries

Phase-space is sampled uniformly within each hyper-rectangle to
determine the next binary split until the stopping condition is reached

Josh Bendavid (CERN) ML MC Integration 9

Foam

Assign a weight to each hyper-rectangle (proportional to estimated
integral inside)

For each event: randomly choose a hyper-rectangle (probability
proportional to its weight) then randomly sample within hyper-rectangle

Josh Bendavid (CERN) ML MC Integration 10

Boosted Decision Trees for Classification

p(sig) p(sig)

p(sig) p(sig)

p(sig)

Decision Tree is a simple
structure consisting of a set of
connected “nodes”

Intermediate nodes where a
variable and cut value is
selected to split events into two
subsets

Terminal nodes are assigned a
response, in this case the

relative signal probability Ls (x̄)
Lb(x̄)

Multidimensional likelihood
ratio is therefore approximated
by a piecewise-continuous
function over the multivariate
input space

Boosting: Construct a series
of decision trees to improve the
overall response

Josh Bendavid (CERN) ML MC Integration 11

Boosted Decision Trees for Regression

Boosted Decision Trees can
also be used for multivariate
regression problem

Replace log likelihood ratio
with generic function f (x̄)

Minimize deviation between
training sample and
regression function

Decision trees form a series
of piecewise continuous
approximations for the
function f (x̄) in the
multidimensional input space

Josh Bendavid (CERN) ML MC Integration 12

Gradient Boosting

x
0 0.2 0.4 0.6 0.8 1

y

1−

0.5−

0

0.5

1
Data

Regression

(a) Single Tree

x
0 0.2 0.4 0.6 0.8 1

y

1−

0.5−

0

0.5

1 Data

Regression

Intermediate

(b) Gradient Boosted (∼ 20 trees)

Decision trees form an additive series of piecewise continuous
approximations for the function f (x̄) in the multidimensional input space

Additive series can represent more complex functions than single tree
with a given number of nodes

Trivial example of Sine in 1d with relatively few trees

Josh Bendavid (CERN) ML MC Integration 13

Boosted Decision Trees for Monte Carlo Integration (aka
GBRIntegration)

Evaluating amplitudes is the critical computational step for
phase space integration or unweighting in MC generators

Number of required phase space points depends on weights
variance and/or unweighting efficiency

Insight: Foam is based on a single decision tree, performance
of MC integration can be improved by boosting as for
classification and regression

Basic limitation of Foam is that huge number of
hyper-rectangles are needed for good performance

Boosting allows to exploit combinatorics of terminal nodes
between different decision trees

Initial implementation based on GBRLikelihood tool developed
for CMS photon energy regression

Josh Bendavid (CERN) ML MC Integration 14

Boosted Decision Trees for Monte Carlo Integration (aka
GBRIntegration)

Basic Principle: Use a boosted decision tree to directly
estimate function value f (x̄) such that

g(x̄) =
∑

gi (x̄) ≈ f (x̄) (1)

Where each gi (x̄) is an individual decision tree with some
value assigned to each terminal node

Trivial to compute integral for each tree (and for sum):∫
gi (x̄) =

∑
Vijgij , where Vij and gij are the volume and

value assigned to each hyper-rectangle/terminal-node)

Josh Bendavid (CERN) ML MC Integration 15

Sampling from a Boosted Decision Tree

Sampling from a Boosted Decision tree is
straightforward/efficient:

Randomly choose a tree from the series with probability
proportional to its integral
Randomly choose a terminal node on the tree with probability
proportional to its integral
Uniformly sample within the hyper-rectangle of the chosen
terminal node

Critical limitation: Any transformation breaks the above logic
(ie cannot efficiently sample from f (x̄) if
g(x̄) =

∑
gi (x̄) ≈ ln f (x̄))

Critical limitation: Only works for positive-definite tree
values

Josh Bendavid (CERN) ML MC Integration 16

Constructing the Boosted Decision Tree

Positive-definite limitation means that slow convergence is
required (later trees cannot correct with negative values)

Train two BDT’s in parallel, one for sampling, and one to aid
convergence (with transformation h(x̄) ∼ ln f (x̄) and no
positive-definite constraint)

BDTs for MC integration constructed iteratively (start with
uniform sampling distribution in first iteration with primary
and secondary BDT’s initialized to a common small value)

Sample N events from current secondary (sampling) BDT
series g(x̄)
Train tree for primary BDT h(x̄)
Train tree for secondary BDT g(x̄)
Repeat

Josh Bendavid (CERN) ML MC Integration 17

Some results - 4D Camel Function Integration

Comparing Vegas,Foam, GBRIntegrator for 4-dimensional camel function (since this appears in both
VEGAS and Foam papers).

