

Kaon physics experiments

Evgueni Goudzovski

(University of Birmingham)

<u>Outline:</u>

- 1) $K^+ \rightarrow \pi^+ \nu \nu$ and $K_L \rightarrow \pi^0 \nu \nu$ measurements at NA62 and KOTO.
- 2) Rare and forbidden kaon decays at NA62.
- 3) Kaon and hyperon physics at LHCb.
- 4) The KLEVER initiative at CERN: $K_L \rightarrow \pi^0 vv$ measurement.

UK input to EPPSU meeting IPPP Durham • 17 April 2018

Rare kaon decays: $K \rightarrow \pi v \overline{v}$

SM: box and penguin diagrams

Ultra-rare decays with the highest CKM suppression: $A \sim (m_t/m_w)^2 |V_{ts}^*V_{td}| \sim \lambda^5$

- ✤ Hadronic matrix element is related to a measured quantity (K⁺→ $\pi^0 e^+ v$).
- SM precision surpasses any other FCNC process involving quarks.
- ✤ Measurement of $|V_{td}|$ complementary to those from B-B mixing or B⁰→ργ.

E. Goudzovski / IPPP Durham, 17 April 2018

SM branching ratios Buras et al., JHEP 1511 (2015) 033

Mode	$BR_{SM} imes 10^{11}$
K^+ → π^+ ν $\overline{\nu}$ (γ)	8.4±1.0
$K_L \rightarrow \pi^0 v \overline{v}$	3.4±0.6

The uncertainties are largely parametric (CKM)

Theoretically clean, almost unexplored, sensitive to new physics.

E. Goudzovski / IPPP Durham, 17 April 2018

$K^+ \rightarrow \pi^+ v \overline{v}$: experimental status

Technique: K⁺ decay at rest

Data taking: E787 (1995–98), E949 (2002). Separated K⁺ beam (710 MeV/c, 1.6 MHz). PID: range (entire $\pi^+ \rightarrow \mu^+ \rightarrow e^+$ decay chain). Hermetic photon veto system.

Observed candidates: 7 Expected background: 2.6 Final result: BR

Background is mainly in Region 2, due to $K_{2\pi}$ decay with π^+ scattering in the target.

> PRL 101 (2008) 191802; PRD 79 (2009) 092004

NA62 at CERN: $K^+ \rightarrow \pi^+ \nu \nu$

JINST 12 (2017) P05025

The NA62 detector

- Pion momentum 15 GeV/c<p<35 GeV/c: missing energy of at least 40 GeV.</p>
- ♦ Hermetic photon veto: $\pi^0 \rightarrow \gamma\gamma$ decay suppression = 3×10^{-8} .
- ✤ Particle ID (RICH+LKr+HAC+MUV): muon suppression = 1×10⁻⁸.
- ★ Kinematic rejection factors (limited by beam pileup & MCS tails): 1×10^{-3} for K⁺→ $\pi^{+}\pi^{0}$, 3×10^{-4} for K→ $\mu^{+}\nu$.

NA62 physics programme

- ✤ NA62 Run in 2016–2018: data collection in progress.
 - ✓ Optimized for $K^+ \rightarrow \pi^+ \nu \nu$; not a multi-purpose K^+ decay experiment.
 - ✓ Several searches at nominal SES~10⁻¹²: K⁺→ π^+ A', π^0 → $\nu\nu$.
 - ✓ A limited number of rare decays to be measured: world's largest samples of $K^+ \rightarrow \pi^+ \mu^+ \mu^-$, $K^+ \rightarrow \ell^+ \nu \gamma$, $K^+ \rightarrow \pi^+ \gamma \gamma$.
 - ✓ Lepton universality test: $R_{K} = BR(K^{+} \rightarrow e^{+}v)/BR(K^{+} \rightarrow \mu^{+}v)$.
 - ✓ LNV/LFV searches at ~10⁻¹¹ level: K⁺→ $\pi^-\ell^+\ell^+$, K⁺→ $\pi^+\mu e$, π^0 → μe , ...
 - ✓ Searches for heavy neutral lepton production: $K^+ \rightarrow \ell^+ N$.
 - ✓ Searches for long-lived (O(1ns)) light particles, e.g. K⁺→ π^+ S, S→ $\mu^+\mu^-$.

✤ NA62 Run in 2021–2023: part of Physics Beyond Colliders study at CERN

- Existing apparatus: no capital investment.
- ✓ Further $K^+ \rightarrow \pi^+ v v$ data collection to reach 100 SM events.
- ✓ Beam dump operation with 10¹⁸ pot (=3 months of data taking): competitive searches for hidden sector (long-lived HNL, DP, ALP).
- Trigger improvements foreseen for forbidden decays.

