

Rare B decays

Konstantinos A. Petridis

University of Bristol

April 17, 2018

K.A. Petridis (UoB)

EU strategy April 2018

Introduction

Google	why	Ŷ	٩
	why do we yawn why is the sky blue why am i always tired why do we dream		
	Press Enter to search.		

- ▶ Why is there a hierarchy of fermion masses?
- Why do elements of the CKM matrix have a large spread?
- What is the origin of CP violation in the universe?
- What is the origin of dark matter?

 \rightarrow SM is low-energy effective theory What is the scale Λ where new physics shows up?

How to probe high NP scales

Look at observables that:

- $1\,$ The SM contribution is small
- 2 Can be measured to high precision
- 3 Can be predicted to high precision
- \rightarrow Flavour Changing Neutral Currents in SM
 - Loop level
 - GIM suppressed
 - Left-handed chirality
- \rightarrow NP could violate any of these

SM as effective theory

- ► "Integrate" out heavy (m ≥ m_W) field(s) and introduce set of Wilson coefficients C_i, and operators O_i encoding short and long distance effects
- New physics enters at larger scale Λ_{NP}

$$\mathcal{H}_{eff} pprox -rac{4G_F}{\sqrt{2}} V_{tb} V^*_{ts(d)} \sum_i C^{SM}_i \mathcal{O}^{SM}_i + \sum_{NP} rac{c_{NP}}{\Lambda^2_{NP}} \mathcal{O}_{NP}$$

for 6 dim operators \mathcal{O}_{NP}

Sensitivity to New Physics

Different decays probe different operators:

Operator \mathcal{O}_i	$B_{s(d)} \rightarrow X_{s(d)} \mu^+ \mu^-$	$B_{s(d)} ightarrow \mu^+ \mu^-$	$B_{s(d)} \rightarrow X_{s(d)}\gamma$
\mathcal{O}_7 EM	\checkmark		\checkmark
\mathcal{O}_9 Vector dilepton	\checkmark		
\mathcal{O}_{10} Axial-vector dilepton	\checkmark	\checkmark	
$\mathcal{O}_{S,P}$ (Pseudo-)Scalar dilepton	(√)	\checkmark	

Also include chirality flipped counterparts

Collider vs Flavour searches

NP scale given current experiment and theory status

 $\Lambda_9\gtrsim (0.6-35) \text{ TeV}$ $\Lambda_7\gtrsim (1.5-90) \text{ TeV}$

depending on flavour couplings and tree/loop level

 Flavour physics probes very high energy scales particularly for generic flavour couplings

An intriguing set of results

1. Differential branching fractions

Measurements of $d\mathcal{B}/dq^2$ of $B \to K^{(*)}\mu^+\mu^-$, $\Lambda_b \to \Lambda\mu^+\mu^-$, $B_s \to \phi\mu^+\mu^-$

Theory: Bobeth et al [JHEP07(2011)067], Bharucha et al [JHEP08(2016)098], Detmold et al [PRD93,074501(2016)], Horgan et al [PRD89(2014)]

- Measurements below SM prediction $(2 3\sigma$ depending on final state)
- Measurements motivated higher precise in predictions

Branching fractions of $B \rightarrow \ell^+ \ell^-$

- Branching fraction measurement provides stringent constraints on axial-vector and (pseudo-)scalar couplings
- ▶ Precise $\mathcal{B}(B \to \mu^+ \mu^-)$ prediction (~ 5%)

2. $B^0 \rightarrow K^{*0} \mu^+ \mu^-$ angular measurements

 \blacktriangleright Rich amplitude structure \rightarrow 8 CP-even and 8 CP-odd observables

 Angular distribution at 3.4σ tension with SM

 \rightarrow Anomalous vector-dilepton coupling

3. Lepton Flavour Universality tests

 R_{K} : Central- q^2 : 2.6 σ from SM R_{K*} : Low- q^2 : 2.1-2.3 σ from SM R_{K*} : Central- q^2 : 2.4-2.5 σ from SM

Matias et al [1704.05340], Altmannshofer et al [1703.09189]...