Given relative weight variance σw/ < w > after training/grid building, relative uncertainty on integral

evaluated with N additional events is σI /I = 1√
N
σw/ < w >

Algorithm # of Func. Evals σw/ < w > σI/I
(2e6 add. evts)

VEGAS 300,000 2.820 ±2.0× 10−3

Foam 3,855,289 0.319 ±2.3× 10−4

GBRIntegrator 300,000 0.082 ±5.8× 10−5

GBRIntegrator (staged) 300,000 0.077 ±5.4× 10−5

3x smaller weight variance to foam with 10x less function evaluations

Substantially improved performance with respect to initial version of GBRIntegrator algorithm (lacking
primary/secondary BDT paradigm)

For this particular function VEGAS performance saturates at relatively poor weight variance

Josh Bendavid (CERN) ML MC Integration 18

Diagnostic Plots - 4D Camel Function

d, distance along multidimensional diagonal (a.u.)
0 0.2 0.4 0.6 0.8 1

fu
nc

tio
n

va
lu

e
(a

.u
.)

0

100

200

300

400

500

Graph

) (Camel)xf(

 (Primary BDT))xh(e

) (Secondary BDT)xg(

Graph

(a) linear

d, distance along multidimensional diagonal (a.u.)
0 0.2 0.4 0.6 0.8 1

fu
nc

tio
n

va
lu

e
(a

.u
.)

16−10

14−10

12−10

10−10

8−10

6−10

4−10

2−10

1

210

Graph

) (Camel)xf(

 (Primary BDT))xh(e

) (Secondary BDT)xg(

Graph

(b) log

Secondary sampling BDT approximates function slightly worse
in very low probability regions (related to initialization values,
positive definite constraint during training, and lack of
transformation). For this particular case, effect is small. (but
this is the reason staged variation achieves slightly better
precision)

Josh Bendavid (CERN) ML MC Integration 19

Diagnostic Plots - 4D Camel Function - Integration
Weights

)x)/g(xSecondary weight f(
0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

nu
m

be
r

of
 e

ve
nt

s

0

1000

2000

3000

4000

5000

htgtratiointerfull
Entries 20000
Mean 0.9931
RMS 0.08134
Underflow 0
Overflow 0

(a) linear

htgtratiointerfull
Entries 20000
Mean 0.9931
RMS 0.08134
Underflow 0
Overflow 0

)x)/g(xSecondary weight f(
0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

nu
m

be
r

of
 e

ve
nt

s

1

10

210

310

htgtratiointerfull
Entries 20000
Mean 0.9931
RMS 0.08134
Underflow 0
Overflow 0

(b) log

Excellent weight distribution for integration purposes
(symmetric, small variance)

Josh Bendavid (CERN) ML MC Integration 20

Artificial Neural Networks

Inspired by biology, artificial neural networks
comprise one or more layers of artificial neurons
with weight, bias, and activation function with
many possible architectures for how the
neurons/layers are connected

Already the simple “densely connected” neural
network with non-linear activation functions can
serve as a universal function approximator in a
similar manner to BDT’s

Such neural networks can be trained for
classification or regression problems with the
appropriate loss function

Training = finding optimal values for weights and

biases to minimize the loss function using some

variation of Stochastic Gradient Descent

Josh Bendavid (CERN) ML MC Integration 21

Generative Deep Neural Networks

Significant recent work on generative deep neural networks in
the data science community, with image
processing/generation as a common use case
e.g arXiv:1406.2661

Some work in this direction in HEP as well e.g. for
fast+accurate calorimeter showers (arXiv:1705.02355)

Typical existing use cases:

Have a fixed set of data, or a black box generator
Train a generative model to produce samples following the
distribution of the training data (or in high dimensional cases
such as images, to produce “similar” images to those in the
training set)

