Kaon physics experiments

Evgueni Goudzovski
(University of Birmingham)

Outline:
1) $K^+ \rightarrow \pi^+ \nu\nu$ and $K_L \rightarrow \pi^0 \nu\nu$ measurements at NA62 and KOTO.
2) Rare and forbidden kaon decays at NA62.
3) Kaon and hyperon physics at LHCb.
4) The KLEVER initiative at CERN: $K_L \rightarrow \pi^0 \nu\nu$ measurement.

UK input to EPPSU meeting
IPPP Durham • 17 April 2018
Rare kaon decays: $K \rightarrow \pi \nu \bar{\nu}$

SM: box and penguin diagrams

Ultra-rare decays with the highest CKM suppression:

$$A \sim (m_t/m_W)^2 |V_{ts}V_{td}| \sim \lambda^5$$

- Hadronic matrix element is related to a measured quantity ($K^+ \rightarrow \pi^0 e^+ \nu$).
- SM precision surpasses any other FCNC process involving quarks.
- Measurement of $|V_{td}|$ complementary to those from $B-\bar{B}$ mixing or $B^0 \rightarrow \rho \gamma$.

SM branching ratios

Buras et al., JHEP 1511 (2015) 033

<table>
<thead>
<tr>
<th>Mode</th>
<th>$\text{BR}_{\text{SM}} \times 10^{11}$</th>
</tr>
</thead>
<tbody>
<tr>
<td>$K^+ \rightarrow \pi^+ \nu \bar{\nu}(\gamma)$</td>
<td>8.4 ± 1.0</td>
</tr>
<tr>
<td>$K_L \rightarrow \pi^0 \nu \bar{\nu}$</td>
<td>3.4 ± 0.6</td>
</tr>
</tbody>
</table>

The uncertainties are largely parametric (CKM)

Theoretically clean, almost unexplored, sensitive to new physics.
It is essential to measure both $K^+ \to \pi^+ \nu \bar{\nu}$ and $K_L \to \pi^0 \nu \bar{\nu}$ decays.

Kaon physics alone can fully constrain the unitarity triangle.

Comparison with B physics can provide description of NP flavour dynamics.
Technique: K^+ decay at rest

Separated K^+ beam (710 MeV/c, 1.6 MHz).
PID: range (entire $\pi^+\rightarrow\mu^+\rightarrow e^+$ decay chain).
Hermetic photon veto system.

Observed candidates: 7
Expected background: 2.6
Final result:

$$BR = (1.73^{+1.15}_{-1.05}) \times 10^{-10}$$

Background is mainly in Region 2, due to $K_{2\pi}$ decay with π^+ scattering in the target.

Main goal: an improved $K^+ \rightarrow \pi^+ \nu \nu$ measurement with a novel decay-in-flight technique.

Major UK contribution: 11% of the collaboration.
Pion momentum $15 \text{ GeV}/c < p < 35 \text{ GeV}/c$: missing energy of at least 40 GeV.

Hermetic photon veto: $\pi^0 \rightarrow \gamma\gamma$ decay suppression = 3×10^{-8}.

Particle ID (RICH+LKr+HAC+MUV): muon suppression = 1×10^{-8}.

Kinematic rejection factors (limited by beam pileup & MCS tails):
1. 1×10^{-3} for $K^+ \rightarrow \pi^+\pi^0$,
2. 3×10^{-4} for $K \rightarrow \mu^+\nu$.

Un-separated hadron ($p/\pi^+/K^+$) beam.
SPS protons: 400 GeV, 3.3×10^{12}/spill.
K^+: $75 \text{ GeV}/c$ ($\pm 1\%$), divergence < $100 \mu\text{rad}$. Nominal beam rate: 750 MHz, K^+ rate 45 MHz; ~5 MHz K^+ decays in fiducial volume.
NA62 physics programme