- Global fits show $> 5\sigma$ tension with SM
- Consistent picture emerging between LFUV observables and angular, branching fraction measurements
- ▶ New vector non-universal coupling! → Leptoquark? Hiller et al [1801.09399] Bordone et al [1712.01368] Greljo et al [JHEP07(2015)142] Buttazzo et al [JHEP08(2016)035] Di Luzio et al [1712.06572] B_s mixing!!! ...apologies...
- ▶ Some models also explain 4σ LFUV anomaly in $B \rightarrow D^{(*)}\ell\nu$ transitions
- Precision of LHCb PhaseII and more measurements critical to pin down model of NP

K.A. Petridis (UoB)

EU strategy April 2018

Shopping list

- 1 Confirm/Refute anomaly through further measurements of LFUV observables
 - \triangleright LFUV angular observables e.g $P_5'(\mu\mu) P_5'(ee)$
 - ▷ Observation of NP using theoretically cleanest observables alone
- 2~ Measurements of $b\to s\mu^+\mu^-$ observables to improve understanding of hadronic uncertainties
 - $\triangleright \ B o K^{(*)}$ form-factors
 - ▷ Charm loop contributions
- 3 Imprint of NP in related modes and tests of MFV
 - $\triangleright \ B_s$ mixing, $b \rightarrow d\ell \ell$, modes with au's in final state
 - $\triangleright B \to K^{(*)} \nu \bar{\nu}, K \to \pi \nu \bar{\nu}$ (Belle2 and NA62)
- 4 Look for Lepton Flavour Violation using $B o (X) \ell \ell^{'}$, $D o (X) \ell \ell^{'}$
 - ▷ LFUV generally implies Lepton Flavour Violation
 - e.g Glashow et al [PRL114,091801(2015)]
 - Models predict significant enhancements in within reach of future flavour experiments including Belle2

Bottom line

Anomalies persist:

 ▷ Analyses of a whole host of rare *B*-decays, *D*-decays and *K*-decays to pin down exact details of model
 → Flavour measurements imperative: LHCb+PhaseII, Belle2, NA62++

Anomalies go away:

 ▷ Analyses of a whole host of rare B-decays, D-decays and K-decays to explore energy scales far beyond the reach of colliders
 → Flavour measurements imperative: LHCb+PhaseII, Belle2, NA62++

Rare decays at LHCb PhaseII

2018-2021	Run 3 (2021-2023)	2023-2025	Run 4 (2025-2028)	2028-2030	Run 5 (2030-2035+)	
Shutdown	~23fb ⁻¹	Shutdown	~50fb ⁻¹	Shutdown	~300fb ⁻¹	
LHCb upgrade Phasel			LHCb upgrade Phasell			

- Angular and LFU measurements statistically limited even after Phasel
 - Dominant systematic uncertainties statistical in nature

- Maintain/improve performance through: material reduction, higher segmentation ECAL, timing information
- ► Measure $\mathcal{B}(B_s^0 \to \mu^+ \mu^-)$ to ~ 5% (on par with current theory error) ▷ NP effects in $B \to e^+ e^-$ and $B \to \tau^+ \tau^-$ means with 300fb⁻¹ can exclude models

K.A. Petridis (UoB)

Charming interlude

► Anomalies in $b \rightarrow s\mu^+\mu^-$ have shed doubt on control of theory uncertainties related to the "charm-loop"

 Can extract the charm contribution directly from data Lyon et al [1406.0566], Bobeth et al [1707.07305], Blake et al [1709.03921]

$B ightarrow K^{(*)}$ form factors

- ► Global fits of Wilson coefficients to Rare-B decay data rely on precise predictions B → K^(*) form factors
- Great advancements by theory and Lattice QCD community Khodjamirian et al [1703.04765], Bharucha et al [1503.05534], Horgan et al [1310.3722], Meinel et al [1608.08110], Buchard et al [1509.06235,1507.01618]...
- Expect further improvements in theory predictions coming through further developments in lattice QCD or otherwise

[Eur. Phys.J. C(2017)77:161]

► Can also use our data to further improve on precision [Eur. Phys.J. C(2017)77:161]

K.A. Petridis (UoB)

Rare decays at LHCb PhaseII cont'd

- Assuming control of systematics, $B \to K^* \ell^+ \ell^$ angular analyses will be able to distinguish between a large variety of NP models
- \blacktriangleright Difference between μ and ecouplings: Smoking gun of NP!

