

Christoph Englert

# Future colliders

UK Input to European Particle Physics Strategy Update

Durham, 04/04/2018



#### proton-proton 14 TeV [3/ab]



|                 | electron-positron                                     | top threshold [100/fb]<br>380 GeV [500/fb]<br>1.5 TeV [1.5/ab]<br>3 TeV [3/ab]                                                             |
|-----------------|-------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------|
| ilc             | electron-positron                                     | 250 GeV [2/ab]<br>350 GeV [200/fb]<br>500 GeV [4/ab]                                                                                       |
| FEC<br>hh ee he | proton-proton<br>electron-positron<br>electron-proton | 100 TeV [30/ab], <u>HE-LHC 27 TeV</u> [15/ab]<br>91 [5.6/ab/yr], 160 [1.6/ab/yr], 240 [2.5/ab], 365 GeV [130/fb/yr]<br>e(60 GeV) p(50 TeV) |
| CEPC            | proton-proton<br>electron-positron<br>electron-proton | 100 TeV as SPPC<br>91 ["10 x LEP"], 240 GeV [5/ab]<br>e(60 GeV) p(35 TeV)                                                                  |

#### proton-proton

14 TeV [3/ab]



TDR 2013

|                   | 250 GeV [2/ab]   |
|-------------------|------------------|
| electron-positron | 350 GeV [200/fb] |
|                   | 500 GeV [4/ab]   |

TLEP. 13 CDR 13, YRS '16 March 182 16 100 TeV [30/ab], <u>HE-LHC 27 TeV</u> [15, proton-proton 91 [5.6/ab/yr], 160 [1.6/ab/yr], 240 [2.5/ab], 365 G electron-positron e(60 GeV) p(50 TeV) electron-proton PreCDR'15 CDR Spring 15 182



