Model independent determination of the top quark Yukawa coupling from LHC and ILC data

Klaus Desch, Hamburg University

Markus Schumacher, Bonn University

- Motivation and Idea
- LHC rate measurement
- ILC branching ratio measurement
- Determination of g_t

ECFA LC WS, September 2004, Durham

Motivation

- test whether: m_f ~ g_f
- top Yukawa coupling largest: g_t ~ O(1) (g_b ~ O(10⁻⁴⁾)
 theoretical prejudice: maybe surprises for top quark ?

 light Higgs: g_t from ttH associated production
 framework: data from LHC (L= 30 and 300 fb⁻¹) data from ILC at E_{CM} = 500 GeV , L=500 fb⁻¹

> ILC: small cross section ~ 1.5 to 0.01 fb for M_H = 100 to 145 GeV @ E_{CM} =500GeV

\succ LHC: only rate pp \rightarrow ttH, H \rightarrow xx model independent measurable

Idea

ILC at ??

LHC: measurement of rate $\sigma_{tth} \times BR(H \rightarrow bb)$ $\sigma_{tth} \times BR(H \rightarrow WW)$

 \rightarrow g_t² x BR(H \rightarrow xx)

ILC:measurement of branching ratioBR(H→bb)BR(H→WW)BR(H→WW)H

Combination of both measurements →model independent determination of top quark Yukawa coupling

ECFA LC WS, Durham

Markus Schumacher, Top Quark Yukawa Coupling from LHC and ILC,

LHC rate measurements

<u>H→bb:</u>

t→bqq t→blv H→bb

 σ ~ 110 fb @ M_{H} = 120 GeV

<u>H→WW:</u>

a) 2 likesign leptons: $t \rightarrow bl^+ v t \rightarrow qq \quad H \rightarrow l^+ v qq$ b) 3 leptons: $t \rightarrow blv \quad t \rightarrow blv \quad H \rightarrow WW \rightarrow qq l v$ $t \rightarrow blv \quad t \rightarrow bqq \quad H \rightarrow WW \rightarrow l v l v$ $\sigma \sim 2 \times 18 \text{ fb } @ M_H = 160 \text{ GeV}$

Backgrounds considered :

tt + W, Z, Wj, tt, WW, bb, jj WW, WZ, Wbb, Z+j, W+j, W+t Cross sections: 492 pb to $5x10^{-3}$ pb

Results from published ATLAS fast MC studies:

b-tagging, mass rsolutions, lepton isolation from full simulation

ttH with H→bb (ATL-PHYS-2003-024, J. Cammin, MS)

1 lepton, missing energy, 6 jets, 4 b-tagged consistent with ttH,H \rightarrow bb production, $m_{hh} \sim m_{H}$

background estimate from data foreseen

expected signal and background events

m_H	30f	p^{-1}	$300 fb^{-1}$		
(GeV)	$t\bar{t}H^0 H^0 \rightarrow bb$	background	$t\bar{t}H^0 H^0 \rightarrow bb$	background	
100	83.4	303.4	279.0	1101.3	
110	63.0	275.7	232.5	1140.6	
120	43.0	234.1	173.1	1054.2	
130	26.5	200.1	112.5	1015.8	
140	13.9	178.2	62.4	947.1	

Eff.= 1.5%

Markus Schumacher,

Top Quark Yukawa Coupling from LHC and ILC, ECFA LC WS, Durham

0.5%

ttH with H→WW (ATL-PHYS-2002-019, J. Leveque et al.)

<u>2 lepton topology:</u>

t→bl+v t→bqq H→l+vqq

2 likesign leptons,

6 jets, 2 b-tagged

b-lepton veto

"mass" reconstruction

3 lepton topology: t→blv t→blv H→qqlv t→blv t→bqq H→lvlv three leptons

4 jets, 2 b-tagged

b-lepton veto

Z veto

	30 fb^{-1}			300 fb^{-1}					
m_H	$t\bar{t}H^0H^0$	$\rightarrow WW(2\ell)$	$t\bar{t}H^0H$	$\rightarrow WW(3\ell)$	$t\bar{t}H^0H^0$	$\rightarrow WW(2\ell)$	$t\bar{t}H^0H$	$\rightarrow WW(3\ell)$	
(GeV)	signal	bckgr	signal	bckgr	signal	bckgr	signal	bckgr	8 SQR
120	4.4	19.6	2.7	21.2	12.7	80.6	10.5	97.6	6 high lumi 300 fb
140	15.0	19.6	8.7	21.2	50.0	80.6	33.7	97.6	
160	21.1	19.6	13.0	21.2	72.3	80.6	55.3	97.6	3 low lumi 30 fb ⁻¹
180	17.3	19.6	10.3	21.2	60.9	80.6	41.7	97.6	
200	10.5	19.6	5.7	21.2	43.2	80.6	26.4	97.6	$0 \stackrel{[1]{}_{}}{120} 130 140 150 160 170 180 190 200 \\ \mathbf{M}_{} (\mathbf{GeV})$

