

Neutrino Oscillations

Andy Blake, Lancaster University

European Strategy Meeting, IPPP, Durham

Tuesday 17th April, 2018

Overview

Status of Neutrino Oscillation Physics.

Fundamental Physics Questions.

➤ Addressing these questions...

- ◆ 2013 European Strategy Update.
 > DUNE, Hyper-K, CERN Neutrino Platform.
- ♦ Future European Strategies.

➤ Focus on accelerator neutrinos.

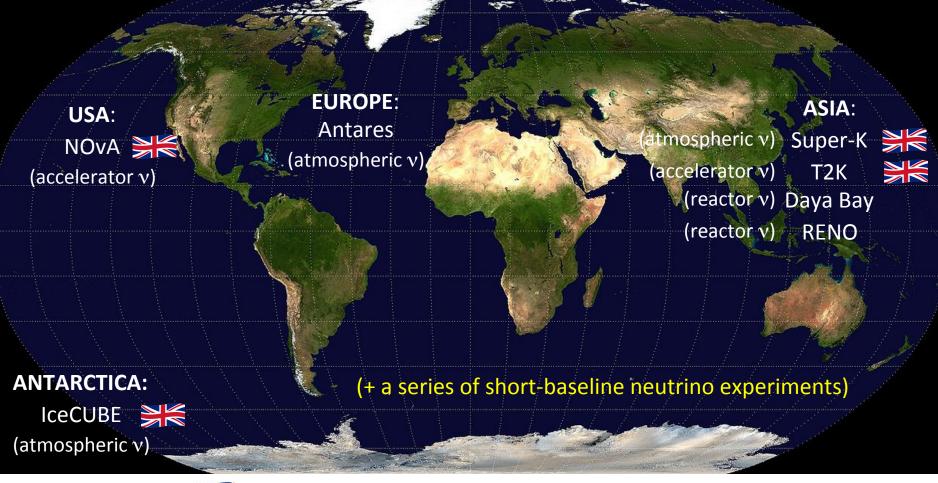
Neutrino Oscillations

The current generation of oscillation experiments has precisely measured most parameters of the standard oscillation model.

$$\begin{pmatrix} \nu_{e} \\ \nu_{\mu} \\ \nu_{\tau} \end{pmatrix} = \begin{pmatrix} 1 & 0 & 0 \\ 0 & \cos\theta_{23} & \sin\theta_{23} \\ 0 & -\sin\theta_{23} & \cos\theta_{23} \end{pmatrix} \begin{pmatrix} \cos\theta_{13} & 0 & \sin\theta_{13} e^{-\iota\delta} \\ 0 & 1 & 0 \\ -\sin\theta_{13} e^{+\iota\delta} & 0 & \cos\theta_{13} \end{pmatrix} \begin{pmatrix} \cos\theta_{12} & \sin\theta_{12} & 0 \\ -\sin\theta_{12} & \cos\theta_{12} & 0 \\ 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} \nu_{1} \\ \nu_{2} \\ \nu_{3} \end{pmatrix}$$

