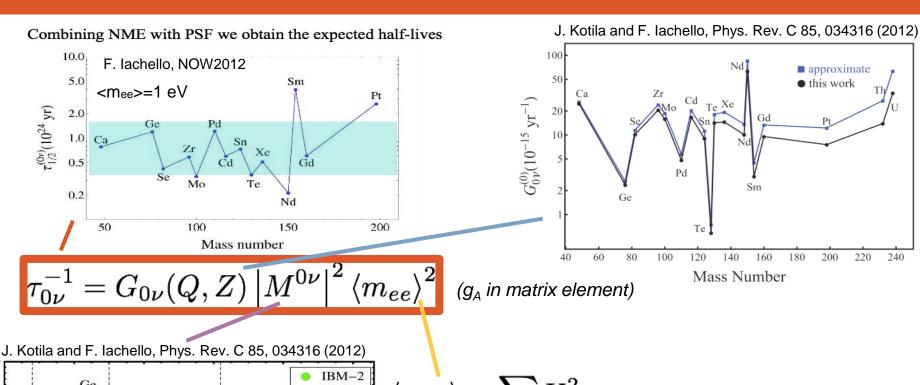

ονββ is important on any current particle physics roadmap

Observation would imply:

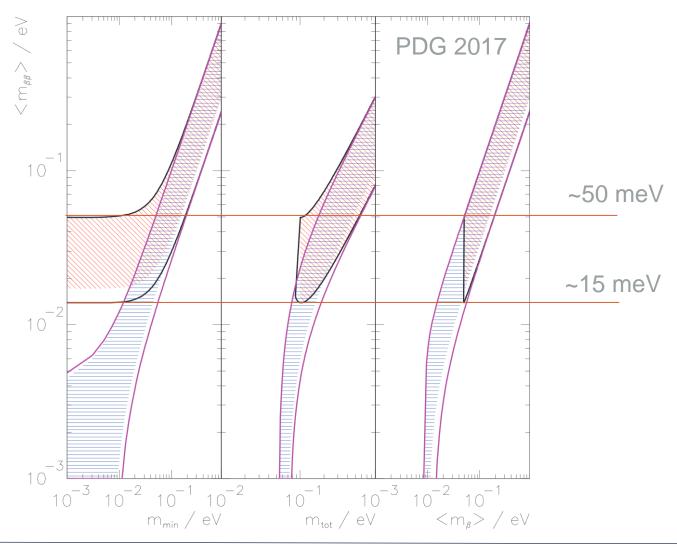
- Violation of lepton number (by 2!)
- Neutrinos have Majorana masses (different than quarks and leptons, Schlechter and Valle, 1982)
- Neutrinos are their own anti-particles


It would inform us about:

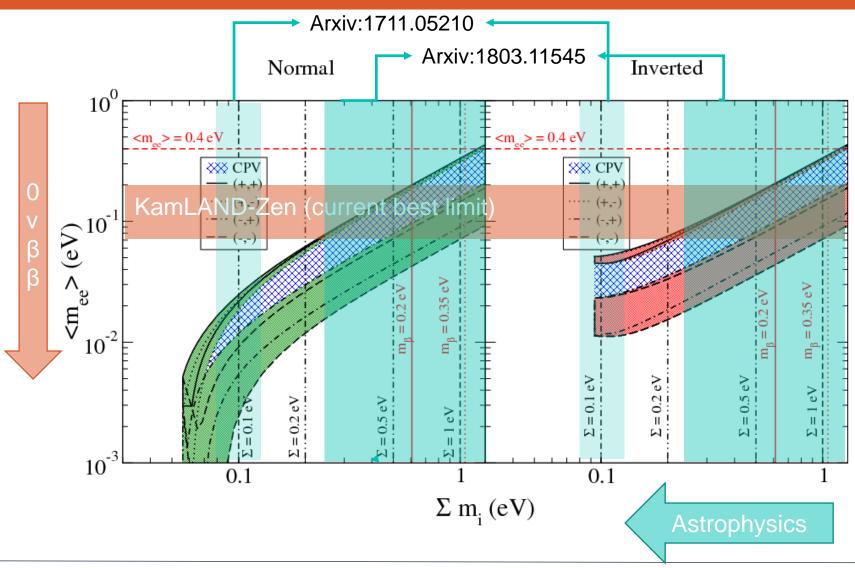
- An explanation why neutrinos are so much lighter than other particles
- Leptogenesis, a possible origin of the baryon-antibaryon asymmetry if neutrinos violate CP (DUNE/HK)
- Neutrino absolute mass scale