Various architectures and training procedures: Variational
auto-encoders, auto-regressive models, generative adversarial
networks

Josh Bendavid (CERN) ML MC Integration 22

Generative Adversarial Networks

Generative adversarial networks train a deep neural network to generate
samples starting from a known prior distribution p(z̄) which is easy to
sample from (e.g. an N-dimensional normal distribution)
The generative network Ḡ transforms the input samples to the output
space x̄ , ie G(z̄) = x̄
A discriminator network D (e.g. a standard DNN classifier) is trained to
distinguish the generated samples from the training samples

Training proceeds iteratively such that the D is trained to maximally

discriminate and G is trained to minimize the discrimination power of D

until the generated samples follow the ∼ same distribution as the training

set (MINIMAX problem/saddle point, difficult to train)

arXiv:1406.2661

Josh Bendavid (CERN) ML MC Integration 23

Direct Probability Density Sampling

For Monte Carlo integration or unweighting, target probability
density is known (up to a normalizing constant), but initially
samples are not available and cannot be easily generated
For any given state of the generative network G , and in the
special case that the input space z̄ and output space x̄ have
the same dimensionality d , the generating probability density
g(x̄) can be determined from the sampling prior p(z̄) and the
jacobian determinant according to

p(z̄) = g(x̄)

∣∣∣∣∣∣∣∣∂Ḡ (z̄)

∂z̄

∣∣∣∣∣∣∣∣ (2)

If the function to be integrated f (x̄) has a probability density
pf (x̄) = f (x̄)/If , the the KL divergence wrt the generating
pdf can be written as

DKL =

∫
g(x̄) ln

g(x̄)

pf (x̄)
dx̄ (3)

Josh Bendavid (CERN) ML MC Integration 24

Direct Probability Density Sampling

This KL divergence can be approximated numerically from a
finite data set sampled from the prior p(z̄)

DKL =
∑
p(z̄)

[
ln p(z̄)− ln

∣∣∣∣∣∣∣∣∂Ḡ (z̄)

∂z̄

∣∣∣∣∣∣∣∣− ln f (x̄)

]
+ NIf (4)

where NIf is a constant and can be neglected (such that we
can proceed without needing to know the integral of f)
If G is a deep neural network with d inputs and d outputs and
suitably continuous activation functions, the above can be
used directly as a differentiable loss function in SGD provided
that f (x̄) is easily computed and differentiable
n.b. the determinant is normally computed from a
non-differentiable matrix decomposition, but the derivative
can be evaluated from Jacobi’s formula according to

∂

∂t
ln ||A|| = tr

(
A−1 ∂

∂t
A

)
(5)

Josh Bendavid (CERN) ML MC Integration 25

Direct Probability Density Sampling with black box
function

What if the target function f (x̄) and/or its derivatives are
difficult or expensive to evaluate?
Solution: Introduce a function approximator r(x̄) = eF (x̄)

where F (x̄) can be e.g. a standard DNN regression together
with a (weakly) iterative procedure

1 Sample from a uniform distribution over the desired integration
range for f (x̄)

2 Train F (x̄) according to loss function L =
∑

(ln f (x̄)− F (x̄))2

3 Train G according to modified loss function

DKL =
∑

p(z̄)

[
ln p(z̄)− ln

∣∣∣∣∣∣∂Ḡ(z̄)
∂z̄

∣∣∣∣∣∣− F (x̄)
]

4 Replace training set for F with new samples from G
5 Iterate until convergence

n.b. this a much more weakly iterative procedure than e.g.
GAN’s, since there is no saddle point, and F and G can be
safely trained to completion at each iteration (no strong
equilibrium requirement)

Josh Bendavid (CERN) ML MC Integration 26

Sampling From Trained Network

Sampling from trained network is straightforward

Just draw additional samples from prior p(z̄) and run them
through generative network G

Generating pdf value for each generated sample can be
computed from p(z̄) and Jacobian determinant as during
training, and used directly for computing integration weights
or for accept-reject sampling with respect to target function
f (x̄)

(Some modification to the loss functions still needed for
optimal unweighting)

