Gravitational Waves (UK)

T. J. Sumner

Imperial College London

University of Florida

The GW Spectrum

Gravitational Wave Astronomy UK GW effort

- UK: Long history of leadership in GW instrumentation and analysis;
- UK made major contributions to Advanced LIGO and LISA Pathfinder (enabling hardware, innovative ideas, leading search groups and analysis
- Faculty expansion in Glasgow, Birmingham, Cardiff (new experimental group), Portsmouth (new group)
- Latest science operations
- Adv. LIGO completed 2nd run (O2: Nov 2016 Aug 2017)
- Adv. Virgo joined network in Aug 2017, allowing localisation of sources via triangulation
- LISA Pathfinder completed main mission and one extension (May 2016 – July 2017)

LIGO/VIRGO

Masses in the Stellar Graveyard

Event	GW150914	GW151226	LVT151012
Signal-to-noise ratio ρ	23.7	13.0	9.7
False alarm rate FAR/yr ⁻¹	$< 6.0 \times 10^{-7}$	$< 6.0 \times 10^{-7}$	0.37
p-value	7.5×10^{-8}	7.5×10^{-8}	0.045
Significance	$> 5.3\sigma$	$> 5.3\sigma$	1.7σ
Primary mass $m_1^{\text{source}}/M_{\odot}$	$36.2^{+5.2}_{-3.8}$	$14.2^{+8.3}_{-3.7}$	23^{+18}_{-6}
Secondary mass $m_2^{\text{source}}/M_{\odot}$	$29.1_{-4.4}^{+3.7}$	$7.5^{+2.3}_{-2.3}$	13^{+4}_{-5}
Chirp mass $\mathcal{M}^{\text{source}}/M_{\odot}$	$28.1^{+1.8}_{-1.5}$	$8.9^{+0.3}_{-0.3}$	$15.1^{+1.4}_{-1.1}$
Total mass $M^{\text{source}}/M_{\odot}$	$65.3^{+4.1}_{-3.4}$	$21.8^{+5.9}_{-1.7}$	37^{+13}_{-4}
Effective inspiral spin $\chi_{\rm eff}$	$-0.06^{+0.14}_{-0.14}$	$0.21_{-0.10}^{+0.20}$	$0.0^{+0.3}_{-0.2}$
Final mass $M_{\rm f}^{\rm source}/{\rm M}_{\odot}$	$62.3^{+3.7}_{-3.1}$	$20.8^{+6.1}_{-1.7}$	35^{+14}_{-4}
Final spin a _f	$0.68^{+0.05}_{-0.06}$	$0.74_{-0.06}^{+0.06}$	$0.66^{+0.09}_{-0.10}$
Radiated energy $E_{\rm rad}/({\rm M}_{\odot}c^2)$	$3.0^{+0.5}_{-0.4}$	$1.0^{+0.1}_{-0.2}$	$1.5^{+0.3}_{-0.4}$
Peak luminosity $\ell_{\text{peak}}/(\text{erg s}^{-1})$	$3.6^{+0.5}_{-0.4} \times 10^{56}$	$3.3^{+0.8}_{-1.6} \times 10^{56}$	$3.1^{+0.8}_{-1.8} \times 10^{56}$
Luminosity distance $D_{\rm L}/{\rm Mpc}$	420^{+150}_{-180}	440^{+180}_{-190}	1000^{+500}_{-500}
Source redshift z	$0.09^{+0.03}_{-0.04}$	$0.09_{-0.04}^{+0.03}$	$0.20_{-0.09}^{+0.09}$
Sky localization $\Delta\Omega/deg^2$	230	850	1600

Primary black hole mass m_1	$30.5^{+5.7}_{-3.0}M_{\odot}$
Secondary black hole mass m_2	$25.3^{+2.8}_{-4.2}M_{\odot}$
Chirp mass M	$24.1^{+1.4}_{-1.1}M_{\odot}$
Total mass M	$55.9^{+3.4}_{-2.7}M_{\odot}$
Final black hole mass M_f	$53.2^{+3.2}_{-2.5}M_{\odot}$
Radiated energy E_{rad}	$2.7^{+0.4}_{-0.3}M_{\odot}\ c^2$
Peak luminosity ℓ_{peak}	$3.7^{+0.5}_{-0.5} \times 10^{56} \text{ erg s}^{-1}$
Effective inspiral spin parameter χ_{eff}	$0.06^{+0.12}_{-0.12}$
Final black hole spin a_f	$0.70^{+0.07}_{-0.05}$
Luminosity distance D_L	540 ⁺¹³⁰ ₋₂₁₀ Mpc
Source redshift z	$0.11_{-0.04}^{+0.03}$

- -

Abbott, B et al., PRL, 119, 141101 (2017)

Gravitational wave source localisation.

Yellow : Localisation obtained using two LIGO detectors only.

Green : Localisation obtained using all three detectors LIGO and Virgo, from real-time fast analysis.

Mauve: Localisation obtained after more powerful postanalysis

(c) collaboration LIGO-Virgo

Science Highlights

- A new class of high-mass black-hole binary
- 'Standard' GR template provides good fit
- Masses of progenitor BHs (~15%)
- Mass of final BH (~10%)
- Final mass spin (~10%)
- Energy loss (~15%)
- Distance (~30%) NO COUNTERPARTS
- Power output (~25%)
- 12-213 BH-BH mergers Gpc⁻³/year
- [Re-energised primordial black holes as dark matter]

- Multi-messenger astronomy!
- Observed GW from matter
- Evidence for link between BNS and some sGRB
- Tight constraint of speed of GW
- Setting constraint on EOS of neutron stars

- Good sky localisation allowed finding optical counter part and identification of host galaxy.
- Many telescopes around the globe and in space joined observation campaign.
- Enabled observation of kilonova.

