ELW. AND ALTERNATIVES WG SUMMARY REPORT

Michael Spira (PSI)

other convenors: A. Denner, K. Mönig, T. Ohl, G. Pasztor

- Signatures of new ρ -resonances from Ivan Melo strong EWSB in $e^+e^- \rightarrow \nu \bar{\nu} t \bar{t}$
- Strong electroweak symmetry breaking Predrag Krstonosic from $ee \rightarrow VV\nu\nu$ (presented by K. Mönig)
- Triple gauge couplings in $\gamma\gamma$ collisions Jadranka Sekaric
- Four-fermion production at future photon Axel Bredenstein colliders
- Precision measurements of beam polariza- Filip Franco-Sollova tion at the LC (The case of single-W production)
- Two-loop Sudakov logarithms in electro- Bernd Feucht weak processes
- Electroweak precision observables in the Sven Heinemeyer
 MSSM with non minimal flavor violation

ECFA - Durham

Sep 2004

Signatures of new vector resonances from strong EWSB in $e^+e^- \rightarrow \nu \overline{\nu} t \overline{t}$

Ivan Melo

D. Bruncko (IEP SAS Kosice)M. Gintner (University of Zilina)I.Melo (University of Zilina)

$W_L W_L \rightarrow t \overline{t}$ scattering

 $R = \frac{|N(\rho) - N(\text{no resonance})|}{\sqrt{N(\text{Background}) + N(\text{no resonance})}}$

Conclusions

 ρ in $e^+e^- \rightarrow \nu \bar{\nu} t \bar{t}$ (Pythia and CompHEP)

- agreement within 10 %
- no t decays

 $\sigma(0.8 \text{ TeV}) = 0.20 \quad (0.13) \text{ fb}$ $\sigma(1.0 \text{ TeV}) = 0.16 \quad (0.035) \text{ fb}$

R (ρ vs no resonance) values up to 8

- optimize cuts
- finalize analysis for all models considered
- $e^+e^- \rightarrow \nu \overline{\nu} W^+ W^-$

Strong Electroweak Symmetry Breakingfrom $e \ e \ \rightarrow \nu \ \nu \ V$

K. Mönig , P. Krstonosic DESY - Zeuthen

Introduction

In absence of light Higgs interaction among gauge

bosons becomes strong at high energy

,

Effective Lagrangian contains five CP conserving

$$L_{6} = \frac{\alpha_{6}}{\mathbf{6} \pi^{2}} \mathbf{r} \left(V_{\mu} V_{\nu} \right) \mathbf{r} \left(\mathbf{\mathcal{V}}^{\mu} \right) \mathbf{r} \left(\mathbf{\mathcal{V}}^{\nu} \right)$$
$$L_{7} = \frac{\alpha_{7}}{\mathbf{6} \pi^{2}} \mathbf{r} \left(V_{\mu} V^{\mu} \right) \mathbf{r} \left(\mathbf{\mathcal{V}}_{\nu} \right) \mathbf{r} \left(\mathbf{\mathcal{V}}^{\nu} \right)$$
$$L_{0} = \frac{\alpha_{0}}{\mathbf{6} \pi^{2}} \left(\mathbf{r} \left(\mathbf{\mathcal{V}}_{\mu} \right) \mathbf{r} \left(\mathbf{\mathcal{V}}_{\nu} \right) \right)^{2}$$

• Couplings are related to the scale of "new" $ph_{V} = \frac{\alpha_i}{\sqrt{2}} = \left(\frac{v}{\sqrt{2}}\right)^2$

and it's necessary to do the multidimensional analysis in order to obtain the information on scale and dynamics of

Fit

•Binned Maximum Likelihood fit to the expected distributions

• Coefficients obtained by recalculating matrix elements in 5 points in $?_4$?₅ space for each event and solving system of $R_i = 1 + A \cdot \alpha_{4i} + B \cdot \alpha_{4i}^2 + C \cdot \alpha_{5i} + D \cdot \alpha_{5i}^2 + E \cdot \alpha_{4i} \cdot \alpha_{5i}$ i = 1,5 equations:

R is the ratio of the matrix element to the SM one.