ονββ decay

Observable


$$\langle m_{ee} \rangle = \sum_{k} U_{ek}^2 m_k$$

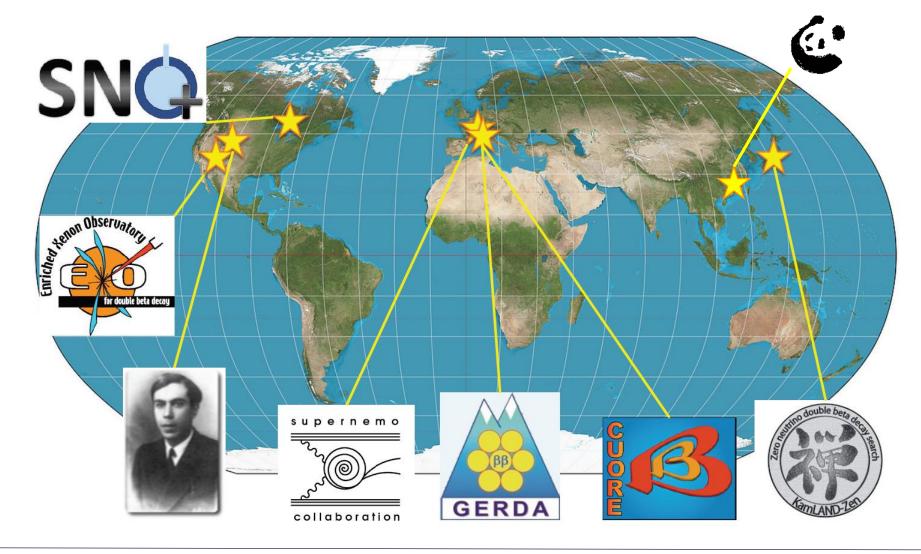
$$= \cos^2 \theta_{12} \cos^2 \theta_{13} m_1 + \sin^2 \theta_{12} \cos^2 \theta_{13} e^{i\alpha} m_2 + \sin^2 \theta_{13} e^{i\beta} m_3$$


UNIVERSITY OF SUSSEX

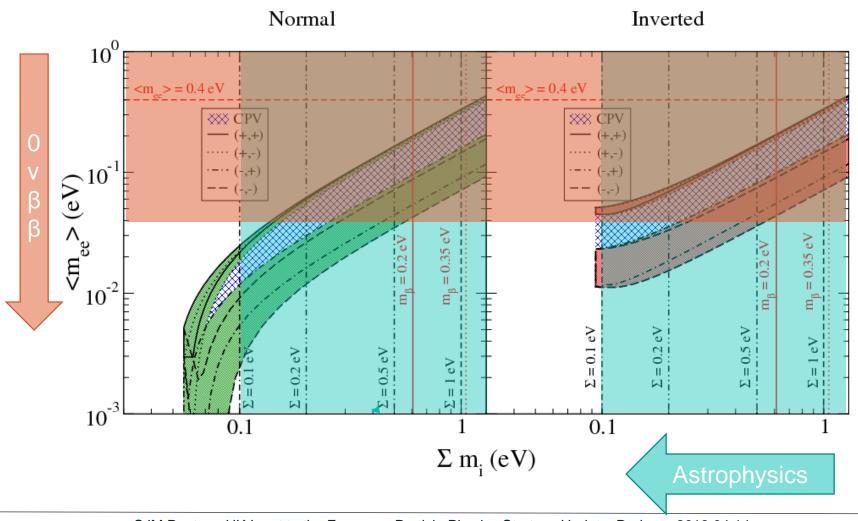
an Particle Physics Strategy Update, Durham, 2018.04.14

