selectron production in electron photon collisions "a first look at 1 TeV" Linear Collider Workshop Albert De Roeck, Alexander Oh, Thorsten Wengler CERN 2.9.2004, Durham

V0.1

1

Motivation

• Assumption:

- the neutralino and chargino have been discovered and mass parameters and couplings have been determined at the LHC or NLC.
- In the MSSM the gaugino masses provide a first insight into the nature of the SUSY Model.
- The sfermion masses provide additional information on the SUSY model as they involve additional soft SUSY breaking parameters. They are essential to fully understand the SUSY breaking mechanism.

Motivation

- The mass reach for the selectron is limited to about half $\sqrt{s_{ee}}$ in a LC.
- The accessible mass range in photon-electron collisions with back-scattered photons from an optimized laser beam is about 80% $\sqrt{s_{ee}}$
- Photon e- collisions become interesting if the selectron mass lies inbetween $0.5 \sqrt{s_{ee}} < m < 0.8 \sqrt{s_{ee}}$

Measurement of the selectron mass

- Endpoint measurements of the energy spectrum.
- The ratio of the cross sections for the two photon polarisations provides a direct measurement of the selectron mass (with the knowledge of the neutralino mass).

V.Barger, T.Han and J.Kelly hep-ph/9709366

MC Sample Generation

- Sherpa Version 1.04 with ISASUSY
 - mSUGRA
 - $M_0 = 500.$ (700.) GeV
 - $M_{1/2} = 300. \text{ GeV}$
 - $-A_0 = 0.$
 - $-\tan(\beta) = 20$
 - $\operatorname{sign}(\mu) = +1$

 \Rightarrow mass(selectron_R) = 513 (709) GeV

• Two sample sets with $mass(selectron_R) = 513 \text{ GeV}$ and 709 GeV for positive and negative photon polarisation.

A.Oh, ECFA Workshop 1-4 September, Durham

Signal Production Process

- Photon produced by backscattered laser light
- s-, t-channel production
- selectron_R -> e- + neutralino (100%)

taken from V.Barger, T.Han and J.Kelly hep-ph/9709366

A.Oh, ECFA Workshop 1-4 September, Durham

Signal Production Process

- Production Cross section
 - $|\cos(th)| < 0.9$
 - $E_t > 1 \text{ GeV}$

Cross-section ratio

Background Processes

• Signature: e- + missing Energy

A.Oh, ECFA Workshop 1-4 September, Durham

Background Processes

- Dominant contribution from single vector boson production.
- Suppression of W production for polarised electron beam.

$e\gamma \to X$	$\sqrt{s}_{e\gamma} = 0.5$	1.0
$X = W^- \nu_e$	$\sigma = 4.2 \times 10^4 \text{ fb}$	4.8×10^{4}
$e^- \nu \bar{\nu}$	6.5×10^{3}	6.3×10^{3}
$W^- Z \nu_e$	210	720
$Ze^- \nu \bar{\nu}$	23	79
$W^-W^+e^-\nu\bar{\nu}$	0.62	8.6
$ZZe^- \nu \bar{\nu}$	3×10^{-2}	0.7
		taken from V.Barger, T.H

and J.Kelly

hep-ph/9709366

Machine

- $\sqrt{s_{ee}} = 1 \text{ TeV}$
- Photon produced by backscattered laser light.
- Polarisation of the photon $P_{\gamma} = +1$, -1
- Electron beam polarisation set to $P_e = +0.85$

Detector Simulation

- Standard TESLA detector as implemented in SIMDET.
- SIMDET Version 4 with standard settings.
- "Selection criterium":

– one identified electron track

• Momentum, $M_0 = 500 \text{ GeV}$

ន័ 0.001

0.0005

0∟ -1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

cos(th)

• $\cos(th), M_0 = 500 \text{ GeV}$

• $p vs cos(th), M_0 = 500 GeV$

A.Oh, ECFA Workshop 1-4 September, Durham

• $p vs cos(th), M_0 = 500 GeV$

photon polarisation -1

photon polarisation +1

• Momentum, $M_0 = 700 \text{ GeV}$

• $\cos(th), M_0 = 700 \text{ GeV}$

• $p vs cos(th), M_0 = 700 GeV$

photon polarisation -1

photon polarisation +1

• Optimistic "back-of-the-envelope" estimate for the significance of the cross section measurement as a function of integrated luminosity, ignoring systematic uncertainties:

A.Oh, ECFA Workshop 1-4 September, Durham

Summary & Outlook

- With an LC operating in the e- γ collision mode the selectron mass is accessible beyond the kinematic pair production limit.
- A first look at $\sqrt{s_{ee}} = 1$ TeV shows promising signals for selectron masses up to M₀=700 GeV.
- Next steps:
 - Try a log-likelihood fit to extract cross section.
 - Estimate precision of mass measurement.
 - Have a closer look at additional (non-resonant and SUSY) background sources.

Acknowledgements

- SHERPA TEAM
 - Tanju Gleisberg, Stefan Hoeche, Frank Krauss, Andreas Schaelicke, Steffen Schumann, Jan Winter