• After separate analysis for signal processes double counted events were assigned to one or another sample according to the distance form M(V)+M(V) mass (V=W or Z)

W W result

W⁺ W⁻ result

Future

- improvement in Z Z analysis still possible
- results in easy to use and combine form
- W Z analysis in progress
- combined limits on full parameter set at 800GeV to be obtained soon
- going for 1TeV

K.Mönig, J.Sekaric

DESY-Zeuthen

Sekaric Jadranka

DESY-Zeuthen

ECFA, Sept. 04, UK

 $? \to W^+W^- \to q\bar{q}q\bar{q} \quad \sqrt{S} = @$

Dominating diagram for $?? \rightarrow W^+W^-$ **TGC Two couplings**, ?, in dim-4 and ?,

W_{FORWARD}

in dim-6 operators **Deviations from SM TGC values** \rightarrow **test of EW theory**,

probe of some possible extensions \rightarrow new physics beyond the SM γ

WBACKWARD

Ambiguities :

 $(-cos?_{1,2},?_{1,2}+?)$

 θ_2

Sekaric Jadranka

DESY-Zeuthen

ECFA, Sept. 04, UK

2

J _z =0	$E_{CM} = 400 \text{ GeV}, L = 110 \text{ fb}^{-1}, \text{FBE}$			
3D/ <mark>5D</mark>	Likelihood (normalized)			
ΔL	1%	0.1%	accurate	
∆κ _γ •10⁴/10⁴	26.0/14.4	6.2/ <mark>5.4</mark>	3.8/ <mark>2.6</mark>	
Δλ _γ •10 ⁻⁴ /10 ⁻⁴	14.4/ <mark>3.0</mark>	13.7/ <mark>3.0</mark>	13.7/ <mark>3.0</mark>	
Δκ _γ •10 ⁻⁴ +pileup	15.4	5.4	2.6	
$\Delta \lambda_{\gamma} \cdot 10^{-4} + pileup$	3.8	3.8	3.8	

 $3D \rightarrow 5D$ decreases the error in κ_{γ} ; in λ_{γ} significantly ! Pile-up distorts the ?-distribution \rightarrow increase of error in λ_{γ} for ~20% κ_{γ} dependences on normalization DESY-Zeuthen 13

J _z =2	$E_{CM} = 400 \text{ GeV}, L = 110 \text{ fb}^{-1}, \text{FBE}$			
3D/5D	Likelihood (normalized)			
ΔL	1%	0.1%	accurate	
Δκ _γ •10 ⁻⁴ /10 ⁻⁴	29.0/19.9	6.2/ <mark>6.2</mark>	3.9/ <mark>3.8</mark>	
Δλ _γ •10 ⁻⁴ /10 ⁻⁴	1.8/1.5	1.6/1.5	1.6/1.5	
Λ ΥΩ⁴ + pileup	23.2	6.3	3.9	
$\Delta \lambda_{\gamma} \cdot 10^{-4} + pileup$	2.0	2.0	2.0	

 $3D \rightarrow 5D$ no influences in the error estimations Pile-up distorts the ?-distribution \rightarrow increase of error in λ_{γ} for ~25% $\kappa \stackrel{\text{dependences on normalization}}{\sum_{ECFA, Sept. 04, UK}}$

14

Conclusions

- $J_z = 0,2$ are sensitive to the anomalous couplings \rightarrow to the possible scenarios of EWSB
- ? distribution important for $J_z=0$
- Pile-up influences on ?, measurement (~25%)
- Promising channel for ?, ?, measurements

