Signals of H/A mixing in CP violating SUSY at the Photon Linear Collider

Jan Kalinowski Warsaw University

in collab. with S.Y. Choi, Y. Liao and P.M. Zerwas

Outline:

- Motivation
- Complex mass matrix
 - general structure and H/A mixing
 - example: MSSM with CP-violation
- Experimental signatures at the PLC
- Conclusions

Motivation

Supersymmetry – best motivated extension of the SM; employs two Higgs doublets

- at tree level the Higgs potential severly constrained
 - ⇒ quartic couplings are gauge couplings
 - \Rightarrow no CP violation
- however, loop corrections are very important and induce
 - ⇒ all possible quartic couplings
 - \Rightarrow and CP-violating effects

in the effective Higgs potential

• if low-scale supersymmetry breaking

[Casas, Espinosa, Hidalgo]

⇒ even the tree level effective Higgs potential may assume the most general form

Therefore

Consider the most general two-Higgs doublet model as a generic model to explore the CP-violating Higgs sector

Complex mass matrix

General two-Higgs doublet model ∋ loop-corrected MSSM Higgs sector

The most general gauge invariant scalar potential

$$\begin{split} \mathcal{V} &= m_{11}^2 \Phi_1^{\dagger} \Phi_1 + m_{22}^2 \Phi_2^{\dagger} \Phi_2 - [m_{12}^2 \Phi_1^{\dagger} \Phi_2 + \text{h.c.}] \\ &+ \frac{1}{2} \lambda_1 (\Phi_1^{\dagger} \Phi_1)^2 + \frac{1}{2} \lambda_2 (\Phi_2^{\dagger} \Phi_2)^2 + \lambda_3 (\Phi_1^{\dagger} \Phi_1) (\Phi_2^{\dagger} \Phi_2) + \lambda_4 (\Phi_1^{\dagger} \Phi_2) (\Phi_2^{\dagger} \Phi_1) \\ &+ \left\{ \frac{1}{2} \lambda_5 (\Phi_1^{\dagger} \Phi_2)^2 + \left[\lambda_6 (\Phi_1^{\dagger} \Phi_1) + \lambda_7 (\Phi_2^{\dagger} \Phi_2) \right] \Phi_1^{\dagger} \Phi_2 + \text{h.c.} \right\} \end{split}$$

ullet In many discussions: to avoid tree-level FCNC impose the Z_2 symmetry

implying
$$m_{12}=\lambda_5=\lambda_6=\lambda_7=0$$

- ullet conventionally, in the CP-conserving case $\Longrightarrow h, H, A$ base
- We take all terms non-zero: the CP-violating 2HDM

[Gunion et al.'02, Ginzburg et al.,'02,'04, Dubinin et al.,'02,'04, S.Y.Choi et al.,'04]

ullet the mass matrix M^2 in the h, H, A basis takes the form

$$\begin{bmatrix} \lambda + (m_A^2/v^2 - \lambda_A)c_\gamma^2 c_{2\gamma}^{-1} & 0 & -\hat{\lambda}_p s_\gamma - \lambda_p c_\gamma \\ 0 & \lambda - (m_A^2/v^2 - \lambda_A)s_\gamma^2 c_{2\gamma}^{-1} & -\hat{\lambda}_p c_\gamma + \lambda_p s_\gamma \\ -\hat{\lambda}_p s_\gamma - \lambda_p c_\gamma & -\hat{\lambda}_p c_\gamma + \lambda_p s_\gamma \end{bmatrix}$$

i.e. h, H, A all mix $\Longrightarrow H_1, H_2, H_3$ mass-eigenstates

• $\hat{\lambda}_p, \lambda_p$ and λ_q are combinations of imaginary parts of λ_5, λ_6 and λ_7

$$egin{array}{lcl} \hat{m{\lambda}}_{m{p}} &=& \lambda_5^I s_eta c_eta + \lambda_6^I c_eta^2 + \lambda_7^I s_eta^2 \ m{\lambda}_{m{p}} &=& rac{1}{2} \lambda_5^I (c_eta^2 - s_eta^2) - s_eta c_eta (\lambda_6^I - \lambda_7^I) \ m{\lambda}_{m{q}} &=& \lambda_5^I s_eta c_eta - \lambda_6^I s_eta^2 - \lambda_7^I c_eta^2 \end{array}$$

ullet even if $\hat{\lambda}_p$ = λ_p =0, but $\lambda_q
eq 0 \implies$ CP-mixing via triple and quartic couplings

Moreover, the hermitian M^2 must be supplemented with anti-hermitian $M\Gamma$ built up by loops

As a result, the Higgs formation process, e.g.

must include off-diagonal $H_i \Rightarrow H_j$ transitions

Two approaches:

Coupled-channel analysis has recently been employed

[Ellis, Lee, Pilaftsis '04]

diagonalize the complex matrix given by the Weisskopf-Wigner sum

$$\mathcal{M}_c^2 = M^2 - i M \Gamma$$

[Choi, Liao, Zerwas, JK, hep-ph/0407347]