NA62 data collection

- Commissioning run 2015: minimum bias (~1% of nominal beam intensity). Most systems commissioned and meet the design requirements.
- ✤ Physics run 2016 (40% intensity, limited by beam quality):
 1.2×10¹¹ K⁺ useful decays (1 month) for K⁺→π⁺νν analysis; analysis; analysis
- ✤ Physics run 2017 (65% intensity): ~3×10¹² useful K⁺ decays.
- Physics run 2018 started last week: 218 days scheduled.

NA62: $K_{\pi\nu\nu}$ signal region definition

Main K⁺ decay modes (>90% of BR) rejected kinematically.

Design kinematical resolution on m_{miss}^2 has been achieved $(\sigma=1.0\times10^{-3} \text{ GeV}^4/\text{c}^2).$

Measured kinematical background suppression:

✓ K⁺→ $\pi^{+}\pi^{0}$: 1×10⁻³; ✓ K⁺→ $\mu^{+}\nu$: 3×10⁻⁴.

Further background suppression:

- ✓ PID (calorimeters & Cherenkov detectors):
 µ suppression 10⁻⁸.
- ✓ Hermetic photon veto: suppression of $\pi^0 \rightarrow \gamma \gamma$ decays 3×10⁻⁸.

E. Goudzovski / IPPP Durham, 17 April 2018

BNL 949 (K⁺ decay at rest): BR(K⁺ $\rightarrow \pi^+\nu\nu$) = (1.73^{+1.15}_{-1.05})×10⁻¹⁰ SM prediction: BR(K⁺ $\rightarrow \pi^+\nu\nu$) = (0.84±0.10)×10⁻¹⁰

- The NA62 decay-in-flight technique works.
- Non-trivial result with ~1% of the total statistics foreseen.
- Improved beamline shielding in 2017: improved acceptance/background.

Analysis of 2013 data is complete; 2015/16 sample is ~20 times larger.

E. Goudzovski / IPPP Durham, 17 April 2018

2014

Jul

2014

Dec

2015

Jul

2016

Jan

2016

Jul

2013

Dec

Accumulated P.O.T

2013

Jul

KOTO: result with 2013 data

Principal backgrounds:

[PTEP 2017, 021C01]

Result with 2013 data:

- ✤ About 100h of data; SES = 1.3×10⁻⁸.
- Background dominated by halo neutrons.
- ✤ Signal acceptance = 1.02%.
- One event observed, with an expected background of 0.34±0.16.
- ♦ BR(K_L $\rightarrow \pi^{0}vv$)<5.1×10⁻⁸ at 90% CL.
- The strongest limit is still 2.6×10⁻⁸ [KEK E391a, PRD81 (2010) 072004]

Improvements in 2015/16:

- Better photon-neutron ID in calorimeter (cluster+pulse shape).
- Thinner vacuum window: reduction of π^0 production by neutrons.
- ✤ SES with the 2015/16 sample <10⁻⁹.
- Further upgrades are in progress.
- ♦ SM sensitivity (~10⁻¹¹) by 2021. 12

 $K \rightarrow \pi \nu \nu$: prospects

NA62 K⁺ $\rightarrow \pi \mu \mu$ analyses

- ✤ About 30% of the 2016+2017 data set: 6.3×10¹¹ K⁺ decays.
- ♦ World's largest $K^+ \rightarrow \pi^+ \mu^+ \mu^-$ sample: 4.6k events.
- ★ Expect a competitive $K^+ \rightarrow \pi^+ \mu^+ \mu^-$ measurement with ~10k events: LU test.
- ★ Search for $K^+ \rightarrow \pi^- \mu^+ \mu^+$ is not limited by background; SES=2×10⁻¹¹.
- Search for $K^+ \rightarrow \pi^+ X$, $X \rightarrow \mu^+ \mu^-$: SES~10⁻¹⁰ for lifetimes up to O(1 ns). E. Goudzovski / IPPP Durham, 17 April 2018

NA62 K⁺ $\rightarrow \pi ee$ analyses

- Dedicated (downscaled) 3-track trigger lines are in operation.
- ✤ About 30% of the 2016+2017 data set: 1.3×10¹¹ K⁺ decays.
- ♦ For m_{ee} > 140 MeV/c², background-free K⁺→π⁺e⁺e⁻ sample, 1.1k events.
- ♦ First observation of $K^+ \rightarrow \pi^+ e^+ e^-$ in the region $m_{ee} < 140 \text{ MeV/c}^2$.
- Search for $K^+ \rightarrow \pi^- e^+ e^+$ is not limited by background; SES=2×10⁻¹⁰.
- Search for $K^+ \rightarrow \pi^+ X$, $X \rightarrow e^+e^-$, $10 < m_X < 100 \text{ MeV/c}^2$: SES~10⁻⁹ for lifetime $\ll 1 \text{ ns.}$

NA62: K⁺→ℓ⁺N (2015 data)

- Minimum bias data (1% intensity); 12k spills (5 days). Phys. Lett. B778 (2018) 137
- Numbers of K⁺ decays in fiducial volume: N_K=(3.01±0.11)×10⁸ in positron case; N_K=(1.06±0.12)×10⁸ in muon case.
- Beam tracker not available: kaon momentum is estimated as the beam average.
- HNL production signal: a spike above continuous missing mass spectrum.