0--010--07

C9 = -1.4

3σ contours

-2

Axial vector (ee/µµ) difference] $\Delta {
m Re} C_{10}$

0.5

-0.5

-1.5

-3

Rare decays at LHCb PhaseII cont'd

- Assuming control of systematics, $B \to K^* \ell^+ \ell^$ angular analyses will be able to distinguish between a large variety of NP models
- Precision measurements of Left-, Right-handed couplings and new sources of CPV

CO'=0 3 C10'=-0 3

NP: C9'=0.3, C10'=0.3

 $^{-1.5}$ (3 σ contours)

[Vector µµ RH] ReC

(/)

Rare decays at LHCb PhaseII cont'd

EM operators $(C_7^{(')})$ can be constrained to high precision through:

- ▶ $B^0 \rightarrow K^{*0}e^+e^-$ angular analysis provides one of strongest constraints
- CP asymmetry of $B_s \rightarrow \phi \gamma$
- Belle2 also important:
 - \triangleright CP asymmetries in $B^0 \rightarrow K_s \pi^0 \gamma$

▷ ...

Tests of Minimal Flavour Violation

0.18 0.19 0.20 0.21 0.22

Tests of Minimal Flavour Violation

▶ Compare $b \to d\ell^+\ell^-$ and $b \to s\ell^+\ell^-$ transitions

► In SM
$$\frac{\mathcal{B}(B^+ \to \pi^+ \mu^+ \mu^-)}{\mathcal{B}(B^+ \to K^+ \mu^+ \mu^-)} \sim |\frac{V_{td}}{V_{ts}} \frac{f_{B \to \pi}}{f_{B \to K}}|^2$$

 \rightarrow Test of Minimal Flavour Violation

▶
$$b \rightarrow d\ell^+\ell^-$$
 statistically limited even with LHCb phaseII data

- Expect 10-fold improvement in experimental error
- Modest improvements in Lattice predictions also required to maximise gain

MFV test in angular observables also possible with LHCb phaseII

Naturalness' loss \rightarrow Flavour's gain

$$\begin{array}{cccc} \mathsf{CKM}+\mathsf{Loop} & \mathsf{CKM}+\mathsf{Tree} & \mathcal{O}(1)+\mathsf{Loop} & \mathcal{O}(1)+\mathsf{Tree} \\ \Lambda^{9(10)(')}_{NP}(\mathsf{TeV}) & \sim 2 & \sim 10 & \sim 20 & \sim 100 \\ \Lambda^{7(')}_{NP}(\mathsf{TeV}) & \sim 5 & \sim 20 & \sim 60 & \sim 300 \end{array}$$

my own guesstimates by LHCb PhaseII with grain of salt...

- Clear case to continue exploration of Rare B Decays with vastest dataset available
- Precision required can only be achieved through LHCb PhaseII

Backup

LHCb signal yields

channel	Run 1	Run 2	Run 3,4 (50 fb^{-1})
$B^0 \to K^{*0}(K^+\pi^-)\mu^+\mu^-$	2,400	9,000	80,000
$B^0 ightarrow K^{st+} (K^0_{ m S} \pi^+) \mu^+ \mu^-$	160	600	5,500
$B^0 ightarrow K^0_{ m S} \mu^+ ilde{\mu^-}$	180	650	5,500
$B^+ ightarrow ec{K^+} \mu^+ \mu^-$	4,700	17,500	150,000
$\Lambda_b ightarrow \Lambda \mu^+ \mu^-$	370	1500	10,000
$B^+ ightarrow \pi^+ \mu^+ \mu^-$	93	350	3,000
$B^0_{ m s} ightarrow \mu^+ \mu^-$	15	60	500
$B^{0} \rightarrow K^{*0} e^{+} e^{-}$ (low q^{2})	150	550	5,000
$B_s \to \phi \gamma$	4,000	15,000	150,000

Naively scaling with luminosity and linear scaling of $\sigma_{b\bar{b}}$ with \sqrt{s}

▶ More $b \rightarrow s\ell\ell$ decays in Run 1 than $B \rightarrow J/\psi K^*$ of B-factories!