Parameter space

Connection to cosmology



Current status

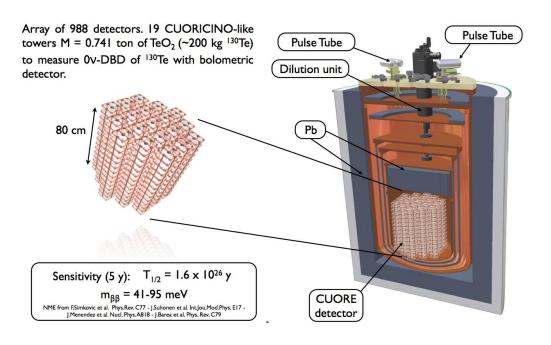

			0νββ limit set		0νββ sensitivity				
experiment	isotope	M [kg]	T _{1/2} [10 ²⁵ yrs]	$m_{\beta\beta}$ [meV]	T _{1/2} [10 ²⁵ yrs] (pred.)	$m_{\beta\beta}$ [meV] (pred.)			
Gerda	⁷⁶ Ge	31	5.8	140-300	8.0	120-260			
Majorana	⁷⁶ Ge	26	2.1	230-510	1.9	240-530			
KamLAND-Zen	¹³⁶ Xe	343	5.6	70-220	10.7	50-160			
EXO	¹³⁶ Xe	161	1.9	130-370	1.1	170-490			
CUORE	¹³⁰ Te	206	0.7	160-730	1.5	110-500			

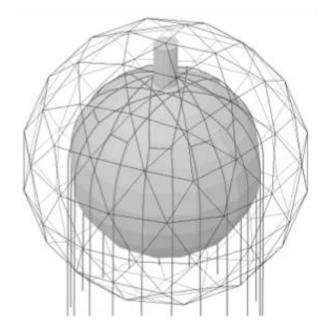
Global perspective

Near-future

Future

		_		•									-
Experiment	Iso.	Iso.	σ	ROI	ϵ_{FV}	ϵ_{sia}	\mathcal{E}	\mathcal{B}	3σ disc.	I	Required		
		Mass				l			$\hat{T}_{1/2}$	\hat{m}_{etaeta}	Imp	Improvem	
		$\left[\ker_{iso} \right]$	[keV]	$[\sigma]$	[%]	[%]	$\left[\frac{\mathrm{kg}_{iso}\mathrm{yr}}{\mathrm{yr}}\right]$	$\left[\frac{\rm cts}{{\rm kg}_{iso}{\rm ROIyr}}\right]$	[yr]	[meV]	Bkg	σ	Iso. Mass
LEGEND 200 [62, 63]	$^{76}\mathrm{Ge}$	175	1.3	[-2, 2]	93	77	119	$1.7 \cdot 10^{-3}$	$8.4 \cdot 10^{26}$	40-73	3	1	5.7
LEGEND 1k [62, 63]	$^{76}\mathrm{Ge}$	873	1.3	[-2, 2]	93	77	593	$2.8\cdot 10^{-4}$	$4.5\cdot 10^{27}$	17–31	18	1	29
- SuperNEMO [69, 70]	$^{82}\mathrm{Se}$	100	51	[-4, 2]	100	16	16.5	$4.9 \cdot 10^{-2}$	$6.1\cdot 10^{25}$	82–138	49	2	14
CUPID [59, 60, 71]	82 Se	336	2.1	[-2, 2]	100	69	221	$5.2 \cdot 10^{-4}$	$1.8 \cdot 10^{27}$	15–25	n/a	6	n/a
CUORE [53, 54]	$^{130}\mathrm{Te}$	206	2.1	[-1.4, 1.4]	100	81	141	$3.1 \cdot 10^{-1}$	$5.4\cdot10^{25}$	66-164	6	1	19
CUPID $[59, 60, 71]$	$^{130}\mathrm{Te}$	543	2.1	[-2, 2]	100	81	422	$3.0 \cdot 10^{-4}$	$2.1 \cdot 10^{27}$	11-26	3000	1	50
- SNO+ Phase I [67, 72]	$^{130}\mathrm{Te}$	1357	82	[-0.5, 1.5]	20	97	164	$8.2 \cdot 10^{-2}$	$1.1 \cdot 10^{26}$	46 – 115	n/a	$ \mathbf{n/a} $	n/a
SNO+ Phase II [68]	$^{130}\mathrm{Te}$	7960	57	[-0.5, 1.5]	28	97	1326	$3.6 \cdot 10^{-2}$	$4.8\cdot 10^{26}$	22 – 54	n/a	n/a	n/a
			114	[0, 1.4]	64	97	194	$3.9 \cdot 10^{-2}$	$1.6 \cdot 10^{26}$	47 - 108	1.5	1	2.1
	$^{136}\mathrm{Xe}$		60	[0, 1.4]	80	97	325	$2.1\cdot 10^{-3}$	$8.0 \cdot 10^{26}$	21–49	15	2	2.9
	$^{136}\mathrm{Xe}$		25	[-1.2, 1.2]	60	85	1741	$4.4 \cdot 10^{-4}$	$4.1\cdot 10^{27}$	9–22	400	1.2	30
NEXT 100 [65, 74]	$^{136}\mathrm{Xe}$	91	7.8	[-1.3, 2.4]	88	37	26.5	$4.4 \cdot 10^{-2}$	$5.3\cdot 10^{25}$	82–189	n/a	1	20
NEXT 1.5k [75]	$^{136}\mathrm{Xe}$		5.2	[-1.3, 2.4]	88	37	398	$2.9\cdot 10^{-3}$	$7.9 \cdot 10^{26}$	21–49	n/a	1	300
PandaX-III 200 [66]	$^{136}\mathrm{Xe}$		31	[-2, 2]	100	35	60.2	$4.2 \cdot 10^{-2}$	$8.3 \cdot 10^{25}$,	n/a	n/a
" PandaX-III 1k [66]	$^{136}\mathrm{Xe}$	901	10	[-2, 2]	100	35	301	$1.4 \cdot 10^{-3}$	$9.0 \cdot 10^{26}$	20-46	n/a	n/a	n/a