Rate measurement $\sigma x BR$

$$\left(\frac{\Delta(\sigma \times \mathrm{BR})}{\sigma \times \mathrm{BR}}\right)^2 = \frac{\mathrm{S} + \mathrm{B}}{\mathrm{S}^2} + \left(\frac{\Delta \mathrm{B}_{\mathrm{sys}}}{\mathrm{S}}\right)^2 + \left(\frac{\Delta \mathcal{L}}{\mathcal{L}}\right)^2 + \left(\frac{\Delta \epsilon}{\epsilon}\right)^2$$

▲B_{sys}: from sidebands +control samples 10% for H → bb at low luminosity 5% otherwise

▲ ɛ: efficiency uncertainty from (depends on nr. of leptons and bs): lepton isolation + reconstruction : 3 % +2 % b-tagging: 3% overall reconstruction: 2 %

AL: Iuminosity uncertainty 5%

Expected accuracy on

 σ x BR including

systematic uncertainties

m_H	30 f	b^{-1}	300 fb^{-1}		
(GeV)	$H^0 \rightarrow b\bar{b}$	$H^0 \rightarrow WW$	$H^0 \rightarrow b\bar{b}$	$H^0 \rightarrow WW$	
100	0.398(0.236)		0.249(0.133)		
110	0.476(0.292)		0.287(0.159)		
120	0.598(0.387)	1.023(0.974)	0.345(0.202)	0.732(0.611)	
130	0.840(0.568)	0.524(0.492)	0.488(0.299)	0.362(0.295)	
140	1.444(0.997)	0.370(0.339)	0.804(0.509)	0.252(0.193)	
160		0.287(0.254)		0.196(0.137)	
180		0.331(0.300)		0.221(0.163)	
200		0.486(0.454)		0.282(0.222)	

From $\sigma \mathbf{x} \mathbf{BR}$ to $\mathbf{g}_t^2 \mathbf{x} \mathbf{BR}$

 $g_{t}^{2} x BR$

Comparing observed rate with theoretical prediction:

Both contributions added quadratically

Markus Schumacher,

Top Quark Yukawa Coupling from LHC and ILC, ECFA LC WS, Durham

Measurement of branching ratios at ILC

> model independent determination of σ_{ZH} from recoil mass in e⁺e⁻→ZH→II X
> measurment of rate σ_{ZH} x BR (H→xx)
i) e⁺e⁻→ZH→II bb
ii) e⁺e⁻→ZH→II WW
> determination of BR(H→bb) and BR(H→WW)

accuracy on BR determination

m_H (GeV)	$\Delta BR(b\bar{b})/BR(b\bar{b})$	$\Delta BR(WW)/BR(WW)$
100	0.024	
120	0.024	0.051
140	0.026	0.025
160	0.065	0.021
200		0.021

(TESLA TDR, 500 fb⁻¹)

Top Quark Yukawa Coupling from LHC and ILC, ECFA LC WS, Durham

Determination of g_t

Assume Born level relation: $\sigma \sim g_t^2$

Combination of LHC and ILC

$$\frac{\Delta g_{t}}{g_{t}} = \frac{1}{2} \sqrt{\left(\frac{\Delta (g_{ttH}^{2} \times BR)}{g_{ttH}^{2} \times BR}\right)_{LHC}^{2} + \left(\frac{\Delta BR}{BR}\right)_{ILC}^{2}}$$

Combination of $H \rightarrow bb$ and $H \rightarrow WW$

Conclusions

synergy of LHC and ILC allows model independent determination of top quark Yukawa coupling from combination of data

expected error on g_t:

 $\Delta g_t/g_t = 13 \text{ to } 17 \%$ dominated by systematic uncertainties

Markus Schumacher,

Top Quark Yukawa Coupling from LHC and ILC, ECFA LC WS, Durham

11 / 11

Accuracy in determination of g_t

m_H	$30 {\rm fb}^{-1}$			300 fb^{-1}			
(GeV)	bb	WW	bb+WW	bb	WW	bb + WW	
100	0.22(0.12)			0.15(0.07)			
110	0.25(0.15)			0.17(0.08)			
120	0.31(0.19)	0.52(0.49)	0.27(0.18)	0.19(0.10)	0.38(0.31)	0.17(0.10)	
130	0.43(0.28)	0.28(0.25)	0.23(0.19)	0.26(0.15)	0.20(0.15)	0.16(0.11)	
140	0.72(0.50)	0.20(0.17)	0.19(0.16))	0.41(0.26)	0.15(0.10)	0.14(0.09)	
150		0.18(0.14)		1.88(1.21)	0.14(0.08)	0.14(0.08)	
160		0.16(0.13)			0.13(0.07)		
170		0.17(0.13)			0.13(0.07)		
180		0.18(0.15)			0.14(0.08)		
190		0.22(0.19)			0.15(0.10)		
200		0.26(0.23)			0.16(0.11)		