??₇ ??₇ ~ 10⁴

FUTURE

to include the possible backgrounds, variable beam energy

rejection of bad tracks from pileup Sekaric Jadranka

ECFA, Sept. 04, UK

DESY-Zeuthen

Four-fermion production at the $\gamma\gamma$ Collider

•

Axel Bredenstein

in collaboration with Stefan Dittmaier und Markus Roth

Max-Planck-Institut für Physik, Munich

September 1,2004

based on Eur. Phys. J. C 36 (2004) 341 [arXiv:hep-ph/0405169]

Contents

۲

Calculation of $\gamma \gamma \rightarrow 4f$ und $\gamma \gamma \rightarrow 4f \gamma$ in lowest order Construction of a Monte Carlo generator

- Motivation
- Calculation of helicity amplitudes
- Phase space and photon spectrum integration
- Anomalous couplings
- Effective Higgs coupling
- Finite gauge-boson width
- Double-pole approximation

Anomalous triple couplings

 $\gamma \gamma \rightarrow 4f$ all semi-leptonic final states photon spectrum included $\sqrt{s_{ee}} = 500 \,\text{GeV} \quad \int L dt = 100 \,\text{fb}^{-1} \quad \chi^2 = 1 \quad \chi^2 \equiv \frac{(N(a_i) - N_{\text{SM}})^2}{N_{\text{SM}}}$

 $\label{eq:also} \begin{array}{l} \rightarrow \text{ large interference with SM amplitude} \\ \text{expected limits comparable to e^+e^--mode}$ (see also $Baillargeon et al. '97; $Bozovic-Jelisavcic et al. '02$ \\ full study requires consideration of distributions \\ \end{array}$

Summary

- Relevance of $\gamma\gamma \rightarrow WW$ due to its high cross section
- Calculation of Born amplitudes for $\gamma\gamma \rightarrow 4f$ and $\gamma\gamma \rightarrow 4f\gamma$
- Monte Carlo generator with multi-channel Monte Carlo integration
- Inclusion of a realistic photon spectrum
- Anomalous couplings, Higgs resonance
- Double-pole approximation is a promising approach for radiative corrections (cf. RacoonWW), work in progress

PRECISION MEASUREMENTS OF BEAM POLARIZATION AT THE LC

(THE CASE OF SINGLE-W PRODUCTION)

FILIP FRANCO-SOLLOVA

CONTENTS

- BEAM POLARIZATION AT THE LC
- MEASURING THE POLARIZATION
- SINGLE-W PRODUCTION
- BACKGROUND
- RESULTS
- CONCLUSIONS AND OUTLOOK

Filip Franco-Sollova

2nd ECFA Workshop

Durham, 1-4 September 2004

1

BEAM POLARIZATION AT THE LC

ONLY if Beam Polarization is accurately determined

Filip Franco-Sollova

2nd ECFA Workshop

<u>A Solution</u>: Measure the polarization <u>directly using physical proceses</u>. (<u>It is not a replacement of the polarimeters !</u>)

Advantage: No problem with depolarization effects ! (Measures the polarization directly at the interaction point)

How to measure the polarization?

Filip Franco-Sollova

2nd ECFA Workshop

Durham, 1-4 September 2004 6

MEASURING THE POLARIZATION

b) Disadvantages of measuring one cross section σ :

$$P_{-} = 1 - \frac{4\sigma}{(\sigma_{LL} + \sigma_{LR}) - P_{+}(\sigma_{LL} - \sigma_{LR})}$$

 $\bullet \mbox{The theoretical values of } \sigma_{_{LL}} \mbox{ and } \sigma_{_{LR}} \mbox{ can not be accurately determined}$

