
Employing LCIO in Physics
Analysis
ECFA Study

Physics and Detectors for a Linear Collider

Jörgen Samson, DESY Hamburg

joergen.samson@desy.de

Contents

Why LCIO for Analysis?

Some Features of the MARLIN Framework

The State of Analysis on LCIO

First Experience

Performance

Outlook and Conclusion

ECFA 2004, Durham – p.1/16

What is LCIO?

from point of view of analysis:
LCIO is a data model
plus: software interface to access these data
plus: persistency framework

lation
Simu−

Data

R
ec

o
n

st
ru

ct
io

n

A
n

al
ys

is

...

LCIO

ECFA 2004, Durham – p.2/16

Why LCIO for analysis?

integration and development of analysis tools for
LCIO like jet-finder, particle IDs (ZVTOP . . .) must be
done

to have important tools centrally available
to encourage modular structure of analysis code

this should be done now
to test usability of LCIO for analysis and find
(small) design problems in LCIO at an early stage

ECFA 2004, Durham – p.3/16

LCIO in use

LCIO is in use for approx. one year at our group

up to now mostly for hardware related purposes
(calorimeter, TPC) and simulation

LCIO was not used for physics analysis up to now

⇒ (very) early state of using LCIO for analysis

with MARLIN a simple data processing framework is
already at hand and in use

ECFA 2004, Durham – p.4/16

The MARLIN Framework

First version of a data processing framework (author
Frank Gaede)

MARLIN is implemented in C++ and based on
modules

at startup, a list of modules is dynamically registered
with the system

the modules “act on” events

the modules are executed serially for each event

many modules of the same type can appear in this
list

ECFA 2004, Durham – p.5/16

The MARLIN Framework

the registraion of modules (including the order of
execution) is controlled by a steering file

the configuration of each module is also done in the
steering file

MARLIN does not provide a back-end for graphical
output or histograming
→ you have the free choice (I use ROOT)

##
Example steering file
##

.begin Global ---------------------------------------
specify one ore more input files (in one ore more lines)
LCIOInputFiles simjob.slcio

the active modules that are called in the given order
ActiveModules JetFinderModule
ActiveModules FranksTestModule
ActiveModules OutputModule
.end ---

ECFA 2004, Durham – p.6/16

the first analysis tools

there is a LCIO interface for BRAHMS
(no full output yet)

Thorsten Kuhl wrote LCIO output for SIMDET

multi-algorithm jet-finder as an example for an
MARLIN module (wrapper to FORTRAN code,
Thorsten Kuhl)

.begin JetFinderModule -------------------------------
ModuleType SatoruJetFinderModule

InputCollection ReconstructedParticle
OutputCollection Jets
DurhamNjet, DurhamYCut, Saturo, Manual
Mode DurhamYCut

If Mode is Manual-->
NJetRequested 4
YCut 0.01

...
Debug 1
.end --- ECFA 2004, Durham – p.7/16

the first analysis tools

Lepton finder as first “native LCIO” module for MARLIN
finds and identifies isolated high energetic leptons
can also easy be used without MARLIN

Energy cut module
sums the energy of all
particles in one collection
tags the event as “cut off”
if sum of energy is too low

Zmass
Entries 7352
Mean 90.66
RMS 6.129

[GeV]
50 60 70 80 90 100 110 120
0

200

400

600

800

1000

Zmass
Entries 7352
Mean 90.66
RMS 6.129

Inv. mass of lepton pair

ECFA 2004, Durham – p.8/16

Example for a module
1 // Energy Cut Module
2 // v0.1 Jul 27/04 J. Samson
3 #ifndef __ENCUTMODULE_H__
4 #define __ENCUTMODULE_H__
5
6 #include "LCIOModule.h"
7 #include "lcio.h"
8 using namespace lcio;
9

10 class EnCutModule : public LCIOModule
11 {
12 public:
13 virtual LCIOModule* newModule(){return new EnCutModule;}
14 EnCutModule();
15
16 virtual void init();
17 virtual void processRunHeader(LCRunHeader* run);
18 virtual void processEvent(LCEvent * evt);
19 virtual void end();
20
21 private:
22 float mCutEnergy;
23 std::string mCollName;
24 };
25 #endif // ENCUTMODULE H

ECFA 2004, Durham – p.9/16

Example for a module
#include "EnCutModule.h"
using namespace lcio;

EnCutModule aEnCutModule;

void EnCutModule::init(){
// 1) set cut energy
mCutEnergy = parameters()->getFloatVal("CutEnergy");
...

}

void EnCutModule::processEvent(LCEvent * evt){
// **PUNKTE**
LCCollection* collection=evt->getCollection(mCollName);
...
particle= dynamic cast<ReconstructedParticle *>

collection->getElementAt(i);
...
mEnergy= mEnergy + particle->getEnergy();
...

}

void EnCutModule::processRunHeader(LCRunHeader* run){}
void EnCutModule::end(){}

ECFA 2004, Durham – p.10/16

remarks

LCIO does not define the meaning of all data (in
particular meaning of bit-fields)

LCIO authors: ”LCIO should be as general as
possible. The user community must find own
conventions (which must be documented in the
event/run headers)”

“user community” means “people who want to use
the same LCIO file”
→ large group

conventions should be chosen very careful, and well
documented - frequent changes can destroy many of
the advantages of LCIO

ECFA 2004, Durham – p.11/16

issues

the linearity of module execution is not flexible
enough for analysis

at least some abort conditions should be available
definition of tree structure for modules?

conventions to pass information between different
analysis modules are needed (attaching information
to event, but how exactly?)

ECFA 2004, Durham – p.12/16

performance of LCIO

File size
(example with
10000 events)

read events
from disc

typical analy-
sis time

LCIO 100MB 12 ms / event 50-500ms
ROOT 70MB 3 ms / event 50-500ms

the ROOT IO routines are extremely optimised, LCIO
barely optimised

LCIO is (in principle) independent to the storage
format (→ can be changed)

IO time is dominated by SIO routines

optimisation and/or switch to different (faster) IO is
conceptually possible

ECFA 2004, Durham – p.13/16

conclusion and outlook

LCIO provides a fairly generic data model

this data model also internally connects pieces of
information

⇒ lead to easy development of new modules

specific implementations (e.g. R&D groups . . .) have
to be provided by the user community

performance is (already yet) no argument against
LCIO

ECFA 2004, Durham – p.14/16

conclusion and outlook

the concept of modules allows easy and fast
restructuring of an analysis and re-usability of
modules in different analysis

MARLIN is a start and will certainly evolve a lot

my opinion: software written for LCIO will have a
much longer lifetime

LCIO is still in flux

advantage will even increase after the LCIO interface
becomes stable

ECFA 2004, Durham – p.15/16

references

LCIO on the web

[1] LCIO Homepage (primary source),
http://lcio.desy.de/

[2] Discussion and Bug Report,
http://forum.linearcollider.org; http://bugs.freehep.org

[3] CVS Repository,
:pserver:anonymous@cvs.freehep.org:/cvs/lcio

ECFA 2004, Durham – p.16/16

	Contents
	What is LCIO?
	Why LCIO for analysis?
	LCIO in use
	The LCIOFrame {} Framework
	The LCIOFrame {} Framework
	the first analysis tools
	the first analysis tools
	Example for a module
	Example for a module
	remarks
	issues
	performance of LCIO
	conclusion and outlook
	conclusion and outlook
	references