- **NA62 Run in 2016–2018:** data collection in progress.
 - Optimized for $K^+ \to \pi^+ \nu\nu$; not a multi-purpose K^+ decay experiment.
 - Several searches at nominal $\text{SES} \approx 10^{-12}$: $K^+ \to \pi^+ A', \pi^0 \to \nu\nu$.
 - A limited number of rare decays to be measured:
 - world’s largest samples of $K^+ \to \pi^+ \mu^+\mu^-$, $K^+ \to \ell^+\gamma\gamma$, $K^+ \to \pi^+\gamma\gamma$.
 - Lepton universality test: $R_K = \frac{\text{BR}(K^+ \to e^+\nu)}{\text{BR}(K^+ \to \mu^+\nu)}$.
 - LNV/LFV searches at $\sim 10^{-11}$ level: $K^+ \to \pi^-\ell^+\ell^+$, $K^+ \to \pi^+\mu\nu$, $\pi^0 \to \mu\nu$, ...
 - Searches for heavy neutral lepton production: $K^+ \to \ell^+ N$.
 - Searches for long-lived ($O(1\text{ns})$) light particles, e.g. $K^+ \to \pi^+ S$, $S \to \mu^+\mu^-$.

- **NA62 Run in 2021–2023:** part of Physics Beyond Colliders study at CERN
 - Existing apparatus: **no capital investment**.
 - Further $K^+ \to \pi^+\nu\nu$ data collection to reach 100 SM events.
 - Beam dump operation with 10^{18} pot (=3 months of data taking): competitive searches for hidden sector (long-lived HNL, DP, ALP).
 - Trigger improvements foreseen for forbidden decays.
NA62 data collection

- Commissioning run 2015: minimum bias (~1% of nominal beam intensity). Most systems commissioned and meet the design requirements.
- Physics run 2016 (40% intensity, limited by beam quality): 1.2×10^{11} K^+ useful decays (1 month) for $K^+ \rightarrow \pi^+ \nu\nu$ analysis; analysis completed
- Physics run 2017 (65% intensity): $\sim 3 \times 10^{12}$ useful K^+ decays.
- Physics run 2018 started last week: 218 days scheduled.
Main K^+ decay modes (>90% of BR) rejected kinematically.

Design kinematical resolution on m_{miss}^2 has been achieved ($\sigma=1.0\times10^{-3}$ GeV4/c2).

Measured kinematical background suppression:
- $K^+\rightarrow\pi^+\pi^0$: 1×10^{-3};
- $K^+\rightarrow\mu^+\nu$: 3×10^{-4}.

Further background suppression:
- PID (calorimeters & Cherenkov detectors): μ suppression 10^{-8}.
- Hermetic photon veto: suppression of $\pi^0\rightarrow\gamma\gamma$ decays 3×10^{-8}.

$K_{\pi\nu\nu}$ signal region definition

$\mathbf{m}_{\text{miss}}^2=(P_K-P_\pi)^2$ vs track momentum

$K^+\rightarrow\pi^+\pi^+\pi^-$
$K^+\rightarrow\pi^+\pi^0\pi^0$

Region I

Region II
Data sample: one month at 40% of nominal intensity.

Number of kaon decays: $N_K = (1.21 \pm 0.02_{\text{syst}}) \times 10^{11}$.

The analysis procedure is fully established.

Background estimates are mostly data-driven.

Signal acceptance: $A_{\pi\nu\nu} = (4.0 \pm 0.1\%)$.

Single-event sensitivity: $\text{SES} = (3.15 \pm 0.24) \times 10^{-10}$.
One $K^+ \rightarrow \pi^+ \nu \nu$ candidate observed: $\text{BR}(K^+ \rightarrow \pi^+ \nu \nu) < 11 \times 10^{-10}$ at 90% CL.

BNL 949 (K^+ decay at rest): $\text{BR}(K^+ \rightarrow \pi^+ \nu \nu) = (1.73^{+1.15}_{-1.05}) \times 10^{-10}$

SM prediction: $\text{BR}(K^+ \rightarrow \pi^+ \nu \nu) = (0.84 \pm 0.10) \times 10^{-10}$

- The NA62 decay-in-flight technique works.
- Non-trivial result with $\sim 1\%$ of the total statistics foreseen.
- Improved beamline shielding in 2017: improved acceptance/background.
Protons of 30 GeV/c, 16° production angle: K_L spectrum peaks at 1.4 GeV/c.

- Beam composition: K_L, neutrons, photons.
- Fiducial decay region length: 3 m.
- CsI calorimeter + hermetic veto.
- In 2013, 3×10^{13} pot per 2 s pulse (25 kW).
- Higher intensity in 2015/16: $30/42 \text{ kW}$.
- Analysis of 2013 data is complete; 2015/16 sample is ~20 times larger.
KOTO: result with 2013 data.