Anomalous TGCs are problematic

- From the conditions considered in this stage of the study, the best value for the polarization measurement error is $\approx 0.73\%$ (for $\cos \theta_{e+} > 0.90$)
- The best value of luminosity sharing is: Left electrons $\approx 25\%$ Right electrons $\approx 75\%$ (considering only the $e^+\nu_e \ \mu^- \ \overline{\nu}_\mu$ final state)
- Optimization of the signal selection
- Untagged events (µµ background)
- Solve technical isues:
- Detector forward region
- Problem of ISR and beamstrahlung in Whizard (not mentioned in the talk)
- Simultaneous measurement of electron and positron polarization

Filip Franco-Sollova

2nd ECFA Workshop

2nd workshop of the ECFA "Physics and Detectors for a Linear Collider" study series **Durham, 1–4 September 2004**

Electroweak Sudakov logarithms

The form factor in a massive U(1) model and in a $U(1) \times U(1)$ model with mass gap

Bernd Feucht

Institut für Theoretische Teilchenphysik, Universität Karlsruhe

In collaboration with Johann H. Kühn, Alexander A. Penin and Vladimir A. Smirnov

- I Why logarithmic 2-loop results in EW theory?
- II Massive U(1) form factor: evolution equation & 2-loop results
- III $U(1) \times U(1)$ model with mass gap: factorization of IR singularities
- IV Applications: how to treat the EW mass gaps Z W photon
- V Summary & outlook

Electroweak (EW) precision physics

- experimentally measured by now at energy scales up to $\sim M_{W,Z}$
- future generation of accelerators (LHC, LC) \rightarrow TeV region

Electroweak radiative corrections at high energies $\sqrt{s} \sim \text{TeV} \gg M_{W,Z}$

Kühn et al. '00, '01; Fadin et al. '00; Denner et al. '01, '03; B.F. et al. '03; Pozzorini '04; ...

large negative corrections in *exclusive* cross sections

- EW corrections dominated by Sudakov logarithms $\alpha^n \ln^{2n}(s/M_{W,Z}^2)$
- 1-loop corrections $\gtrsim 10\%$
- $\bullet\,$ 2-loop corrections $\sim\,1\%$, need to be under control for LC

Massive U(1) form factor in 2-loop approximation

Known from resummation & full calculation of n_f contribution: $(n_f = \# \text{ fermions})$

$$\begin{aligned} \alpha^2 F_2 &= \left(\frac{\alpha}{4\pi}\right)^2 \left[+\frac{1}{2} \ln^4 \left(\frac{Q^2}{M^2}\right) - \left(\frac{4}{9}n_f + 3\right) \ln^3 \left(\frac{Q^2}{M^2}\right) \\ &+ \left(\frac{38}{9}n_f + \frac{2}{3}\pi^2 + 8\right) \ln^2 \left(\frac{Q^2}{M^2}\right) \\ &- \left(\frac{34}{3}n_f + \dots\right) \ln \left(\frac{Q^2}{M^2}\right) + \left(\frac{16}{27}\pi^2 + \frac{115}{9}\right) n_f + \dots \right] \end{aligned}$$

Kühn, Moch, Penin, Smirnov '01 B.F., Kühn, Moch '03

• growing coefficients with alternating sign:

$$-0.4 n_f \ln^3 + 4.2 n_f \ln^2 - 11.3 n_f \ln + 18.6 n_f + 0.5 \ln^4 - 3 \ln^3 + 14.6 \ln^2 - \dots \ln + \dots$$

- $Q \sim 1 \,\mathrm{TeV} \rightarrow +\mathrm{ln}^4 \sim -\mathrm{ln}^3 \sim +\mathrm{ln}^2$
 - \rightarrow large cancellations between logarithmic terms

Complete 2-loop corrections in logarithmic approximation necessary.

