Employing LCIO in Physics
Analysis

ECFA Study
Physics and Detectorsfor a Linear Collider

Jorgen Samson, DESY Hamburg

j oer gen. sanson@lesy. de

Contents

Why LCIO for Analysis?

Some Features of the MARLIN Framework
The State of Analysis on LCIO

First Experience

Performance

e P P P P P

Outlook and Conclusion

ECFA 2004, Durham — p.1/16

What i1s LCIO?

e from point of view of analysis:
a LCIO is a data model
o plus: software interface to access these data
a plus: persistency framework

e e e e et

- l
Simu- =
lation S %
= |2
2 [
@) -
Data = <
Y
—

ECFA 2004, Durham — p.2/16

Why LCIO for analysis?

a Integration and development of analysis tools for
LCIO like jet-finder, particle IDs (ZVTOP ...) must be

done
o to have important tools centrally available
a to encourage modular structure of analysis code

e this should be done now

o to test usability of LCIO for analysis and find
(small) design problems in LCIO at an early stage

ECFA 2004, Durham — p.3/16

L CIO In use

a LCIO is in use for approx. one year at our group

e up to now mostly for hardware related purposes
(calorimeter, TPC) and simulation

e LCIO was not used for physics analysis up to now
= (very) early state of using LCIO for analysis

o with MARLIN a simple data processing framework is
already at hand and in use

ECFA 2004, Durham — p.4/16

The MARLIN Framework

First version of a data processing framework (author
Frank Gaede)

e MARLIN is implemented in C++ and based on
modules

e at startup, a list of modules is dynamically registered
with the system

e the modules “act on” events
a the modules are executed serially for each event

o many modules of the same type can appear in this
list

ECFA 2004, Durham — p.5/16

The MARLIN Framework

a the registraion of modules (including the order of
execution) is controlled by a steering file

e the configuration of each module is also done in the
steering file

o« MARLIN does not provide a back-end for graphical
output or histograming
— you have the free choice (I use ROQOT)

HHHHH AR AR AR R R R AR AR R R R R R R
Exanple steering file
HUHHH AR SR AR R R R SR R T R R R

.begin @obal --------------o -
specify one ore nore input files (in one ore nore |ines)
LCI A nputFiles sinjob.slcio

the active nodules that are called in the given order
Act i veModul es Jet Fi nder Modul e

Act i veModul es FranksTest Modul e

Actavewbdules CQut put Modul e

=T 0T B i

ECFA 2004, Durham — p.6/16

the first analysis tools

e there is a LCIO interface for BRAHMS
(no full output yet)

o Thorsten Kuhl wrote LCIO output for SIMDET

o multi-algorithm jet-finder as an example for an
MARLIN module (wrapper to FORTRAN code,
Thorsten Kuhl)

.begin JetFinderMdul @ ------mmmmmmmmo oo
Modul eType Sat oruJet Fi nder Modul e

| nput Col | ecti on ReconstructedParticle
CQut put Col | ecti on Jets

DurhanlNj et, DurhamyCut, Saturo, Manual
Mode Dur hamyYCut

If Mode is Manual -->

NJet Requested 4

YCut 0.01

Debug 1

=T o Lo B I e

ECFA 2004, Durham — p.7/16

the first analysis tools

e Lepton finder as first “native LCIO” module for MARLIN
o finds and identifies isolated high energetic leptons
a can also easy be used without MARLIN

e Energy cut module [inv. mass of epton pair |

o sums the energy of all woaof-
particles in one collection

a tags the event as “cut off”
If sum of energy is too low

600|—
400|—

200|—

0 | 1 Ll
50 60 70 80 90 100 110 120
[GeV]

ECFA 2004, Durham — p.8/16

Example for a module

1 // Energy Cut Module

2 //v0.1 Jul 27/04 J. Samson

3 # fndef = ENCUTMODULE H

é #defi ne — ENCUTMODULE H

6 # nclude "LCl OMbdul e. h"

/7 #include "lcio.h"

