ECFA LC Workshop Durham, September 1-4

Impact of the Pile Up on the BeamCal Performance

Vladimir Drugakov NC PHEP, Minsk/DESY-Zeuthen

## Outline

Motivation

**Experimental Situation** 

Electron Finder

Electron Recognition Efficiency

- 500GeV
- 1000GeV

Impact of the Pile-Up on BeamCal Performance

- Efficiency
- Fake Rate

**Summary** 

## Motivation

High energy electron identification in the BeamCal is particularly important for new particle searches.



## The Physics:

production of SUSY particles

#### Signature:

 $\mu^{+}\mu^{-}$  + missing energy

#### The Background:

two-photon events

#### Signature:

 $\mu^+\mu^-$  + missing energy (if electrons are not tagged)

**NEED:** - Excellent electron identification efficiency

- Coverage down to as small angle as possible

# Experimental Situation -- Beamstrahlung

BeamCal will be hit by beamstrahlung remnants carrying about 20 TeV of energy per bunch crossing.



Severe background for electron recognition

## Electron Finder

- subtraction of average beamstrahlung background
- compare resulting deposition with background RMS



- It Works!
- Background fluctuations can mimic electron signal

# Electron Recognition Efficiency $--\sqrt{s} = 500$ GeV

Fake rate is less then 1% Cells are colored when the efficiency is less then 90%



Electrons with energy more then 100 GeV are identified fairly well

## Consistent Software Package

## HBEER(Ebg, Eel) -- (High Background) Efficiency of Electron Recognition

#### Function of 2 parameters:

- Ebg BG energy density in GeV/mm<sup>2</sup> Fortran77
- Eel electron energy in GeV

#### Comes in 2 flavours:

- C

#### BED(x, y) - Background Energy Density

#### Function of 2 parameters:

• x,y - coordinates on LCal front in cm

#### Comes in 2 flavours:

- Fortran77
- C

#### Comes with raw BG data files:

- TESLA head-on option
- TESLA with crossing-angle 2×10 mrad
- NLC with crossing-angle 2×10 mrad

# Experimental Situation $--\sqrt{s} = 1\text{TeV}$

| $\sqrt{\mathbf{s}}$ [GeV] | <b>Charge</b> [10 <sup>10</sup> ] | $\sigma_{x} / \sigma_{y}$ [nm] | $\beta_{x}$ / $\beta_{y}$ [ mm ] | $\gamma \varepsilon_{x} / \gamma \varepsilon_{y}$ [mrad] |
|---------------------------|-----------------------------------|--------------------------------|----------------------------------|----------------------------------------------------------|
| 500                       | 2                                 | 554 / 5.0                      | 15 / 0.40                        | 10 / 0.03                                                |
| 1000                      | 1,4                               | 350 / 2.5                      | 15 / 0.40                        | 8 / 0.015                                                |



- $\sqrt{s} = 1000 \text{ GeV}$
- 1000 GeV Inner part is more suffered
- vs.  $\sqrt{s}$  = 500 GeV Pairs flux is squeezed

# Electron Recognition Efficiency -- $\sqrt{s}$ = 1TeV

Fake rate is less then 1% Cells are colored when the efficiency is less then 90%



For the same e<sup>-</sup> energy 'blind spot' is larger relative to 500 GeV option.

# Electron Recognition Efficiency -- $\sqrt{s}$ = 1TeV



- For  $\sqrt{s}$  =1 TeV the efficiency can be even better
- Performance depends on bunch charge

# Pile Up Study -- The Motivation

#### Two competitive LC designs:

- NCL based on 'warm technology'
- TESLA based on 'cold technology'

To study physics potential to make a choice

# For physics study one the major differences is interbunch spacing:

- 337 ns for TESLA
  - -> easy to distinguish single bunch crossings
- 1.4 ns for NLC
  - -> challenge for detector
- -> most likely signal from several BX is superimposed before readout (so called 'pile up')
- ightarrow Pile up study:

overlay 2, 5, 10, 20 BX

# Pile Up Effect -- Efficiency Degradation

The fake rate is kept to be less then 1%

The electron energy is 200 GeV

Cells are colored when the efficiency is less then 90%



strong efficiency degradation degradation saturation after 10 BX

the degradation is even faster saturation after 5 BX

## Pile Up Effect -- Fake Rate Growth

The efficiency is kept to be similar to the 1BX case



strong efficiency degradation degradation saturation after 10 BX

the degradation is even faster saturation after 5 BX

## Summary

- At  $\sqrt{s}$  = 1000 GeV electron identification efficiency can be better relative to 500 GeV option.
- Performance depends on bunch charge.
- Pile up highly deteriorates the BeamCal performance.
- Saturation of the degradation take place.