APD Measurements for the Tile HCAL

APD measurements in e⁺-testbeam

Hendrik Meyer for CALICE – HCAL collaboration

- •The MiniCal
- Measurement Setup
- Results
- Conclusions

The MiniCal

2 cm stainless steel absorber plates $(1.15 X_0)$ with 1 cm gaps

Used for study of:
Tile Fibre couplings
New photodetectors
Read out of multiple channels
Iong term stability
Calibration procedure

Hendrik Meyer, ECFA Durham

APD properties Characteristics:Quantum Efficienty 80%

Gain vs. reverse voltage

Hendrik Meyer, ECFA Durham •

Quantum Efficienty 80% proportional device sensitive to ~ 10 photons <u>no</u> dependence on magnetic Field

Hamamatsu APD S8664 - 55 spl

Two Preamplifiers

Prague preamplifier

- Voltage sensitve
- peak sensing + shaping
- rise time ~ 40 ns
- fall time ~ 180 ns
- Supply Voltage 10-12V
- 9 Channels on 1 PCB

Minsk preamplifier

- Charge sensitve
- charge integration + shaping
- rise time ~ 70 ns
- fall time ~ 350 ns
- Supply Voltage 5V
- 9 Channels on 1 PCB

Hendrik Meyer, ECFA Durham

- 12 layers equipped
- central stack: 1tile/1APD =12chan.
- 4 sides + 1 corner: 3tiles/1APD

e⁺ beam

- in total 32 channels in readout
- MIP calibration
- using 3 GeV e-beam without absorbers
 - shoot at MiniCal along its axis in 6 positions
- extraction of calib factors for each channel
- Energy scan
- with beam energy of 1-6 GeV
- Calibrate tile response in # of MIPs
- sum up energy response from all tiles

1.- 4. Sept. 2004

Calibration Setup

1.- 4. Sept. 2004

MIP peak: Data compared with MC

MIP_{MPV}=peak-ped

Fit with Gaussian for pedestal

with Gaussian for peak +Landau fct.for tail description

MC parameters optimised to reproduce MIP shape for each Tile.

MC includes detector physics. ie. photoelectron statistics...

Mip Calibration comparison

• Prague preamp (V sensitive) S / N = MIP_{MPV} / σ_{ped} = 6.6 S / σ_{Ped} = 3.7 • Minsk preamp (Q sensitive) S / N = MIP_{MPV} / σ_{ped} = 9.5 S / σ_{Ped} = 5.3

CALICE HCAL

Lateral Shower Shape

Good agreement between MC and Data for both preamps

Hendrik Meyer, ECFA Durham

Linearity

Energy sum is well described by Gauss

Data taken with different preamps are consistent.

Hendrik Meyer, ECFA Durham -

PM and SiPM Resolution

Analysis of SiPM and PM already presented.

MC fits data within 5% level

Energy resolution: $\frac{\sigma_E}{E} = \frac{a}{\sqrt{E[GeV]}} \oplus b$			
	а	b	
APD _{Prague}	20.3 ± 0.1	0.0 ± 0.9	_
APD _{Minsk}	20.4 ± 0.4	0.6 ±1.0	
PM	21.1 ± 0.2	1.4 ± 0.5	
SiPM	20.9 ± 0.2	2.2 ± 0.2	
$Mc_{phys,APD}$	20.52 ± 0.03	0.0 ± 0.1	
MC _{ideal}	18.5 ± 0.1	2.3 ± 0.3	 Constant term due to leakage

All photodetectors have similar energy resolution. The APD measurements are **not** sensitive to the constant term.

CALICE HCAL

Conclusions

- Significant progress in measurement & analysis of APDs as photo detectors in MiniCal
- > Data taken with different preamps are consistent.
- Good agreement among data of APD, PM, SiPM and MC
- □ For APDs we need final study on systematic uncertainties

APDs proven to be alternative photo detectors for the tile-HCAL !