100 TeV as SPPC proton-proton 91 ["10 x LEP"], 240 GeV [5/ab] electron-positron e(60 GeV) p(35 TeV) electron-proton

#### ► LHC has entered the TeV scale sensitivity range

Selected CMS SUSY Results\* - SMS Interpretation ICHEP '16 - Moriond '17 m-111.1 → m1 SUS-16-014 SUS-16-033 OKMHT P-11.1 - 91 SUS-16-015 SUS-16-036 OKMT2) 10-11-1-10 Z SUS-16-014 SUS-16-033 OKMHT) SUS-16-015 SUS-16-036 OKMT2) m-111.1 → 10 1 SUS-16-016 0( a., ) 10 - 10 j . j - 10 j SUS-16-014 SUS-16-033 O(MHT) PP→11 1.1 → 11 1 SUS-16-015 SUS-16-036 O(MT2) SUS-16-016 0( a., ) PR-10.0.0 -+ 113 SUS-16-019 SUS-16-042 18(A.¢) 10-18 8.8 -112 SUS-16-020 SUS-16-035 2I same-eign PP-188.8-172 SUS-16-022 SUS-16-041 Multilepton PP→11 1 . 1 → 11 2 SUS-16-090 OF PP -18 8 -8 -1 H Z 1004.0 (M<sub>mente</sub> - M <sub>100</sub> = 20 GeV) (M<sub>1</sub> - M<sub>100</sub> = 5 GeV) SUS-16-000 0I 10 → 11 → 102 PP-188.8 -14 1 ÷ii.i → 42, → 44 ¥2 SUS-16-019 SUS-16-042 18(A.e) 200.5 ₩~88.8~92 ~91¥2 ₩~88.8~92 ~91¥2 SUS-16-020 SUS-16-035 2I same-sign x=0.5 SUS-16-020 SUS-16-035 2I same-sign (M\_\_\_\_\_ - M\_\_\_\_\_ = 20 GeV) +88.8 → 44(2 / 2 ) → 44(442)2 +88.8 → 44(2 / 2 ) → 44(442)2 SUS-16-014 SUS-16-033 OKMHT) 2+0.5 SUS-16-022 SUS-16-041 Multilepton 200.5 SUS-16-014 SUS-16-033 OKMHT) SUS-16-015 SUS-16-036 OKMT2) PP-41,1-12 SUS-16-016 0( a., ) PP-41,1-+12 SUS-16-027 SUS-17-031 21 opposite-sign SUS-16-020 SUS-16-051 11 SUS-16-029 SUS-16-049 OI pp-41,1-12 SUS-16-000 OI pp-41,1 → e Ž (Max exclusion for M <sub>Mober</sub> - M <sub>LBA</sub> < 80 GeV) (Max exclusion for M mone - M us < 80 GeV) OI(MT2) CMS Preliminary (Max exclusion for M <sub>linke</sub> - M <sub>Lin</sub> < 00 GeV) (Max exclusion for M <sub>linke</sub> - M <sub>Lin</sub> < 00 GeV) SUS-16-049 08 SUS-16-025 SUS-16-048 21 soft pp -11,1 -+ b11 2<sup>®</sup> (+ body) pp −41,1 → bff 2 (+body) pp −41,1 → bff 2 (+body) (Max exclusion for M <sub>Beller</sub> - M <sub>LBP</sub> < 00 GeV) (Max exclusion for M <sub>Beller</sub> - M <sub>LBP</sub> < 00 GeV) SUS-16-029 SUS-16-049 0 √s = 13TeV SUS-16-091 11 poft SUS-16-020 SUS-16-051 11 m-il.i-z.s-sw.z Tool . PP-41,1-2 b-bW 2 SUS-16-029 SUS-16-049 OI 2-0.5 m-11,1-12 b→bW 2 ORMT25 200.5  $L = 12.9 \text{ fb}^{-1}L = 35.9 \text{ fb}^{-1}$ 11,1→2 b→bW 2 21 opposite-sign -0 S pp -46, b → b Z SUS-16-014 SUS-16-033 OKMHT pp -- 66, 6 -- b Z SUS-16-015 SUS-16-036 OKMT2) PP-60,0-10 SUS-16-016 0( a., ) pp→bb,b→b Z 102 OI m-44.4 →41 q +q (u,d,c,s) SUS-16-014 SUS-16-033 O(MHT) +q (u,d,c,s) 10-44.4 +41 SUS-16-015 SUS-16-036 OVMT2  $\hat{1} - \hat{1}\hat{1}$  $\hat{1} - \hat{1}\hat{1}$  $\hat{1} - \hat{1}\hat{1}$ ..... SUS-16-024 SUS-16-022 x=0.5 Multilecton + 2 same-sion (5 200.95 epton (by enriched z=0.5 i -mvi i x=0.5 oton (tau do For decays with intermediate mass, SUS-16-024 SUS-16-033 Multi March mintermediate = x · m Hother +(1-x)· m - M .... < 40 GeV) US-16-025 DUG-1 21 and (Max exclusion for M 200 400 600 800 1000 1200 1400 2000 0 1600 1800 Mass Scale [GeV]

\*Observed limits at 95% C.L. - theory uncertainties not included Only a selection of available mass limits. Probe \*up to\* the quoted mass limit for m =0 GeV unless stated otherwise