8 using namespace | Ci 0O;
10 class EnCut Modul e : public LCI Ovbdul e
11
12 public:

13 virtual LCI Ovbdul e* newMbdul e() { return new EnCut Modul e; }
14 EnCut Modul e() ;

16 wvirtualvoid 1 nit();

17 virtual voi d processRunHeader (LCRunHeader* run);
18 virtual voi d processEvent (LCEvent * evt);

19 virtual voi d end() ;

21 private:
22 fl oat ntptEnergy;
23 std::string nCol | Nane;

25 Léndif // _ENCUTMODULE_H__

ECFA 2004, Durham — p.9/16

Example for a module

#i ncl ude " EnCut Modul e. h"
using namespace | Cl O;

EnCut Modul e aEnCut Modul e;
void EnCut Modul e::init(){

nCut Ener gy = paraneters()->getFl oat Val (" Cut Energy");

p o

voi d EnCut Modul e: : processEvent (LCEvent * evt){
LCCol | ecti on* col |l ecti on=evt- >get Col | ecti on(nCol | Nane) ;

particl e= dynamic.cast<ReconstructedParticle *> |
col I ecti on- >get El enent At (1) ;

nEner gy= nEnergy + particle->get Energy();

}

voi d EnCuthduIe::proc§

RunHeader (LCRunHeader* run){}
voi d EnCut Modul e: : end(

SS
{}

ECFA 2004, Durham — p.10/16

remarks

e LCIO does not define the meaning of all data (in
particular meaning of bit-fields)

a LCIO authors: "LCIO should be as general as
possible. The user community must find own
conventions (which must be documented in the
event/run headers)”

e “user community” means “people who want to use
the same LCIO file”
— large group

e conventions should be chosen very careful, and well
documented - frequent changes can destroy many of
the advantages of LCIO

ECFA 2004, Durham — p.11/16

ISSUES

a the linearity of module execution is not flexible
enough for analysis

o at least some abort conditions should be available
o definition of tree structure for modules?
a conventions to pass information between different

analysis modules are needed (attaching information
to event, but how exactly?)

ECFA 2004, Durham — p.12/16

performance of LCIO

File size |

(example with read events | typical analy-

10000 events) | from disc sis time
LCIO 100MB 12 ms/event | 50-500ms
ROOT /0OMB 3ms/event | 50-500ms

a the ROQT IO routines are extremely optimised, LCIO
barely optimised

a LCIO is (in principle) independent to the storage
format (— can be changed)

a |O time is dominated by SIO routines

e optimisation and/or switch to different (faster) 10 is

conceptually possible

ECFA 2004, Durham — p.13/16

conclusion and outlook

a LCIO provides a fairly generic data model
e this data model also internally connects pieces of
iInformation
= lead to easy development of new modules

e specific implementations (e.g. R&D groups ...) have
to be provided by the user community

o performance is (already yet) no argument against
LCIO

ECFA 2004, Durham — p.14/16

conclusion and outlook

a the concept of modules allows easy and fast
restructuring of an analysis and re-usability of
modules in different analysis

o MARLIN is a start and will certainly evolve a lot

e my opinion: software written for LCIO will have a
much longer lifetime

e LCIO is still in flux

o advantage will even increase after the LCIO interface
becomes stable

ECFA 2004, Durham — p.15/16

references

LCIO on the web

[1] LCIO Homepage (primary source),
http://Icio.desy.de/

[2] Discussion and Bug Report,
http://forum.linearcollider.org; http://bugs.freehep.org

[3] CVS Repository,
.pserver.anonymous@ecvs.freehep.org:/cvs/Icio

ECFA 2004, Durham — p.16/16

	Contents
	What is LCIO?
	Why LCIO for analysis?
	LCIO in use
	The LCIOFrame {} Framework
	The LCIOFrame {} Framework
	the first analysis tools
	the first analysis tools
	Example for a module
	Example for a module
	remarks
	issues
	performance of LCIO
	conclusion and outlook
	conclusion and outlook
	references