A global multi-messenger observation – gw, gamma, opt, ir, radio from 70 observatories

Abbott, B et al., AJL, 848;L12 (2017)

European Particle Physics Strategy Input, Durham 18/04/2018

Key Results

- GW luminosity distance 43.8 +2.9/-6.9 Mpc.
- GW SNR 32.4
- GW Primary M₁ was 1.36-2.26 M_{solar}
- GW Primary M₂ was 0.86-1.36 M_{solar}
- GW chirp mass 1.188 +.004/-.002 M_{solar}
- GW Primary M₁ + M₂ was 2.82 +0.47/-.09 M_{solar}
- GW-GRB delay 1.74 +/- 0.05s
 - |Δc|/c <3x10⁻¹⁵
 - Competitive limits on Lorentz violations
 - EP for GW vs EM new limit
- Counterpart in NGC4993 at ~40 Mpc (41.1+/-5.8)
- Binary Neutron Star merger producing
 - a sGRB
 - Kilonova (seen in optical, ultraviolet and ir)
 - Delayed x-rays and radio from environment
- Consistent Ho (70+12/8 km/s/Mpc) European Particle Physics Strategy Input, Durham 18/04/2018

Gravitational Wave Astronomy

Adv. LIGO and Adv. Virgo to start ~1 year long O3 run late in 2018

- LIGO with NS-NS 'reach' of ~120 Mpc (was ~70 Mpc in O2), Virgo ~65 Mpc;
- What can we expect from O3? Best guesses:
 - Binary Black Holes: Several per month to several per week
 - Binary Neutron stars: 1 to 10 in the year-long run
 - NSBH: N=0 not ruled out in any scenario, most give ~50% N>0
- Japanese KAGRA detector expected to join as fourth detector towards the end of O3;

Plans for upgrading GW observatories

- Work underway on maximising performance of advanced detectors in their infrastructures (Strong UK contribution to research towards Advanced LIGO upgrades)
- UK current Chair of Gravitational Wave International Committee (GWIC) coordinates work on 3G detectors: Einstein Telescope (in Europe), Cosmic Explorer (in US)
- Space-based GW (complementary in signal frequency + obtainable science) pushed forward in parallel: LISA was selected in June 2017 for L3 mission (~2034).

arXiv:1304.0670

Confronting GR

 ΔM_2 to 10⁻² to 10⁻⁴

All galaxy mergers cross eLISA band

European Particle Physics Strategy Input, Durham 18/04/2018

Big Bang

Time —

Schedule Dates

Event	From	То	Status
Phase 0 for instrument contributions	2017-JUL	2017-NOV	Done
Mission Definition Review (MDR)	2017-NOV-27	,	Done
Phase A (mission & instruments)	2018-APR	2019-DEC	
Mission Consolidation Review (MCR)	2019-FEB	2019-MAR	
Mission Formulation Review (MFR)	2019-OCT	2019-DEC	
Adoption	<=2024		
Implementation (Phase B2/C/D)	8.5-9 years		
Launch			
Transfer & Commissioning	2.5 years		
Operations	4 years		
Extension (TBD)	6 years		10 years total of science

ESA UNCLASSIFIED - For Official Use

Martin Gehler | ESA-LISA-EST-MIS-HO-007 | ESTEC | 09/04/2018 | Slide 4

European Space Agency

European Particle Physics Strategy Input, Durham 18/04/2018

Future Plans – Other Opportunities

http://www.fnal.gov/pub/science/particle-physics/quantum/#magis

Mid-band Gravitational Wave Detection with Quantum Sensors: MAGIS-100

- 100m quantum sensor at Fermilab using atom-interferometry
- · Based in the vertical NUMI access shaft
- Test-bed for 1km device (in yellow), at Homestake
- Also sensitive to tests of axion dark matter
- and Macroscopic tests of Quantum Mechanics

Atom Interferometry

Stanford U.

- FNAL
- U.C. Berkeley
- NIU
- U. Liverpool

Future Plans – Other Opportunities

Future Plans – Other Opportunities

Big Bang Observer (BBO) - Multi-LISA very short arm

Phinney S + LIST, inc UK (2004)

Main funding routes for UK groups

ALIGO – STFC ET – EU? LISA – UKSA [– already closed for further applications 20 years before launch!]

Growing discipline, with faculty hiring, in stagnant environment, but

GCRFs – STFC

- UK-India ground-based collaboration
- UK-China ground and space based collaborations

UK Involvement

Advanced LIGO/Virgo Birmingham Cardiff Edinburgh Glasgow Kings College Manchester Sheffield Southampton Strathclyde West Scotland

Multi-messenger (NSB observations)

Bath Cambridge Leeds Leicester Liverpool Liverpool John M MSSL (UCL) Nottingham Oxford Portsmouth St. Andrews Surrey Sussex UCL Warwick +LIGO (UK)

LISA Pathfinder (2004-2017) Birmingham Glasgow Imperial

[MSSL] ALL FOUR GROUPS PRODUCED FLIGHT H/W

LISA

(consortium snapshot – application process ongoing)BirminghamEdinburghGlasgowONLY H/W group left !!ImperialLeicesterSince 1997, when LISA was first+proposed to ESA, it has+attracted 140 publications/year.+By launch it will be >5000 for an
experiment about to start!