## Status of LHC measurements

#### rearly stage: constraints can be avoided in non-minimal scenarios

|                                                      | CxSM.B1                                          | CxSM.B2                | CxSM.B3                | CxSM.B4                | CxSM.B5                |  |
|------------------------------------------------------|--------------------------------------------------|------------------------|------------------------|------------------------|------------------------|--|
| $\star m_{h1} \; (\text{GeV})$                       | 125.1                                            | 125.1                  | 57.83                  | 86.79                  | 33.17                  |  |
| $m_{h_2} (\text{GeV})$                               | 260.6                                            | 228                    | 125.1                  | 125.1                  | 64.99                  |  |
| $\star m_{h_3} (\text{GeV})$                         | 449.6                                            | 311.3                  | 299                    | 291.8                  | 125.1                  |  |
| $\star \alpha_1$                                     | -0.04375                                         | 0.05125                | -1.102                 | -1.075                 | 1.211                  |  |
| $\star \alpha_2$                                     | 0.4151                                           | -0.4969                | 1.136                  | 0.8628                 | -1.319                 |  |
| $\star \alpha_3$                                     | -0.6983                                          | -0.5059                | -0.02393               | -0.0184                | 1.118                  |  |
| $\star v_S \; (\text{GeV})$                          | 185.3                                            | 52.3                   | 376.9                  | 241.9                  | 483.2                  |  |
| $v_A \; (\text{GeV})$                                | 371.3                                            | 201.6                  | 236.3                  | 286.1                  | 857.8                  |  |
| $\lambda$                                            | 1.148                                            | 1.018                  | 0.869                  | 0.764                  | 0.5086                 |  |
| $\delta_2$                                           | -0.9988                                          | 1.158                  | -0.4875                | -0.4971                | 0.01418                |  |
| $d_2$                                                | 1.819                                            | 3.46                   | 0.6656                 | 0.9855                 | 0.003885               |  |
| $m^2 \; ({ m GeV}^2)$                                | $5.118 \times 10^4$                              | $-5.597 \times 10^4$   | $2.189 \times 10^4$    | $1.173 \times 10^{4}$  | $-2.229 \times 10^4$   |  |
| $b_2 \; (\text{GeV}^2)$                              | $-3.193 \times 10^4$                             | $-5.147 \times 10^4$   | $-3.484 \times 10^4$   | $-3.811 \times 10^4$   | 1362                   |  |
| $b_1 \; (\text{GeV}^2)$                              | $9.434 \times 10^4$                              | $5.864 \times 10^4$    | $1.623 \times 10^4$    | $1.599 \times 10^{4}$  | 3674                   |  |
| $a_1 \; (\text{GeV}^3)$                              | $-1.236 \times 10^{7}$                           | $-2.169 \times 10^{6}$ | $-4.325 \times 10^{6}$ | $-2.735 \times 10^{6}$ | $-1.255 \times 10^{6}$ |  |
| $\mu_{h_1}^C/\mu_{h_1}^T$                            | 0.0127                                           | 0.0407                 | 0.365                  | 0.117                  | 0.687                  |  |
| $\mu_{h_1}$                                          | 0.836                                            | 0.771                  | 0.0362                 | 0.0958                 | 0.00767                |  |
| $\sigma_1 \equiv \sigma(gg \to h_1)$                 | 36.1 [ph]                                        | 33 3 [nh]              | 6.42 [ph]              | 8.03 [pb]              | 4.61 [pb]              |  |
| $\sigma_1 	imes { m BR}(h_1 	imes { m I})$           | 7.55 [pb]                                        | 0.01 [fb]              |                        |                        |                        |  |
| $\sigma_1 	imes \mathrm{BR}(h_1$                     | $\oplus$ exotic (rare) signatures 0.             |                        |                        |                        |                        |  |
| $\sigma_1 	imes \mathrm{BR}(h_1$                     | 21.3 [pb] 19.6 [pb] 5.48 [pb] 6.6 [pb] 4.01 [pb] |                        |                        |                        |                        |  |
| $\sigma_1 \times \mathrm{BR}(h_1 \to \tau \tau)$     | 2.29 [pb]                                        | 2.11 [pb]              | 501 [fb]               | 659 [fb]               | 323 [fb]               |  |
| $\sigma_1 \times \mathrm{BR}(h_1 \to \gamma \gamma)$ | 83.7 [fb]                                        | 77.2 [fb]              | 2.87 [fb]              | 9.13 [fb]              | 0.617  [fb]            |  |

e.g. [Costa, Mühlleitner, Sampaio, Santos `15] scenarios for run-2

#### Conclusions for HEP ? No guaranteed discoveries. Best case(s)?

the SM is flawed

no evidence for exotics yet

#### Conclusions for HEP ? No guaranteed discoveries. Best case(s)?

the SM is flawed

no evidence for exotics yet

Higgs/top properties are central to BSM and a clear deliverable of any future collider

#### Conclusions for HEP ? No guaranteed discoveries. Best case(s)?

#### direct vs indirect precision? energy coverage?

#### the SM is flawed

no evidence for exotics yet

big part of WG studies focus on Higgs physics Higgs/top properties are central to BSM and a clear deliverable of any future collider

Higgs mass, couplings, (width),...