Lepton Universality tests

 Challenging measurement due to differences in detector performance between electrons and muons

Left:
$$B \to K^{*0} e^+ e^-$$
, Right: $B \to K^{*0} \mu^+ \mu^-$

- Measure in regions of reco'd q² regions and correct to true q² accounting for bin-migrations using simulated events calibrated to data
- ▶ $R_{K^{(*)}}$ measured pre-FSR, using PHOTOS for correction
- ▶ Validate measurement with $B \to K^* \gamma$, $B \to J/\psi K^*$ and $B \to \psi(2S) K^*$

K.A. Petridis (UoB)

Angular analyses

▶ Differential decay rate of $B^0 \to K^{*0} \mu^+ \mu^-$:

$$\begin{split} \frac{1}{\mathrm{d}(\Gamma+\bar{\Gamma})/\mathrm{d}q^2} \frac{\mathrm{d}^3(\Gamma+\bar{\Gamma})}{\mathrm{d}\vec{\Omega}} \bigg|_{\mathrm{P}} &= \frac{9}{32\pi} \bigg[\frac{3}{4} (1-F_{\mathrm{L}}) \sin^2 \theta_K + F_{\mathrm{L}} \cos^2 \theta_K \\ &\quad + \frac{1}{4} (1-F_{\mathrm{L}}) \sin^2 \theta_K \cos 2\theta_l \\ &\quad -F_{\mathrm{L}} \cos^2 \theta_K \cos 2\theta_l + S_3 \sin^2 \theta_K \sin^2 \theta_l \cos 2\phi \\ &\quad + S_4 \sin 2\theta_K \sin 2\theta_l \cos \phi + S_5 \sin 2\theta_K \sin \theta_l \cos \phi \\ &\quad + \frac{4}{3} A_{\mathrm{FB}} \sin^2 \theta_K \cos \theta_l + S_7 \sin 2\theta_K \sin \theta_l \sin \phi \\ &\quad + S_8 \sin 2\theta_K \sin 2\theta_l \sin \phi + S_9 \sin^2 \theta_K \sin^2 \theta_l \sin 2\phi_l \sin \phi + S_9 \sin^2 \theta_K \sin^2 \theta_l \sin 2\phi_l \sin \phi + S_9 \sin^2 \theta_K \sin^2 \theta_l \sin 2\phi_l \sin \phi + S_9 \sin^2 \theta_K \sin^2 \theta_l \sin 2\phi_l \sin \phi + S_9 \sin^2 \theta_K \sin^2 \theta_l \sin 2\phi_l \sin \phi + S_9 \sin^2 \theta_K \sin^2 \theta_l \sin 2\phi_l \sin \phi + S_9 \sin^2 \theta_K \sin^2 \theta_l \sin^2 \theta_l \sin^2 \phi_l \sin^2 \phi_l \sin^2 \theta_l \sin^2 \phi_l \sin^2 \theta_l \sin^$$

 Measurements of the full basis observables and their correlations minimise the impact of hadronic uncertainties $B^0
ightarrow K^{*0} e^+ e^-$ angular analysis prospects

▶ With Run2, by 2018 data expect $B^0 \to K^{*0}e^+e^-$ yield:

- $\,\triangleright\,\,\sim$ 400 in 0.045 $< q^2 < 1.1~{\rm GeV^2}$
- $ightarrow \sim 500$ in $1.1 < q^2 < 6 \ {
 m GeV}^2$
- ho~ Similar to $B^0
 ightarrow {\cal K}^{*0} \mu^+ \mu^-$ with Run1 data in same bin
- \rightarrow Measurements of multiple angular observables possible through multi-dimensional ML fits

 \rightarrow Different experimental effects compared to $R_{K}^{(*)}$

- Larger backgrounds than muon case will require good understanding of their angular distribution
- \triangleright More robust methods also being investigated

Lepton Flavour Universality tests