Josh Bendavid (CERN) ML MC Integration 27

Implementation Details

Training and generation implemented with Keras+Tensorflow
(with numpy for prior sampling and input/output) including
custom log determinant tensorflow operation

Generative model and regression for function approximation
implemented as densely connected neural nets with 5 hidden
layers of different sizes
Generative Model:

Intermediate layers use a modified tanh activation
(0.7 ∗ tanh(x) + 0.3 ∗ x) in order to maintain support over full
integration range
Output layer uses a sigmoid activation to restrict output to
integration range [0,1] (can be trivially shifted/scaled for
alternate integration range)

Regression Model:
Intermediate layers use elu activation
Output layer uses linear activation (regressing ln f (x̄) so no
restriction on output range

Josh Bendavid (CERN) ML MC Integration 28

General Considerations on Computational Requirements

Evaluating models is essentially trivial computationally

Training models is less trivial, but should be small amount of
computation time compared to ME evaluations

Training and inference can both run on CPU or GPU (but log
determinant and matrix inverse operations are only
implemented for CPU currently)

Tensorflow has efficient multi-threading on a single node

Josh Bendavid (CERN) ML MC Integration 29

1D Example

4 2 0 2 4
z_0 (Gaussian prior sample)

0

1000

2000

3000

4000

5000

6000

7000

8000

of

 e
ve

nt
s

(a) Prior

0.0 0.2 0.4 0.6 0.8 1.0
x_0 (generated)

0

1000

2000

3000

4000

5000

6000

of

 e
ve

nt
s

(b) Generated (c) Generated vs Prior

In 1D the generative network is essential just learning the
inverse CDF of the target distribution (numerically)

Technically the function is x = CDF−1
pf

(CDFp(z))

Josh Bendavid (CERN) ML MC Integration 30

1D Example with Analytic Solution

4 2 0 2 4
z_0 (Gaussian prior sample)

0

1000

2000

3000

4000

5000

6000

7000

8000

of

 e
ve

nt
s

(a) Prior

0.0 0.2 0.4 0.6 0.8 1.0
x_0 (generated)

0

1000

2000

3000

4000

5000

6000

7000

of

 e
ve

nt
s

(b) Generated

−4 −2 0 2 4

z (Gaussian prior sample)

0.0

0.2

0.4

0.6

0.8

1.0

x

generated x0

analytic CDF−1
pf

(CDFp(z))

(c) Generated vs Prior

In 1D the generative network is essential just learning the
inverse CDF of the target distribution (numerically)

Technically the function is x = CDF−1
pf

(CDFp(z))

For Cauchy distribution in this example, this can be computed
analytically and compared to the trained DNN result

Josh Bendavid (CERN) ML MC Integration 31

4D Example

(a) Generated (2D Slice) (b) Generated vs Prior (1D pair)

The multidimensional case can be considered a generalization
of inverse CDF sampling

This model has 17,220 free parameters

Josh Bendavid (CERN) ML MC Integration 32

Some results - 4D Camel Function Integration

Comparing Vegas,Foam, GBRIntegrator, Generative DNN for 4-dimensional camel function (since this
appears in both VEGAS and Foam papers).

Given relative weight variance σw/ < w > after training/grid building, relative uncertainty on integral

evaluated with N additional events is σI /I = 1√
N
σw/ < w >

Algorithm # of Func. Evals σw/ < w > σI/I
(2e6 add. evts)

VEGAS 300,000 2.820 ±2.0× 10−3

Foam 3,855,289 0.319 ±2.3× 10−4

GBRIntegrator 300,000 0.082 ±5.8× 10−5

GBRIntegrator (staged) 300,000 0.077 ±5.4× 10−5

Generative DNN 294,912 0.083 ±5.9× 10−5

Generative DNN (staged) 294,912 0.030 ±2.1× 10−5

3x smaller weight variance to foam with 10x less function evaluations

Substantially improved performance with respect to initial version of GBRIntegrator algorithm (lacking
primary/secondary BDT paradigm)

Generative DNN comparable to generative BDT (but Generative DNN + DNN Regression does even
better)

For this particular function VEGAS performance saturates at relatively poor weight variance