FLAVOUR STATES

PMNS MIXING MATRIX

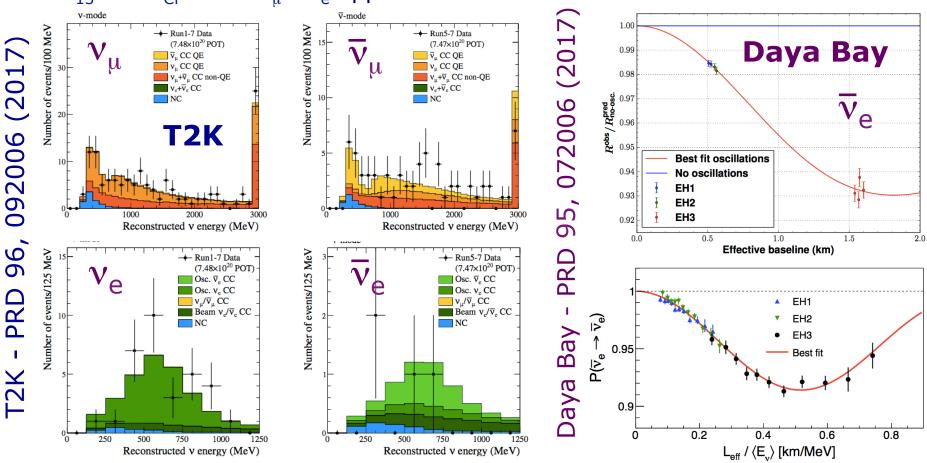

MASS STATES

Parameter	Global Fit	Precision
θ_{12}	33.6 ± 0.8	2%
θ_{13}	8.5 ± 0.2	2%
θ_{23}	42 ± 2	5%
Δm_{21}^2 / 10 ⁻⁵ eV ²	7.5 ± 0.2	3%
Δm^2_{32} / 10 ⁻³ eV ²	2.52 ± 0.04	2%
δ_{CP}	(Not yet precisely measured)	
Numbers from Esteban et al. JHEP 01 (2017) 087		

Andy Blake, Lancaster University

Ocillation Experiments

Current generation of long-baseline neutrino oscillation experiments:



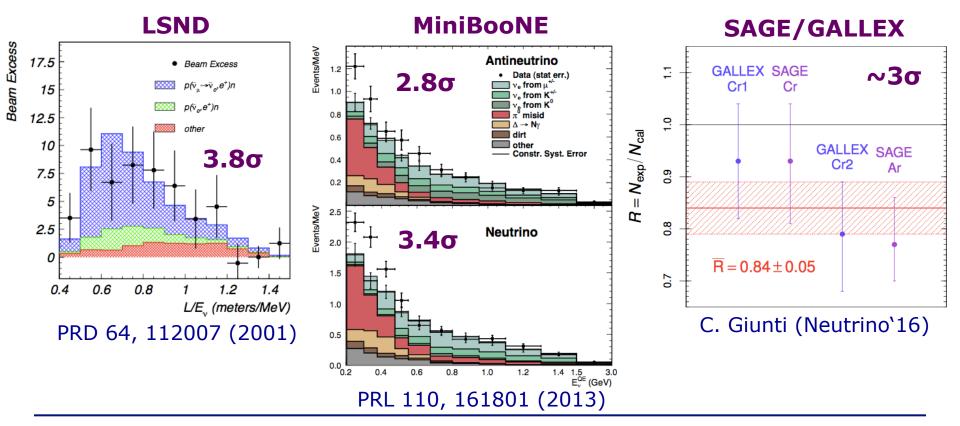
I uk involvement (ranging from 1 to 10 institutions)

Andy Blake, Lancaster University

Oscillation Measurements


Accelerator neutrinos (e.g. T2K) Δm_{32}^2 and θ_{23} from v_{μ} disappearance θ_{13} and δ_{CP} from $v_{\mu} \rightarrow v_{e}$ appearance. Reactor neutrinos (e.g. Daya Bay) Δm_{32}^2 and θ_{13} from v_e disappearance

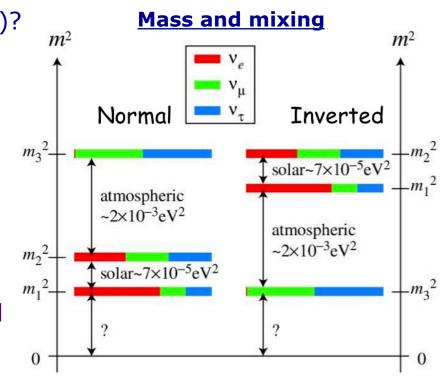
Andy Blake, Lancaster University


Oscillation Measurements

- Results from operating long-baseline accelerator neutrino experiments (T2K and NOvA) are in good agreement.
 - > Consistent measurements of Δm_{32}^2 (~2.5×10⁻³ eV²) and θ_{23} (~45°).
- Both experiments have also observed the first hints of a non-zero δ_{CP} , reporting similar best-fit values around $\delta_{CP} \sim 3\pi/2$.

Short-baseline Tensions

- While the bulk of the world's data are consistent with standard oscillations, a number of results from short-baseline experiments exhibit tension.
 - > LSND; MiniBooNE; Gallium calibration sources; Reactor anomalies.
- These tensions are often used to motivate a ~1eV sterile neutrino.



Fundamental Physics Questions

A number fundamental physics questions remain to be (definitively) addressed by future neutrino oscillation experiments:

(1) Is there CP violation in the lepton sector?