NA62 limits on HNL production

improvement on the world data in 5 days and without the beam tracker.

Stimated sensitivity with the full sample: ~ 10^{-9} for $|U_{e4}|^2$, ~ 10^{-8} for $|U_{\mu4}|^2$. 17 E. Goudzovski / IPPP Durham, 17 April 2018

K_s physics at LHCb

A new upper limit on $K_S \rightarrow \mu^+ \mu^-$ with 3 fb⁻¹: [EPJC 77 (2017) 678]

 $\mathcal{B}\left(K^0_S \to \mu^+ \mu^-\right) < 0.8(1.0) \times 10^{-9}$ at 90(95)% of CL

Ultimate LHCb sensitivity: down to 10^{-11} . SM prediction: $\mathcal{B}(K_S^0 \to \mu^+ \mu^-) = (5.18 \pm 1.50 \pm 0.02) \times 10^{-12}$

- ★ A sensitivity study performed for $K_S \rightarrow \pi^0 \mu^+ \mu^-$. Prospects to improve over NA48/1 measurement: $\mathcal{B}(K_S^0 \rightarrow \pi^0 \mu^+ \mu^-) = 2.9^{+1.5}_{-1.2} \times 10^{-9}$ [PLB599 (2004) 197]
- ★ A sensitivity study performed for $K_S \rightarrow \pi^+ \pi^- e^+ e^-$.

 $\sum_{i=1}^{3.0} \sum_{i=1}^{3.0} \sum_{i=1}^{3.0}$

Potentially competitive with NA48 measurements (23k events) $\mathcal{B}(K_S^0 \to \pi^+ \pi^- e^+ e^-) = (4.79 \pm 0.15) \times 10^{-5}$ [EPJ C30 (2003) 33; PLB694 (2011) 301]

• Possibly first searches for $K_S \rightarrow \ell^+ \ell^- \ell^+ \ell^-$ (SM BRs below 10⁻¹⁰)?

(More details: talks by F. Dettori and M. Ramos Pernas at RKF workshop, Feb 2018) **18** E. Goudzovski / IPPP Durham, 17 April 2018

LHCb: evidence for $\Sigma^+ \rightarrow p \mu^+ \mu^-$

★ A rare FCNF decay: 1.6×10⁻⁸<BR_{SM}<9.0×10⁻⁸.
 ★ HyperCP anomaly: 3 candidates, all with m(µ⁺µ⁻) ≈ 214 MeV/c². [PRL94 (2005) 021801]
 ★ LHCb analysis: full 2011+12 sample, 3 fb⁻¹.

- Consistent with SM prediction; no evidence for the HyperCP resonance.
- ✤ A precision measurement is foreseen with Run II data.
- Proposals to measure baryon dipole moments (arXiv:1612.06769, 1708.08483) and to study semileptonic baryon decays.

LEVER project at CERN: 2026+

- A new K_L→π⁰νν experiment at CERN with SES~0.5×10⁻¹² (i.e. 60 SM events) and S/B~1 with 5 years of data taking is under consideration for 2026+.
- ✤ Mean K_L momentum of 97 GeV/c: easier photon veto wrt KOTO.
- Longer K_L lifetime, tight collimation: need 5×10¹⁹ pot/year (6x NA62 intensity).
- Target area and transfer line upgrade is under study.
- ✤ Re-use NA62 infrastructure and possibly parts of detector (LKr, HAC).
- Possibly add a tracking system? Then $K_L \rightarrow \pi^0 \ell^+ \ell^-$ (BR_{SM}~10⁻¹¹) are accessible.

Project represented at CERN Physics Beyond Collider study; expression of interest to CERN SPSC in preparation.

E. Goudzovski / IPPP Durham, 17 April 2018

Summary

- Active kaon experiments; NA62@CERN, KOTO@J-PARC, LHCb@CERN. UK makes major contributions to the CERN kaon experiments.
- ✤ By 2020, expect major improvement of the experimental information on K⁺→ $\pi^+\nu\nu$ and K_L→ $\pi^0\nu\nu$. Also, the ultimate sensitivity of the NA62 method will be understood.
- ✤ By 2025, expect a K⁺→π⁺νν measurement to 10% precision (NA62) and the first evidence for K_L→π⁰νν (KOTO).
- On the same time scale, expect many new NA62/LHCb results on rare/forbidden kaon decays, lepton universality, LF/LN conservation tests, HNL production, etc.
- ★ After 2025: a dedicated K_L→ π^0 vv experiment at CERN to collect 60 SM events with S/B~1 in 5 years?