Massive U(1) form factor in 2-loop approximation: result $(n_f = 0)$

B.F., Kühn, Penin, Smirnov, hep-ph/0404082

size of coefficients: $+0.5 \ln^4 - 3 \ln^3 + 14.6 \ln^2 - 19.6 \ln + 26.4$ at Q = 1 TeV: +326 - 387 + 372 - 99.2 + 26.4

 \Rightarrow alternating signs! small constant (N⁴LL) contribution

Massive U(1) form factor

- complete 2-loop result in logarithmic approximation \checkmark
- \Rightarrow precise control of radiative corrections

$U(1) \times U(1)$ model with mass gap

• factorization of IR singularities shown explicitly \checkmark

Applications

- calculation with mass gap reduced to the 1-mass case $M_W = M_Z = M_{photon}$
- $M_Z \neq M_W$ taken into account by expanding around the equal mass approximation

Outlook

- extend to non-Abelian models: SU(2), SU(N), SU(2)×U(1)
- consider Higgs contributions
- 4-fermion scattering amplitude
- predictions for EW corrections to $f\bar{f} \rightarrow f'\bar{f}'$ cross sections

Electroweak precision observables in the MSSM with NMFV

Sven Heinemeyer, CERN

Durham, 09/2004

based on collaboration with W. Hollik, F. Merz and S. Peñaranda

- 1. Introduction
- 2. Results for M_W and $\sin^2 \theta_{\rm eff}$
- **3**. Results for m_h
- 4. Conclusions

S. Heinemeyer, LCWS Durham, 01.09.2004

NMFV in the MSSM

NMFV: Non Minimal Flavor Violation

 \rightarrow Mixing of scalar quark families (beyond CKM)

S. Heinemeyer, LCWS Durham, 01.09.2004

 $\neq 0$:

- experimentally only partially restricted
- can e.g. be induced by RGE running in mSUGRA
- changes Higgs-squark couplings
- changes Gauge boson-squark couplings

Analytical result:

evaluation with arbitrary NMFV couplings

Numerical result:

$$\tilde{t}/\tilde{c}: \left(\begin{array}{cc} \lambda \sqrt{\tilde{T}_{LL}\tilde{C}_{LL}} & 0 \\ 0 & 0 \end{array} \right) \qquad \tilde{b}/\tilde{s}: \left(\begin{array}{cc} \lambda \sqrt{\tilde{B}_{LL}\tilde{S}_{LL}} & 0 \\ 0 & 0 \end{array} \right)$$

 $SU(2): \widetilde{T}_{LL} \approx \widetilde{B}_{LL}, \ \widetilde{C}_{LL} \approx \widetilde{S}_{LL}$

- \rightarrow suggested by RGE analysis
- \rightarrow no relevant experimental bounds on λ

$\Delta \rho$ as a function of λ :

 δM_W as a function of λ :

follows the behavior of $\Delta \rho$ $\delta M_W^{\exp,today} = 34 \text{ MeV}$ $\delta M_W^{\exp,future} = 7 \text{ MeV}$

⇒ extreme parameter regions already ruled out

 \Rightarrow small effects for small/moderate λ

 $\Rightarrow \delta m_h = \mathcal{O} (5 \text{ GeV})$ only for very large λ

 \rightarrow mostly decreasing m_h , but also increase possible (e.g. in small α_{eff} scenario)

4. Conclusinos

- Precision observables can
 - give valuable information about the "true" Lagrangian
 - constrain MSSM parameter space already today
- MSSM with NMFV:

mixing in the \tilde{t}/\tilde{c} and in the \tilde{b}/\tilde{s} sector

- \Rightarrow Evaluation of M_W , $\sin^2 \theta_{\rm eff}$, m_h in NMFV MSSM
- Analytical results: for arbitrary mixing Numerical results: only for *LL* mixing, parametrized with λ corresponds to $(\delta_{LL})_{23}$
- large effects possible for M_W , $\sin^2 \theta_{\text{eff}}$: $\lambda \lesssim 0.2 \Rightarrow \delta M_W \lesssim 20 \text{ MeV}$ $\lambda \lesssim 0.2 \Rightarrow \delta \sin^2 \theta_{\text{eff}} \lesssim 10^{-4}$
- moderate effects possible for m_h only for large λ