- i.e. Does $P(v_{\mu} \rightarrow v_{e}) \neq P(anti-v_{\mu} \rightarrow anti-v_{e})$? Equivalently, does $\delta_{CP} \neq 0, \pi$?
- (2) Do neutrinos have a 'normal' or an 'inverted' mass ordering?
 - i.e. Does $m_3 > m_2$ or $m_3 < m_2$?
- (3) What is the octant of the angle θ_{23} ? i.e. Does $\theta_{23} < 45^\circ$, $\theta_{23} > 45^\circ$ or $\theta_{23} = 45^\circ$?
- (4) Is there physics beyond the standard three-flavour model of oscillations?
 - e.g. sterile neutrinos, non-standard interactions, etc...

Addressing These Questions

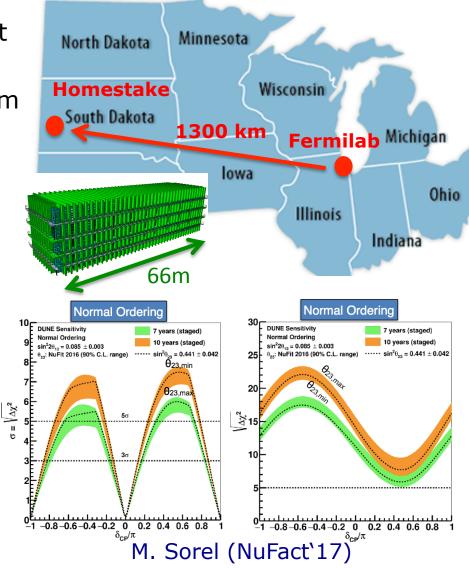
- To address these questions, need a new international programme of high-precision long-baseline neutrino experiments.
 - > High-intensity accelerator neutrino beams.
 - ➤ Multiple detectors.
- To study oscillations with the required level of precision, also need a strong accompanying theoretical and experimental effort.
 - > A detailed understanding of neutrino flux and interaction physics will be needed to control systematic uncertainties.
 - Will need improved theory and experimental data in the areas of hadroproduction, neutrino cross-sections, etc...
 - Next generation of experiments will require improved hardware, computing, online/offline software, etc...
 - Should also characterise detectors using test beams.
- Short-baseline signals must be addressed with dedicated experiments.

European Strategy Update (2013)

The previous European Strategy Update (coupled with the parallel P5 process in the USA) established a clear pathway:

High-priority large-scale scientific activities:

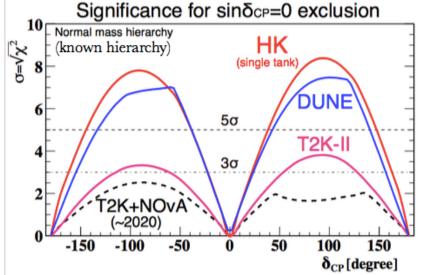
"Rapid progress in neutrino oscillation physics, with significant European involvement, has established a strong scientific case for a long-baseline neutrino programme exploring CP violation and the mass hierarchy in the neutrino sector.


CERN should develop a neutrino programme to pave the way for a substantial role in future long-baseline experiments. Europe should explore the possibility of major participation in leading long-baseline projects in USA and Japan".

 Since 2015, significant international effort has focused around two long-baseline projects: DUNE (USA) and Hyper-Kamiokande (Japan).
 Both projects are now in their technical design phases.

CERN has also made a major investment in its Neutrino Platform.

DUNE


- A long-baseline neutrino experiment from Fermilab to Homestake mine.
- Powerful accelerator neutrinos beam produced by a new LBNF facility at Fermilab.
- Multi-detector experiment, with 40kt Far Detector based on LAr-TPC technology.
- ➤ First beam data in mid-2020s.
- >5 σ sensitivity to CP violation over a wide range of δ_{CP} values.
- 1000+ international collaboration (largest in neutrino physics!)
- Recent major capital commitment by UK government.