Arxiv:1705.02996


LEGEND: O(264) collaborators

Approaches to the future

Modular (CUORE, LEGEND)

Monolithic (SNO+,LXe)

NSAC review (US) Nov 2015:

"The modular and monolithic approaches both offer advantages and disadvantages. However, it is not possible to firmly conclude which approach will be optimal at this point"

Tracking/PID will become important to suppress backgrounds and for interpretation, in case of an observation.

European perspective

European Astroparticle Physics Strategy 2017-2026

APPEC <u>strongly</u> supports the present range of direct neutrino-mass measurements and searches for neutrinoless double-beta decay.

Guided by the results of experiments currently in operation, APPEC intends to converge on a roadmap for the next generation of experiments into neutrino mass and nature by <u>2020</u>.

USA perspective

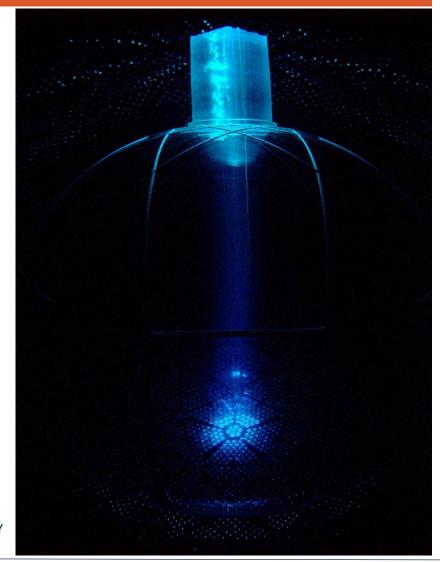
Reminder of US DoE NSAC guidelines:

• Favor approaches that have a credible path toward reaching 3σ sensitivity to the effective Majorana neutrino mass parameter $m_{\beta\beta}$ =15 meV within 10 years of counting, assuming the lower matrix element values among viable nuclear structure model calculations

US funding through nuclear part of DoE/NSF (not HEP)

Nr 1 project: 0νββ

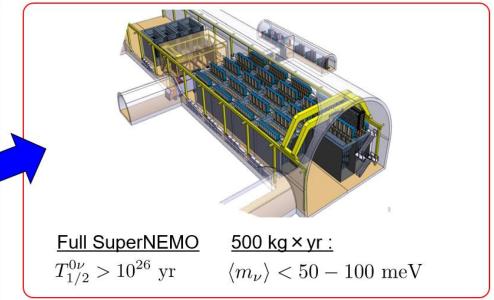
Budget 250-500 M\$. Down-select ongoing on basis of : technologies past the R&D phase international contributors.