Josh Bendavid (CERN) ML MC Integration 33

Some Diagnostic Plots - 4D Generative DNN

0.00 0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00
Function Value / Generating PDF

0

5000

10000

15000

20000

25000

of

 e
ve

nt
s

(a) Integration Weight (b) lnW vs |z | (c) Gen PDF g(x̄) vs
f (x̄)

Reasonably good behaviour

Some tails in weight distribution in the tails of the prior distribution
(biasing the sampling of the prior is straightforward if needed)

Generating pdf g(x̄) tracks the target function f (x̄) down to low values,

and then sometimes overshoots (not a big issue for either integration or

un-weighting)

Josh Bendavid (CERN) ML MC Integration 34

Some Diagnostic Plots - 4D DNN Regression

0.00 0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00
Function Value / Regression Prediction

0

10000

20000

30000

40000

50000

60000

70000

of

 e
ve

nt
s

(a) Integration Weight (b) lnW vs |z | (c) Gen PDF g(x̄) vs
f (x̄)

DNN regression better behaved than generative model (easier to train)

Could use secondary unweighting to sample from DNN regression with
reasonable efficiency if desired

This regression model has 4,417 free parameters

Josh Bendavid (CERN) ML MC Integration 35

Some results - 9D Camel Function Integration

Comparing Vegas, GBRIntegrator, Generative DNN for
9-dimensional camel function

Algorithm # of Func. Evals σw/ < w > σI/I
(2e6 add. evts)

VEGAS 1,500,000 19 ±1.3× 10−2

GBRIntegrator 3,200,000 0.63 ±4.5× 10−4

GBRIntegrator (staged) 3,200,000 0.31 ±2.2× 10−4

Generative DNN 294,912 0.15 ±1.1× 10−4

Generative DNN (staged) 294,912 0.081 ±5.7× 10−5

50x smaller weight variance to Vegas with 2x function evaluations
Larger performance difference between staged and non-staged variations
in this case
DNN approach scales much better with dimensionality (> 100x smaller
weight variance than Vegas with 5x fewer function evaluations

For this particular function VEGAS performance saturates at relatively

poor weight variance

Josh Bendavid (CERN) ML MC Integration 36

Some Diagnostic Plots - 9D Generative DNN

0.00 0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00
Function Value / Generating PDF

0

2500

5000

7500

10000

12500

15000

17500

of

 e
ve

nt
s

(a) Integration Weight (b) lnW vs |z | (c) Gen PDF g(x̄) vs
f (x̄)

Qualitatively similar behaviour to 4D case

This generative model has 17,865 free parameters

Josh Bendavid (CERN) ML MC Integration 37

Some Diagnostic Plots - 9D DNN Regression

0.00 0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00
Function Value / Regression Prediction

0

5000

10000

15000

20000

25000

30000

of

 e
ve

nt
s

(a) Integration Weight (b) lnW vs |z | (c) Gen PDF g(x̄) vs
f (x̄)

Qualitatively similar behaviour to 4D case

Excellent behaviour over ∼ 13 orders of magnitude

This regression model has 4577 free parameters

Josh Bendavid (CERN) ML MC Integration 38

Invertibility of Generative DNN Model

Interesting limitation: Probability density for generative DNN
model can not be evaluated for an arbitrary phase space point
x̄ , since one needs to know the corresponding point in the
prior space z̄ , and the model is not trivially invertible

Not a problem for integration or unweighting where all the
phase space points are anyways generated by sampling from
the prior

Nevertheless exploring the possibility/requirements to
analytically invert such a model, since this might be
convenient for diagnostic purposes, and would enable
multi-channeling-like extensions

Josh Bendavid (CERN) ML MC Integration 39

Further Improvements to Generative DNN’s

A number of tunable parameters in terms of number of
iterations vs number of phase space points per iteration,
re-use of phase space points from early iterations, size and
number of layers, optimizer/convergence parameters, etc

Some potential to explore more sophisticated architectures
than simple densely connected networks (autoregressive
models, recurrent networks, convolutional elements, etc)

Requirements for narrow integration weight distribution
and/or tight upper bound for unweighting are somewhat
different than typical machine learning applications in the
literature (“generate natural looking images”, etc)