Hyper-Kamiokande

- Long-baseline neutrino experiment from JPARC to Kamioka.
- Major upgrade and scale-up of Super-K and T2K technology.
- ➤ Upgraded 1MW neutrino beam.
- Two Water Cherenkov modules, each with ~200kt fiducial mass (with potential for placing one of the modules in South Korea).
- ➤ Data-taking from mid-2020s.
- >5 σ sensitivity to CP violation over a wide range of δ_{CP} values.
- Named by Japanese government among seven top-priority science projects on MEXT roadmap.

t E. O'Sullivan (NuFact'17) T2HK i E. O'Sullivan (NuFact'17) i E. O'Sullivan (NuFact'

CERN Neutrino Platform

The establishment of a Neutrino Platform at CERN has provided a European centre for research, development and collaboration:

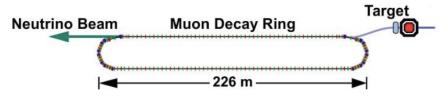
CERN v Platform Initial Mandate (2015)

- Assist the various groups in their R&D phase (detectors and components) in the short and medium term and give coherence to a fragmented European Neutrino Community
- Provide the v community with a test beam infrastructure (charged particles)
- Bring R&D to the level of technology demonstrators in view of major construction activities
- Continue R&D on v beam, as a possible basis for further collaborations
- Support the short baseline activities (infrastructure & detectors)
- Support the long baselines activities (infrastructure & detectors)
- Be a partner in the physics exploitation M. Nessi (CERN workshop)

CERN Neutrino Platform

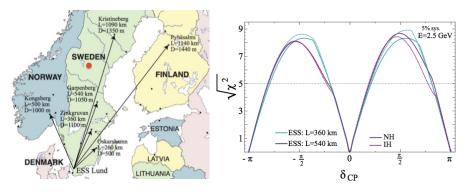
- CERN Neutrino Platform is multi-faceted:
- New test-beam facility for a number of detector prototypes, such as the ProtoDUNE's (see right) and the UK's HP-TPC detector.
- Near Detector Forum to foster design and development of ND concepts for DUNE and T2K-II / HK.
- > Neutrino theory working group.
- Collaboration on FNAL short-baseline programme, with significant technical effort on SBND and ICARUS.
- Expertise in many different areas. But no neutrino beam of its own!
- In addition, CERN has financed the first cryostat for DUNE Far Detector.

A. Kaboth (IOP 2018)


Future Strategy

- Since 2015, the directive of the previous European Strategy Update has largely been implemented:
 - Formation of DUNE and Hyper-K collaborations with the aim of constructing new long-baseline experiments in USA and Japan.
 - > Establishment of CERN Neutrino Platform to support these efforts.
- Much of the UK effort has also been focused along these lines.
 - > Large UK collaborations within DUNE and Hyper-K projects.
 - > Also, significant UK involvement in LAr-based SBN programme at Fermilab, and on Near Detector development for T2K-II / HK.
- If DUNE and Hyper-K remain on track, then the next few years will see their construction and the start of data-taking.
- One future strategy for European involvement in oscillation physics involves consolidating these existing efforts.

Future Strategy


But should Europe have its own accelerator neutrino programme? Here are two proposed projects that could be sited in Europe:

NuSTORM

- Long-standing UK involvement.
- One focus of the recent CERN-led Physics Beyond Colliders study.
- > Would deliver an intense neutrino beam from a muon storage ring.
- Capable of precision measurements of neutrino interaction physics, plus searches for short-baseline neutrino oscillations.
- ➤ Could be cited at CERN or FNAL.

ESSvSB

- European Spallation Source has been under construction since 2014. (UK listed as a collaborating nation).
- > Once complete, the facility could be extended to deliver a conventional neutrino beam (~300 MeV).
- Highly sensitive to CP violation as part of a long-baseline programme.

Questions

- ◆ Is Europe (and the UK) pursuing the correct path in collaborating on future long-baseline neutrino projects in the USA and Japan?
 ➢ How could we strengthen the European involvement?
- Should Europe pursue its own accelerator neutrino programme?
 - Could be: big or small, short or long baseline, conventional or other type of beam, based at CERN or elsewhere, etc...
- The current strategy statement (and this talk!) focuses on future accelerator projects, but what about non-accelerator projects?
 - > e.g. KM3NeT, PINGU, reactor neutrino programmes, etc...
- How can we improve our understanding of neutrino production and interaction to support precision measurements?
 - Need continued develop of theory, and sufficient data on hadroproduction and neutrino interaction physics.

Anything else?