Preparations for next 7-year plan will start in about two years time:

beyond tonne scale

UK perspective

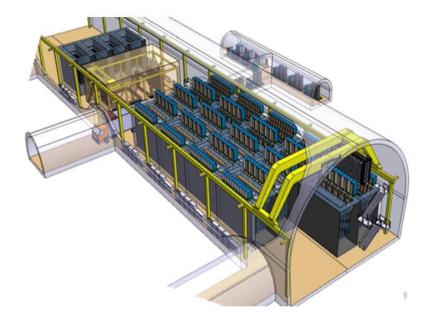
SuperNEMO

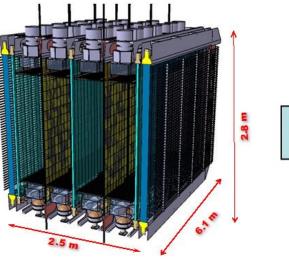


Demonstrator Module (2.5 year run)

17.5 kg × yr initial exposure:

$$T_{1/2}^{0\nu} > 6.5 \times 10^{24} \text{ yr}$$


$$\langle m_{\nu} \rangle < 0.20 - 0.40 \text{ eV}$$

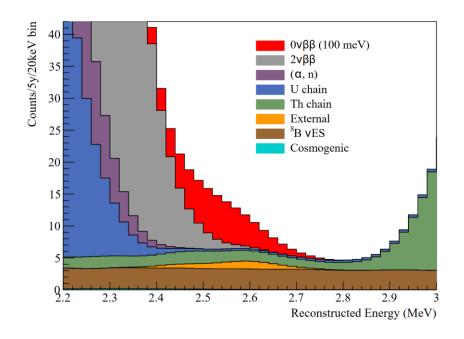

SuperNEMO

- Possible future scenarios for the SuperNEMO technology :
- Build additional Demonstrator-style modules :
 - ✓ We have demonstrated the ability to do this. So far we have met all of the background & performance requirements for SuperNEMO.
 - ✓ Can reach 10^{26} years (~50 meV) with 100 kg × 5 yrs.
 - \checkmark Very strongly motivated if there is a discovery "soon" in another $0\nu\beta\beta$ experiment.
 - X Costly.

SuperNEMO

- Consider alternative designs :
 - Cheaper with no significant reduction in performance.
 - Enter the regime cost(detector) ≤ cost(enriched isotope) which is the ultimate requirement for all techniques using enriched isotopes.
 - Look at alternative designs & sites, including Boulby in the UK.

Can we extend the technique another order of magnitude?

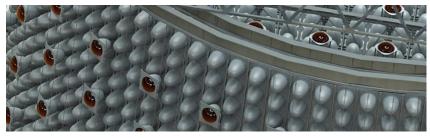

SNO+

Currently taking data with water.

This will be replaced with scintillator in the end of the year, and isotope will be added in April 2019.

Five year counting would enter the inverted hierarchy band region.

Relatively easy to upscale by increasing loading. To go further, more upgrades are needed.



Advanced scintillator detector concept – beyond SNO+

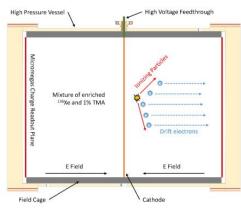
Concept studies underway for large scale scintillator detectors with the possibility of multi-tonne loading, using separation of scintillation and Cherenkov light (removing backgrounds, in particular ⁸B).

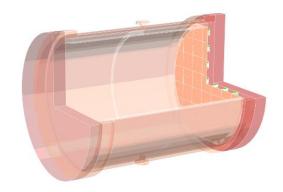
Watchman – a 1 ktonne prototype closely associated with this – will be very likely be constructed in Boulby.

Also under consideration for beyond the first two cavities for DUNE.

THEIA, see Arxiv:1504.08284

Also: Arxiv:1306.5654


Facility


- Geo and reactor anti-neutrinos
- Solar neutrinos
- Supernovae neutrinos
- DSNB
- Nucleon decay
- Sterile neutrinos

¹³⁶Xe in DM experiments

PandaX III (and LZ, XENON1T) aiming to compete.