[PTEP 2017, 021C01]

Result with 2013 data:

- About 100h of data; SES = 1.3×10^{-8}.
- Background dominated by halo neutrons.
- Signal acceptance = 1.02%.
- One event observed, with an expected background of 0.34±0.16.
- BR(K_L→π^0νν)<5.1×10^{-8} at 90% CL.
- The strongest limit is still 2.6×10^{-8}.

[KEK E391a, PRD81 (2010) 072004]

Principal backgrounds:

- (0.18±0.15) Neutron directly hit on CsI
- (0.056±0.056) Pion produced at detector upstream

Also, K_L→π^0π^0 and K_L→γγ backgrounds

Improvements in 2015/16:

- Better photon-neutron ID in calorimeter (cluster+pulse shape).
- Thinner vacuum window: reduction of π^0 production by neutrons.
- SES with the 2015/16 sample <10^{-9}.
- Further upgrades are in progress.
- SM sensitivity (~10^{-11}) by 2021.
K→πνν: prospects

KOTO 2015/16 result: in 2018?

KOTO upgrade: SM sensitivity after 2021

NA62 (2016–18 data):
- ~20 SM events by 2020
- ~100 SM events by 2025?
About 30% of the 2016+2017 data set: 6.3×10^{11} K^+ decays.

World’s largest $K^+ \rightarrow \pi^+ \mu^+ \mu^-$ sample: 4.6k events.

Expect a competitive $K^+ \rightarrow \pi^+ \mu^+ \mu^-$ measurement with $\sim 10k$ events: LU test.

Search for $K^+ \rightarrow \pi^- \mu^+ \mu^+$ is not limited by background; $\text{SES}=2 \times 10^{-11}$.

Search for $K^+ \rightarrow \pi^+ X$, $X \rightarrow \mu^+ \mu^-$: $\text{SES} \sim 10^{-10}$ for lifetimes up to $O(1 \text{ ns})$.

E. Goudzovski / IPPP Durham, 17 April 2018
Dedicated (downscaled) 3-track trigger lines are in operation.

About 30% of the 2016+2017 data set: 1.3×10^{11} K^+ decays.

For $m_{ee} > 140$ MeV/c^2, background-free $K^+ \rightarrow \pi^+ e^+ e^-$ sample, 1.1k events.

First observation of $K^+ \rightarrow \pi^+ e^+ e^-$ in the region $m_{ee} < 140$ MeV/c^2.

Search for $K^+ \rightarrow \pi^- e^+ e^+$ is not limited by background; SES = 2×10^{-10}.

Search for $K^+ \rightarrow \pi^+ X$, $X \rightarrow e^+ e^-$, $10 < m_X < 100$ MeV/c^2: SES ~ 10^{-9} for lifetime $\ll 1$ ns.
NA62: $K^+ \rightarrow \ell^+ N$ (2015 data)

- Minimum bias data (1% intensity); 12k spills (5 days).
- Numbers of K^+ decays in fiducial volume:
 \[N_K = (3.01 \pm 0.11) \times 10^8 \] in positron case; \[N_K = (1.06 \pm 0.12) \times 10^8 \] in muon case.
- Beam tracker not available: kaon momentum is estimated as the beam average.
- HNL production signal: a spike above continuous missing mass spectrum.

Beam tracker not available: kaon momentum is estimated as the beam average.

HNL production signal: a spike above continuous missing mass spectrum.

Squared missing mass: $(P_{K} - P_{e})^2$

$K^+ \rightarrow e^+ \nu$,
BR=1.6×10^{-5}: 1.7k candidates

$K^+ \rightarrow \mu^+ \nu$, BR=64%: 24M candidates

HNL search region: low background due to photon veto and kaon ID

HNL search region
NA62 limits on HNL production

Upper limits on BR(K⁺→ℓ⁺N)

|U_{\ell 4}|^2 limits from production searches

- Reached 10^{-6}–10^{-7} limits for $|U_{\ell 4}|^2$ in the 170–448 MeV/c^2 mass range; improvement on the world data in 5 days and without the beam tracker.
- Estimated sensitivity with the full sample: $\sim 10^{-9}$ for $|U_{e 4}|^2$, $\sim 10^{-8}$ for $|U_{\mu 4}|^2$.

