Muon Physics

g-2, MUonE, Mu2e, COMET, Mu3e ...+ JPARC g-2, MEG

Not covering: DeeMe, MuSEUM, HyperMu, MUSE,

We know new physics must be out there somewhere:

- dark matter, matter/antimatter asymmetry, ...
- naturalness, structure of the Standard Model, ...

No new physics directly observed at the LHC

- ...surprises have come from the lepton sector:
 - neutrino oscillations
 - some > 3σ effects: g-2, R(K), R(D)

Charged lepton flavour violation is possible / predicted in several BSM scenarios - can be linked to leptogenesis of matter/antimatter asymmetry

The coming decade will see significant progress in experimental results

Anomalous contribution to magnetic moment:

 $a_{\mu} = \left(\frac{g-2}{2}\right)$

Brookhaven measurement \sim 3.6 σ from prediction

Muon g-2 experiment underway at Fermilab

Muon g-2

Use of "magic momentum" 3.09 GeV \rightarrow direct access to a from precession freq.

Graphics from Themis Bowcock, PPAP 2017

Muon g-2

Direction of positron from muon decay strongly correlated with muon spin for highest energy positrons

24 calorimeters and **3 straw-strackers (UK)** measure e⁺ for O(1 ms) for spills separated by 10ms. 16,000 stored 3.09 GeV muons from 10¹² protons per spill.

Muon g-2

UCL

BNL → FNAL [50 (stat) + 33 (syst) → 11 (stat) + 11 (syst)] x 10⁻¹¹

Improvements:

- muon muons per proton, cleaner delivery
- detectors & modelling
- stored muon beam dynamics
- field uniformity & calibration

Expect ~1 - 2 x Brookhaven stats this year.

Can also access muon EDM by looking for vertical oscillation

- zero in the SM (EDMs only possible with violation of *PT*)
- expect to suprpass Brookhaven limit very soon, then x100.

Comparison of SM

MUonE @ CERN

Theory limited by hadronic LO corrections, a_{μ}^{HNLO}

Traditional calculation from $ee \rightarrow hadrons \rightarrow need x2$ improvement to keep up with g-2

MUonE will measure space-like region:

 \rightarrow scattering of high energy mu (150 GeV) on e

$$a_{\mu}^{HLO} = \frac{\alpha}{\pi} \int_{0}^{1} (1-x) \Delta \alpha_{had}(t(x)) dx$$

Schedule:

2017: test beam at CERN H8 Beam Line 2019: LOI to SPSC 2020/1: construction & installation 2022/4: (after LHC LS2) start data taking Charged Lepton Flavour Violation

Neutrinoless muon decay:

- possible in SM, suppressed by $\sim 10^{-54}$

 \rightarrow any observation is new physics!

Can put almost anything in the loop:

- heavy quarks, leptoquarks, compositness, second Higgs doublet, heavy neutrinos...

Different strategies:

- $\mu \rightarrow e \gamma \ MEG$
- $\mu N \rightarrow e N \,$ Mu2e, COMET
- $\mu \rightarrow eee$ Mu3e

Synergy with g-2 Rate (CLFV) ~ $g^2 \times \theta_{e\mu}^2 \times \left(\frac{m_{\mu}}{\Lambda}\right)^2$ $a_{\mu} \sim g^2 \times \left(\frac{m_{\mu}}{\Lambda}\right)^2$

New Physics in Loops

Effective Lagrangian for cLFV (de Gouvea & Vogel)

$$\mathcal{L}_{\text{CLFV}} = \frac{m_{\mu}}{(\kappa+1)\Lambda^2} \bar{\mu}_R \sigma_{\mu\nu} e_L F^{\mu\nu} + h.c.$$
$$\frac{\kappa}{1+\kappa)\Lambda^2} \bar{\mu}_L \gamma_{\mu} e_L \left(\bar{u}_L \gamma^{\mu} u_L + \bar{d}_L \gamma^{\mu} d_L \right) + h.c. \,.$$