Josh Bendavid (CERN) ML MC Integration 40

BDT vs DNN

Both approaches are able to encode and efficiently sample from
multi-dimensional distributions with non-trivial correlations between
dimensions

Underlying sampling method is entirely different in the two cases
(FOAM-based vs inverse-CDF-like)

For the purpose of integration and unweighting, the generative BDT has
quite strict limitations on positive-definite weights/linear mapping to
output and a lack of flexibility for the loss function which makes
minimization difficult and enforces very slow convergence for good
performance

Generative DNN models are more flexible in this respect and are therefore
expected to have better scaling with the number of parameters and
dimensionality (already observed for test cases) as well as more room for
improvement

Software infrastructure for training large DNN’s is also more widely
supported by data scientists and computing industry

Plan to pursue the DNN-based algorithm rather than BDT’s

Josh Bendavid (CERN) ML MC Integration 41

Conclusions/Todo

Very promising performance/potential for speedup of MC
integration (and eventually generation) with both BDT and
DNN-based algorithms

Further work will focus on DNN’s

Todo:

More systematic tests at higher dimensions
Tests with real physics examples (integration with Madgraph
already in progress)
Further optimization or improvements to network architecture
and optimization/convergence
Implementation for more efficient unweighting (modified loss
functions)
Understand if/how to best combine with multi-channelling and
related techniques (requires a detailed study on the
invertibility of these generative DNN models)

Josh Bendavid (CERN) ML MC Integration 42

Conclusions/Todo

Important to keep in mind: Since the ML models are used
for importance sampling and accept-reject sampling, accuracy
of integration and proper distribution of generated events does
not depend on the accuracy of the Machine Learning model,
less accurate model only means more samples needed to reach
a given integration precision and/or lower unweighting
efficiency (just like VEGAS integration grids and similar)

Josh Bendavid (CERN) ML MC Integration 43

Outlook

Large improvements with novel algorithms already
demonstrated on test cases

Exploring alternative DNN architectures including
auto-regressive models and convolutional elements

Integration into Madgraph aMC@NLO and tests with QCD
matrix elements in progress

Eventual possible integration in PyCuba library (being used
for python-based phase-space integration in future versions of
Madgraph aMC@LO)

Josh Bendavid (CERN) ML MC Integration 44

Backup

Josh Bendavid (CERN) ML MC Integration 45

Diagnostic Plots - 4D Camel Function - Integration
Weights - Staged case

htgtratiobase
Entries 20000
Mean 1.002
RMS 0.06863
Underflow 0
Overflow 9

)x/f(
)xh(

Primary weight e
0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

nu
m

be
r

of
 e

ve
nt

s

1

10

210

310

htgtratiobase
Entries 20000
Mean 1.002
RMS 0.06863
Underflow 0
Overflow 9

(a) Primary Weight

Primary weight for integral evaluation, intermediate weight is
for intermediate unweighting (primary vs secondary bdt)

Josh Bendavid (CERN) ML MC Integration 46

Diagnostic Plots - 9D Camel Function with BDT

d, distance along multidimensional diagonal (a.u.)
0 0.2 0.4 0.6 0.8 1

fu
nc

tio
n

va
lu

e
(a

.u
.)

0

500

1000

1500

2000

2500

3000

310×
Graph

) (Camel)xf(

 (Primary BDT))xh(e

) (Secondary BDT)xg(

Graph

(a) linear

d, distance along multidimensional diagonal (a.u.)
0 0.2 0.4 0.6 0.8 1

fu
nc

tio
n

va
lu

e
(a

.u
.)

35−10

31−10

27−10

23−10

19−10

15−10

11−10

7−10

3−10

10

510
610

Graph

) (Camel)xf(

 (Primary BDT))xh(e

) (Secondary BDT)xg(

Graph

(b) log

Deficiencies of secondary sampling BDT with respect to
primary BDT are larger in higher dimensional case