E. Goudzovski / IPPP Durham, 17 April 2018
K_s physics at LHCb

- A new upper limit on $K_s \rightarrow \mu^+\mu^-$ with 3 fb$^{-1}$: [EPJC 77 (2017) 678]

$$\mathcal{B}(K^0_S \rightarrow \mu^+\mu^-) < 0.8(1.0) \times 10^{-9} \text{ at } 90(95)\% \text{ of CL}$$

Ultimate LHCb sensitivity: down to 10^{-11}.

SM prediction: $\mathcal{B}(K^0_S \rightarrow \mu^+\mu^-) = (5.18 \pm 1.50 \pm 0.02) \times 10^{-12}$

- A sensitivity study performed for $K_s \rightarrow \pi^0\mu^+\mu^-$. Prospects to improve over NA48/1 measurement:

$$\mathcal{B}(K^0_S \rightarrow \pi^0\mu^+\mu^-) = 2.9^{+1.5}_{-1.2} \times 10^{-9}$$

[PLB599 (2004) 197]

- A sensitivity study performed for $K_s \rightarrow \pi^+\pi^-e^+e^-$. Potentially competitive with NA48 measurements (23k events)

$$\mathcal{B}(K^0_S \rightarrow \pi^+\pi^-e^+e^-) = (4.79 \pm 0.15) \times 10^{-5}$$

[EPJ C30 (2003) 33; PLB694 (2011) 301]

- Possibly first searches for $K_s \rightarrow \ell^+\ell^-\ell^+\ell^-$ (SM BRs below 10^{-10})?

(More details: talks by F. Dettori and M. Ramos Pernas at RKF workshop, Feb 2018)
LHCb: evidence for $\Sigma^+ \rightarrow p\mu^+\mu^-$

- A rare FCNF decay: $1.6 \times 10^{-8} < \text{BR}_{\text{SM}} < 9.0 \times 10^{-8}$.
- HyperCP anomaly: 3 candidates, all with $m(\mu^+\mu^-) \approx 214 \text{ MeV/c}^2$.
- LHCb analysis: full 2011+12 sample, 3 fb$^{-1}$.

Decay rate measurement:

$$\mathcal{B}(\Sigma^+ \rightarrow p\mu^+\mu^-) = \left(2.1^{+1.6}_{-1.2}\right) \times 10^{-8}$$

- Consistent with SM prediction; no evidence for the HyperCP resonance.
- A precision measurement is foreseen with Run II data.
- Proposals to measure baryon dipole moments ($\text{arXiv:1612.06769, 1708.08483}$) and to study semileptonic baryon decays.
A new \(K_L \rightarrow \pi^0 \nu \nu \) experiment at CERN with \(\text{SES} \sim 0.5 \times 10^{-12} \) (i.e. 60 SM events) and \(S/B \sim 1 \) with 5 years of data taking is under consideration for 2026 +.

- Mean \(K_L \) momentum of 97 GeV/c: easier photon veto wrt KOTO.
- Longer \(K_L \) lifetime, tight collimation: need \(5 \times 10^{19} \) pot/year (6x NA62 intensity).
- Target area and transfer line upgrade is under study.
- Re-use NA62 infrastructure and possibly parts of detector (LKr, HAC).
- Possibly add a tracking system? Then \(K_L \rightarrow \pi^0 \ell^+ \ell^- \) (\(\text{BR}_{\text{SM}} \sim 10^{-11} \)) are accessible.

Project represented at CERN Physics Beyond Collider study; expression of interest to CERN SPSC in preparation.

E. Goudzovski / IPPP Durham, 17 April 2018
Active kaon experiments; **NA62@CERN, KOTO@J-PARC, LHCb@CERN.** UK makes major contributions to the CERN kaon experiments.

- **By 2020,** expect major improvement of the experimental information on $K^+ \rightarrow \pi^+ \nu\nu$ and $K_L \rightarrow \pi^0 \nu\nu$. Also, the ultimate sensitivity of the NA62 method will be understood.

- **By 2025,** expect a $K^+ \rightarrow \pi^+ \nu\nu$ measurement to 10% precision (NA62) and the first evidence for $K_L \rightarrow \pi^0 \nu\nu$ (KOTO).

- On the same time scale, expect many new NA62/LHCb results on rare/forbidden kaon decays, lepton universality, LF/LN conservation tests, HNL production, etc.

- **After 2025:** a dedicated $K_L \rightarrow \pi^0 \nu\nu$ experiment at CERN to collect 60 SM events with $S/B \sim 1$ in 5 years?