Extend scale by ~factor 5-10 cf jump from Tevatron to LHC

Extend sensitivity by 10⁴

	Best limits	Projected sensitivities (90%CL)
μ→еγ	< 4.3x10 ⁻¹³ MEG (PSI)	4x10 ⁻¹⁴ MEG II (PSI)
µ→еее	< 1.0x10 ⁻¹² SINDRUM (PSI)	1x10 ⁻¹⁵ Mu3e I (PSI) 1x10 ⁻¹⁶ Mu3e II (PSI)
µN→eN	< 7.0x10 ⁻¹³ SINDRUM II (PSI)	6x10 ⁻¹⁷ Mu2e (FNAL) 7x10 ⁻¹⁵ COMET I (J-PARC) 6x10 ⁻¹⁷ COMET II (J-PARC)

Updated figure from Mark Lancaster

Stopped muons in orbit around nucleus.

- neutrinoless conversion of muon to electron
- mono-energetic electron (104.96 MeV for Al)
- delayed w.r.t. prompt particles (864 ns for Al)

Prompt backgrounds

(radiative nuclear capture, d.i.f., pions, protons).

- Curved solenoid transport channel
- Pulsed beam with delayed time-window
- Strong extinction factor (less than 10⁻⁹)

Muon decay in orbit ($\mu N \rightarrow evvN$)

- precise momentum resolution

Mu2e

Beamline to Mu2e building completed.

Most accelerator mods also needed by g-2 First beam in 2020, data-taking through 2025

Possibility for Mu2e-II (factor of 10 in sensitivity) - to be finalised in 2020 HEPAP P5.

220 members: 35 institutes.

HEPAP P5: 2014 Mu2e (& g-2) to be completed in all budget scenarios (as for HL-LHC, LBNF) Approval of full-budget: July 2016, \$274M

g-2 EDM, and COMET at J-PARC

UCL

Proposed g-2 / EDM experiment at J-PARC

- Innovative design
- currently in R&D phase
- would see beam, after Fermilab g-2
 - provide important cross-check

MEG-II

UCL

Upgraded MEG experiment at PSI

- looking for $\mu \to e \gamma$ Limited by photon E & pos^n resolution

Current limit $\sim 4x10^{-13}$, aiming for x10 improvement

Complete installation & engineering run 2018.

Mu_{3e}

outer pixel

aver

ayers

scintillating fibres

The mu3e experiment at PSI

DC beam of up to $10^{10} \mu$ /s on target, triggerless DAQ.

Combinatorics, Michel decay + photon conversion:

- Scintillating fibres (1ns) and tiles (100ps)
- vertex resolution 200 μ m

Michel decay + internal conversion

- momentum resolution 0.5 MeV

Recurling tracks in 1T field,

scattering dominated regime (E<53 MeV)

necur pixe

layers

Mu3e

MuPix outer pixel layers for Phase 1 1.1 m² HV-MAPS pixel tracker

Material budget critical:

- 50 μ m HV-MAPS
- 25 μm support

16

G. Hesketh

- 25 μm flex-print
- 12 μm aluminium traces
- 10 μm adhesive
 - $\rightarrow 0.1\%~X_{_0}$ per tracking layer

UK Deliverables

- Participate in final pre-production of MuPix chip
- Tooling for chip-to-ladder assembly, ladder prototype production.
- Assembly of all Phase 1A outer tracker (Spring 2019).
 - & Phase 1B recurl layers (Spring 2020).
- Design and deliver clock and control system (Spring 2019)

Mu3e

UCL

Phase 1A and 1B (2020-2022): $Br(\mu \rightarrow eee) < 10^{-15}$

- Approved (2013) and funded. PSI $\pi E5$ beam, shared with MEG.
- $10^8 \; \mu/s$ on target for Mu3e demonstrated.