#### Conclusions for HEP ? No guaranteed discoveries. Best case(s)?

#### direct vs indirect precision? energy coverage?



Higgs properties are central to BSM and a clear deliverable of any future collider

### Effective Field Theory

 $\mathcal{L} = \mathcal{L}_{\mathrm{SM}} + \sum_{i} \frac{c_i}{\Lambda^2} \mathcal{O}_i$ 

[Buchmüller, Wyler `87] [Hagiwara, Peccei, Zeppenfeld, Hikasa `87] [Giudice, Grojean, Pomarol, Rattazzi `07] [Grzadkowski, Iskrzynski, Misiak, Rosiek `10]

59 B-conserving operators  $\otimes$  flavor  $\otimes$  h.c., d=6 2499 parameters (reduces to 76 with N<sub>f</sub>=1)



Higgs mass precision can be limitation of coupling fit precision

**Higgs mass** 

$$\delta_W = 6.9 \cdot \delta m_h, \quad \delta_Z = 7.7 \cdot \delta m_h$$

[Almeida, Lee, Pokorski, Wells `13]



Higgs mass precision can be limitation of coupling fit precision

11

$$\delta_W = 6.9 \cdot \delta m_h, \quad \delta_Z = 7.7 \cdot \delta m_h$$

[Almeida, Lee, Pokorski, Wells `13]

► through leptonic recoil in  $Z \rightarrow \mu^+\mu^$ the Higgs mass can be constrained to 14 MeV [LCC Physics Working Group `18]



Higgs mass

## Status of LHC measurements



everything is consistent with the SM Higgs hypothesis (so far) but what are the implications for new physics/future colliders?

# **HL-LHC** projections



uniform coupling weak boson modifier  $\kappa_v$ 

## FCC-hh projections



large relative improvement for ttH (pdfs & phasespace)

# FCC-hh projections



15



[Durieux, Grojean, Gu, Wang `17]

# Coupling projections: HL-LHC

#### precision reach of the 12-parameter fit in Higgs basis



see also [LCC working group `18], [CEPC working group `17]

Precision environment of a lepton colliders allows to pin down gauge-Higgs sector at the per mille level in case of the Z [Durieux, Grojean, Gu, Wang `17]

# Coupling projections: HL-LHC

#### precision reach of the 12-parameter fit in Higgs basis



see also [LCC working group `18], [CEPC working group `17]

- Precision environment of a lepton colliders allows to pin down gauge-Higgs sector at the per mille level in case of the Z
- ► CLIC energy coverage beneficial to pin down high energy behavior of electroweak sector e.g.  $c_{Z\Box} g^2 Z_{\mu} \partial_{\nu} Z_{\mu\nu}$

LHC blind spots: Higgs potential

# ► dimension 6 deformations of the Higgs potential $V(H^{\dagger}H)_6 \supset c_6/\Lambda^2(H^{\dagger}H)^3$

modify Higgs self-interactions. Large top-threshold interference.



## LHC blind spots: Higgs potential



### LHC blind spots: HH @ 100 TeV





## LHC blind spots: HH @ 100 TeV





# LHC blind spots: HH @ e<sup>+</sup> e<sup>-</sup>

direct probe of Higgs self
 interactions possible for higher
 energies

$$\Delta \lambda / \lambda = 40\%$$
 at  $\sqrt{s} = 1.4 \,\text{TeV}$ ,  
 $\Delta \lambda / \lambda = 22\%$  at  $\sqrt{s} = 3 \,\text{TeV}$ .

► recent EFT fit to Zh(h) production show sensitivity to  $e^+e^-$ →Zhh  $[\langle (\delta\sigma)^2 \rangle]^{1/2} = 2.4\% \oplus 5\%$  EFT systematics,  $\sigma/(SM) = 1 + 0.56c_6 + \cdots$ self-coupling extraction becomes possible at 500 GeV at ~14%

## Summary

- community is active in making the case for the next generation of colliders
- ► (HL-)LHC input to strategy is crucial

complementarity in searches for light resonances/dark matter

constrain blind directions vice versa

FCC(hh)/... although at an early stage in planning clearly has the highest energy reach

identify BSM parameter space after LHC