Interesting physics case the decoupling limit: $m_A^2 \gg |\lambda_i| v^2$

- ullet H_1 must be the CP-even SM-like \Longrightarrow it decouples from the H/A system
- ullet H/A almost degenerate \Longrightarrow mixing between H and A can be finite and large

$${\cal M}_c^2 = \left[egin{array}{c} m_H^2 - i m_H \Gamma_H & \delta m_{HA}^2 \ \delta m_{HA}^2 & m_A^2 - i m_A \Gamma_A \end{array}
ight] \Longrightarrow {\cal M}^2 = C\,{\cal M}_c^2\,C^{-1}$$

ullet the C and the complex mixing angle heta are given by

[Güsken, Kühn, Zerwas '85]

$$C = \left[egin{array}{ccc} \cos heta & \sin heta \ -\sin heta & \cos heta \end{array}
ight], \quad X \equiv rac{1}{2} an 2 heta = rac{\delta m_{HA}^2}{m_H^2 - m_A^2 - i(m_H \Gamma_H - m_A \Gamma_A)}$$

ullet the mass eigenstates H_2 and H_3 no longer orthogonal; need to use bra and ket states

$$|H_2>=\cos heta |H>+\sin heta |A>, \qquad < ilde H_2|=\cos heta < H|+\sin heta < A|$$
 $|H_3>=-\sin heta |H>+\cos heta |A>, \qquad < ilde ilde H_3|=-\sin heta < H|+\cos heta < A|$

ullet correspondingly, the transition amplitudes are modified, e.g. for $X\Rightarrow H\Rightarrow Y$

$$< Y|H|X> = \sum_{i=2,3} < Y|H_i> rac{1}{s-m_{H_i}^2+im_{H_i}\Gamma_{H_i}} < ilde{H}_i|X>$$

Example: an MSSM with CP-violation

 $M_S = 0.5 \; {
m TeV}, \;\; |A_t| = 1.0 \; {
m TeV}, \;\; |\mu| = 1.0 \; {
m TeV}, \;\; \phi_\mu = 0; \;\; an eta = 5$

for this set: $M_h=129.6\,\mathrm{GeV}$

with $\Phi_A=0$: $M_H=500.3$ GeV, $M_A=500.0$ GeV, $\Gamma_H=1.2$ GeV, $\Gamma_A=1.5$ GeV

turning on the phase ϕ_A of A_t with only $t/ ilde{t}$ and h in the loops

Mixing parameter as a function of ϕ_A

Mass and width shifts for $\phi_A=3\pi/4$

Experimental signatures at a photon LC

(A) Higgs formation in polarized $\gamma\gamma$ collisions

$$\gamma\gamma
ightarrow H_i
ightarrow Y \,\, [i=2,3]$$

with the following CP-even and CP-odd asymmetries

$${\cal A}_{
m lin} = rac{\sigma_{\parallel} - \sigma_{\perp}}{\sigma_{\parallel} + \sigma_{\perp}} \quad ext{ and } \quad {\cal A}_{
m hel} = rac{\sigma_{++} - \sigma_{--}}{\sigma_{++} + \sigma_{--}}$$

(B) polarization of top quarks in $H_i \Rightarrow t ar{t}$

[ϕ^* – angle between $tar{t}$ decay planes]

$$rac{1}{\Gamma}rac{d\Gamma}{d\phi^*} = rac{1}{2\pi}\left[1 - rac{\pi^2}{16}rac{(m_t^2 - 2m_W^2)^2}{(m_t^2 + 2m_W^2)^2}\left(C_\parallel\,\cos\phi^* + C_\perp\,\sin\phi^*
ight)
ight]$$

with the following $CP ext{-}\mathrm{even}$ and $CP ext{-}\mathrm{odd}$ azimuthal correlators

$$\mathcal{C}_{\parallel} = \langle s_{\perp} \cdot ar{s}_{\perp}
angle \quad ext{and} \quad \mathcal{C}_{\perp} = \langle \hat{p}_t \cdot (s_{\perp} imes ar{s}_{\perp})
angle$$

(A): $\mathcal{A}_{\mathrm{lin}}$ and $\mathcal{A}_{\mathrm{hel}}$

(B): $\mathcal{C}_{||}$ and \mathcal{C}_{\perp}

large asymmetries can be expected

Conclusions:

A general CP-violating model with two Higgs doublets studied:

- important to include decay widths in the mixing formalism
- the mixing can be large if masses and decay widths are degenerate
- particularly interesting case: the decouplig limit

Example: an MSSM model in the decoupling limit

- top squark sector as a source of CP violation
- ullet the lightest H_1 is a CP-even SM-like Higgs
- ullet large mixing between H and A
- mass and decay width shifts calculated
- ullet mixing can be investigated in $\gamma\gamma\Rightarrow H_i$, and in $H_i\Rightarrow tar t$
- large effects can be expected

⇒ Encouraging results to perform detailed experimental simulations