Phase 2 (2022/23): $Br(\mu \rightarrow eee) < 10^{-16}$ (10⁴ improvement wrt SINDRUM) HiMB beam at PSI $\rightarrow 10^9 \mu$ /s on target for mu3e Development work focussed on improving muon yield from "E-target" using solenoids to capture muons

Summary

From 2013: Experiments in Europe with unique reach should be supported, as well as participation in experiments in other regions of the world.

g-2 @ FNAL: Liverpool, Lancaster, Manchester, UCL

Interest in MUonE @ CERN:

- start in 2022, reduce theory uncertainties on g-2, critical if Brookhaven result confirmed

Mu2e @ FNAL: Liverpool, Manchester, UCL - fully funded, will follow g-2

Mu3e @ PSI: Bristol, Liverpool, Oxford, UCL - commissioning in 2019, first data in 2020

COMET @ J-PARC: Imperial

- Phase 1 approved, expecting beam in \sim 2-4 years, Phase 2 approval to follow

Muon physics complements and extends major research themes:

- BSM searches, CPV in the neutrino sector and leptogenesis of matter-antimatter asymmetry *..and should play an important role in European strategy*

Talking Points

ICL

There is still a lot of phase space to explore: cLFV limits will reach 10⁻¹⁶, SM ~ 10⁻⁵⁰!

Possible Mu2e upgrade (2020 HEPAP P5), give ~x10

- could make use of FNAL PIP-II beam
 - 100kW pulsed beam at 800 MeV

Discussions beginning between Mu3e/Mu2e/MEG/COMET

- \rightarrow single experiment doing all 3 cLFV modes,
- \rightarrow push sensitivity by further x10.
- would happen after MEG-II and Mu3e Phase 2 (ie >2025?)
 possibly at FNAL, use PIP-II beams

Talking Points

Renewed interest in EDMs

- g-2 measurement of the muon EDM will improve limit by ${\sim}x100$
- possibility to upgrade g-2: replace straw trackers with silicon
 - \rightarrow further x10 in limit

Plan for a demonstrator proton EDM @ CERN

- requires new proton/deuteron storage ring
- can already improve on the present limit

...before full-scale experiment

- x10⁵ improvement in limit $(7x10^{-25} \rightarrow 10^{-29})$

See CERN "*Physics Beyond Colliders*" workshops: - eg Jorg Pretz, Nov 2017

https://indico.cern.ch/event/644287/timetable/#all

...and talk by Claire Burrage yesterday.

~ Fin ~

UK contribution (Liverpool, Manchester, UCL): STM

cf luminosity at collider

determine "background" impurities in target and beamline
verify integrity of DIO modelling

Conversion BR = $\frac{\#\mu \to e}{\# \text{ captured } \mu}$

Dark photons at mu3e

The COMET Experiment

Muon-to-electron conversion experiment at J-PARC, Japan

8 GeV (56 kW)

Proton Beam

The Coherent Muon-to-Electron Transition Experiment Phase-II Layout

Aluminium Muon-Stopping Target

 π/μ Transport Solenoid

> Straw Tracker & Crystal ECAL

Signal electron density along curved beam line

	with "s	teering" B-field
	without "s	teering" B-field
Muon-stopping ta	arget	Detectors

<u>Curved solenoids with</u> <u>vertical B-fields:</u> **steerable momentumand-charge selection** for muons and signal electrons

<u>56 kW proton beam:</u> Seven times the muon production rate of Mu2e

Fully physics study by Ben Krikler (PhD Thesis, 2016)

COMET Phase-I

Very high-rate/rare signal experiment

- detector background hit rates and data-rate management, subsystem integration and detailed signal and background studies are critical
- **Phase-I** experiment allows novel muon beam line to be studied in detail, while also making worldleading CLFV physics measurements

Drift Chamber Cosmic Ray Tests (Ongoing)

COMET Status

More than 150 collaborators from 32 institutions in 15 countries

UK leadership includes:

- Founding member, participation since 2006 Online/Offline Software, Data Processing
- Collaboration Board Chair
- Physics and Software Coordinator
- Lead Editor of TDR

COMET Phase-I

- fully-approved at J-PARC/KEK
- no technical constraints to schedule
- beam arriving in two years
- S.E.S to ${\cal B}(\mu
 ightarrow e) = 3 imes 10^{-15}$

COMET Phase-II

- Phase-I components to be redeployed for Phase-II
- Within approximately two years of successful Phase-I start
- Seven times higher muon production rate compared to Mu2e
- Designed for $B(\mu \rightarrow e) = 3 \times 10^{-17}$, but aim to improve using knowledge from Phase-I

- Triggering/DAQ Electronics and Firmware
- Detector Raw Data Interface
- Triggering, Tracking and Reconstruction