Josh Bendavid (CERN) ML MC Integration 47

Diagnostic Plots - 9D Camel Function - BDT Integration
Weights

)x)/g(xSecondary weight f(
0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

nu
m

be
r

of
 e

ve
nt

s

0

100

200

300

400

500

600

700

htgtratiointerfull
Entries 20000
Mean 1.128
RMS 0.3724
Underflow 0
Overflow 845

(a) linear

htgtratiointerfull
Entries 20000
Mean 1.128
RMS 0.3724
Underflow 0
Overflow 845

)x)/g(xSecondary weight f(
0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

nu
m

be
r

of
 e

ve
nt

s

10

210

310

htgtratiointerfull
Entries 20000
Mean 1.128
RMS 0.3724
Underflow 0
Overflow 845

(b) log

Visible also in the weight distribution

(Checking staged case now)

Josh Bendavid (CERN) ML MC Integration 48

Diagnostic Plots - 9D Camel Function - Staged BDT Case

d, distance along multidimensional diagonal (a.u.)
0 0.2 0.4 0.6 0.8 1

fu
nc

tio
n

va
lu

e
(a

.u
.)

0

500

1000

1500

2000

2500

3000

310×
Graph

) (Camel)xf(

 (Primary BDT))xh(e

) (Secondary BDT)xg(

Graph

(a) linear

d, distance along multidimensional diagonal (a.u.)
0 0.2 0.4 0.6 0.8 1

fu
nc

tio
n

va
lu

e
(a

.u
.)

35−10

31−10

27−10

23−10

19−10

15−10

11−10

7−10

3−10

10

510
610

Graph

) (Camel)xf(

 (Primary BDT))xh(e

) (Secondary BDT)xg(

Graph

(b) log

Deficiencies of secondary sampling BDT with respect to
primary BDT are larger in higher dimensional case

Josh Bendavid (CERN) ML MC Integration 49

Diagnostic Plots - 9D Camel Function - Integration
Weights - Staged BDT case

htgtratiobase
Entries 20000
Mean 1.019
RMS 0.2126
Underflow 0
Overflow 265

)x/f(
)xh(

Primary weight e
0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

nu
m

be
r

of
 e

ve
nt

s

1

10

210

310

htgtratiobase
Entries 20000
Mean 1.019
RMS 0.2126
Underflow 0
Overflow 265

(a) Primary Weight

Staged approach corrects obvious issues with weights in 9D
case

Josh Bendavid (CERN) ML MC Integration 50

BDT Output Transformation

If not for the sampling limitations, would prefer to use
transformation such that h(x̄) =

∑
hi (x̄) ≈ ln f (x̄) (then

f (x̄) ≈ eh(x̄))

This ensures that prediction for f (x̄) is positive-definite, even
when hi (x̄) are not

This form of transformation also has mathematical
conveniences for minimization

Josh Bendavid (CERN) ML MC Integration 51

BDT Loss Function

For variance reduction, would like to directly minimize∑
(f (x̄)/g(x̄)− 1)2 or similar, but this is not mathematically

convenient

Alternate loss function
∑

(ln f (x̄)− ln g(x̄))2 is equivalent to
second order

With transformed output this reduces to the simplest possible
parabolic loss function k

∑
(ln f (x̄)− h(x̄))2

This can also be interpreted as the negative log-likelihood for
a log-normal distribution in f (x̄):

p(f (x̄)|h(x̄), σ) = 1
xσ
√

2π
e

(ln f (x̄)−h(x̄))2

2σ2 with k = 1
2σ2

Josh Bendavid (CERN) ML MC Integration 52

Secondary BDT

In order to be able to easily sample from the resulting output, construct
also a secondary BDT subject to sampling limitations

Problem: Without any transformation, loss function∑
(ln f (x̄)− ln g(x̄))2 is very difficult (has non-convex regions)

Problem: Since each tree must be positive definite, results from early
trees are “locked in” and cannot be compensated by later trees → must
ensure slow convergence for good results

Solution: Train secondary BDT to approximate primary BDT output
eh(x̄) rather than f (x̄) directly. If both sets of trees are trained in parallel
then this ensures slow convergence.

Solution: Use modified loss function at ith iteration
Li = k

∑
(ln(eh(x̄) − gi−1(x̄))− ln ∆gi (x̄))2

Can be interpreted as fitting the mean of a log-normal distribution with
respect to the residuals after the previous iterations

Requires some numerical protections (minimum value of e.g. e−24 for ln
argument eh(x̄) − gi−1(x̄))

Josh Bendavid (CERN) ML MC Integration 53