Possible to continue to multi-tonne scale? $(2v\beta\beta)$ backgrounds affect DM searches?)

Physics Backgrounds	
136Χe 2νββ	_67
Astrophysical v counts (pp+7Be+13N)	255
Astrophysical v counts (8B)	0
Astrophysical v counts (Hep)	0
Astrophysical v counts (diffuse	0
Astrophysical v counts (atmospheric)	0
Subtotal (Physics backgrounds)	322

Facility

- WIMP Dark Matter
- Electrophylic WIMPs
- Supernova neutrinos
- Neutrino
- Axion/ALP

UK perspective

Neutrinoless Double-Beta Decay: UK Strategy

S. Biller¹, J. Evans², E. Falk³, J. Hartnell³, L. Kormos⁴, N. McCauley⁵, H. O'Keeffe⁴, F. Di Lodovico⁶, S. Peeters³, Y. Ramachers⁷, A. Reichold¹, J. Rose⁵, R. Saakyan⁸, J. Sedgbeer⁹, S. Söldner-Rembold², J. Tseng¹, D. Waters⁸, J. Wilson⁶

¹University of Oxford, ²University of Manchester, ³University of Sussex, ⁴Lancaster University, ⁵University of Liverpool, ⁶Queen Mary University of London, ⁷University of Warwick, ⁸University College London, ⁹Imperial College London

We are convinced of the physics case for neutrinoless double-beta decay.

UK expertise:
Nearing completion of
SuperNEMO demonstrator and
SNO+ will start loading in spring
2019.

UK community is coming together to form a common R&D programme.

Expertise in:

- Screening & radon assay
- Large scintillator-based detectors

But also:

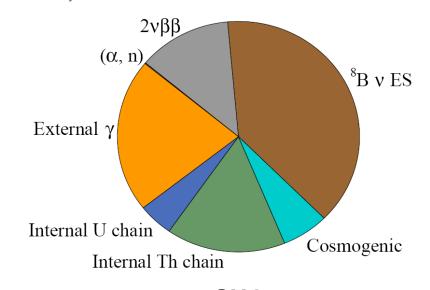
- Liquid nobel gases (DM)
- HPGe (Nuclear)

Back up

Why (monolithic) scintillator?

$$\sigma_{T_{\frac{1}{2}}} = \frac{S}{\sqrt{B_{\text{total}}}} = \frac{Mt}{\sqrt{B_i \Delta Et}}$$

Background: $B_i \Delta E = (bM+c)\,\Delta E$

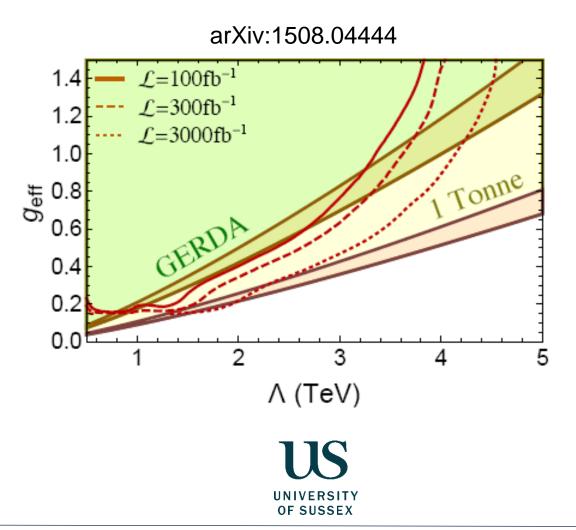

 $\left(T_{\frac{1}{2}} \propto m_{\beta\beta}^2\right)$

Background scales with mass (b dominant):

$$m_{\beta\beta} \propto M^{1/4}$$

Background scales with mass (c dominant):

$$m_{\beta\beta} \propto M^{1/2}$$


SNO+
Self-shielding and cleaning

Question & answer

- What consensus / conflicts (on what should be done in longer term European HEP) are there in this area?
- What are the experimental possibilities? Are different scenarios already envisaged?
- What are the choices for the strategy? What can the UK agree to input?
- What are the potential developments in this field? How do they relate to fundamental physics questions?

LHC

