Four-fermion production at the $\gamma\gamma$ Collider

•

Axel Bredenstein

in collaboration with Stefan Dittmaier und Markus Roth

Max-Planck-Institut für Physik, Munich

September 1,2004

based on Eur. Phys. J. C 36 (2004) 341 [arXiv:hep-ph/0405169]

Contents

Calculation of $\gamma\gamma \rightarrow 4f$ und $\gamma\gamma \rightarrow 4f\gamma$ in lowest order Construction of a Monte Carlo generator

- Motivation
- Calculation of helicity amplitudes
- Phase space and photon spectrum integration
- Anomalous couplings
- Effective Higgs coupling
- Finite gauge-boson width
- Double-pole approximation

Motivation

$\gamma\gamma \to WW$

- one of the largest cross sections
- contains gauge boson couplings γWW and γγWW
 (limits on anomalous couplings)
- if $M_{\rm H} \gtrsim 160 \,{\rm GeV} \Rightarrow \gamma \gamma \rightarrow {\rm H} \rightarrow {\rm WW}$
- sensitive on extra dimensions

Motivation

W bosons are unstable $\Rightarrow \gamma\gamma \rightarrow \mathrm{WW} \rightarrow 4f$ ("W-pair signal diagrams")

Experimental precision requires

- inclusion of single and non-resonant diagrams ("background diagrams") in lowest order $\mathcal{O}(\Gamma_W/M_W), \mathcal{O}(\Gamma_W/M_W)^2$ $\Rightarrow \gamma\gamma \rightarrow 4f$
- inclusion of radiative corrections $\mathcal{O}(\alpha)$

 $\gamma\gamma
ightarrow 4 f\gamma$:

Building block for real corrections to $\gamma\gamma \to \mathrm{WW} \to 4f$

Existing studies:

 $\gamma\gamma \rightarrow 4f$: Moretti '96; Baillargeon et al. '97; Boos, Ohl '97

Amplitudes

- Helicity amplitudes
- Weyl-van der Waerden formalism
- fermion masses neglected

neutral current (NC)

gluon-exchange diagrams

representative final states

final state	reaction type	$\gamma\gamma ightarrow$	
leptonic	$\mathbf{C}\mathbf{C}$	$e^- \bar{\nu}_e \nu_\mu \mu^+$	
	NC(a)	$e^-e^+\nu_\mu\bar{\nu}_\mu$	
		$e^-e^+\mu^-\mu^+$	
	NC(b)	$e^-e^+e^-e^+$	
	$\rm CC/NC$	$e^-e^+\nu_e\bar{\nu}_e$	
semi-leptonic	CC(c)	$e^- \bar{\nu}_e u \bar{d}$	
	NC(a)	$ u_{ m e} ar{ u}_{ m e} { m u} ar{ m u}$	
		$ u_{ m e} ar{ u}_{ m e} { m d} ar{ m d}$	
		$e^-e^+u\bar{u}$	
		$e^-e^+d\bar{d}$	
hadronic	$\mathbf{C}\mathbf{C}$	$u \bar{d} s \bar{c}$	
	NC(a)	uūcē	
	NC(a)	$u\bar{u}s\bar{s}$	
	NC(a)	$d\bar{d}s\bar{s}$	
	NC(b)	uūuū	
	NC(b)	$d\bar{d}d\bar{d}$	
	$\rm CC/NC$	uūdā	

Amplitudes

diagrams: 6 ($e^-e^+
u_\mu ar{
u}_\mu$) to 588 ($uar{u}dar{d}+\gamma$)

 $\gamma\gamma \rightarrow 4f$: calculation with general gauge spinor of γ , drops out in the end

use of discrete symmetries

 \rightarrow only 2 independent helicity ampl. for $\gamma\gamma\rightarrow 4f$

gluon diagrams similar to NC diagrams, add colour structure

check against Madgraph (Stelzer, Long '94)

Phase-space integration

Problem: rich peaking structure of integrand "importance sampling" : more points near peaks RacoonWW Denner et al. '01

$$\int \underbrace{dx}_{\downarrow} f(x) = \int dx \, g(x) \frac{f(x)}{g(x)} = \int dy \, \underbrace{\frac{f(x(y))}{g(x(y))}}_{\text{underse numbers}}$$

random numbers

"weight" $\sim {
m const}$

 $\int_0^x d\bar{x} g(\bar{x}) = y(x)$: "mapping" \rightarrow integrand flattened many Feynman diagrams/propagators \rightarrow "multi-channel"

one phase-space generator per diagram with appropriate "mapping"

Photon spectrum (CompAZ (Zarnecki '02; Telnov '95; Chen et al. '95)): $d\sigma = \int_0^1 dx_1 \int_0^1 dx_2 f(x_1) f(x_2) d\sigma(x_1 P_1, x_2 P_2)$ "stratified sampling" + adaptive optimization

 $Comparison \ with \ Whizard \& Madgraph \ (Kilian \ '01; \ Stelzer, \ Long \ '94) \rightarrow good \ agreement$

Anomalous triple couplings

Effective Lagrangian with dimension-6 operators assumption: symmetries of SM are respected

$$\mathcal{L}_{CC}^{ATGC} = ig_1 \frac{\alpha_{B\phi}}{M_W^2} (D_\mu \Phi)^{\dagger} B^{\mu\nu} (D_\nu \Phi) - ig_2 \frac{\alpha_{W\phi}}{M_W^2} (D_\mu \Phi)^{\dagger} \boldsymbol{\sigma} \cdot \mathbf{W}^{\mu\nu} (D_\nu \Phi) - g_2 \frac{\alpha_W}{6M_W^2} \mathbf{W}^{\mu}{}_{\nu} \cdot (\mathbf{W}^{\nu}{}_{\rho} \times \mathbf{W}^{\rho}{}_{\mu}),$$

 $\rightarrow \gamma WW$ (and related $\gamma \gamma WW$) coefficients are related to $\Delta \kappa_{\gamma}$ and λ_{γ} (LEP2)

NC triple couplings ($\gamma\gamma Z, \gamma ZZ$): $\mathcal{O}(a_{\mathrm{NC}} \cdot (\Gamma_{\mathrm{W}}/M_{\mathrm{W}})^2)$

are suppressed and thus neglected

Anomalous triple couplings

 $\gamma \gamma \rightarrow 4f$ all semi-leptonic final states photon spectrum included $\sqrt{s_{ee}} = 500 \,\text{GeV} \quad \int L dt = 100 \,\text{fb}^{-1} \quad \chi^2 = 1 \quad \chi^2 \equiv \frac{(N(a_i) - N_{\text{SM}})^2}{N_{\text{SM}}}$

 \rightarrow large interference with SM amplitude expected limits comparable to e^+e^- -mode (see also BC BC full study requires consideration of distributions

Baillargeon et al. '97; Bozovic-Jelisavcic et al. '02

Anomalous quartic couplings

Assumption: CP, U(1)_{em}, SU(2)_{cust}

$$\mathcal{L}_{anom} = -\frac{e^2}{16\Lambda^2} \left(a_0 F^{\mu\nu} F_{\mu\nu} \overline{W}_{\alpha} \overline{W}^{\alpha} + a_c F^{\mu\alpha} F_{\mu\beta} \overline{W}^{\beta} \overline{W}_{\alpha} + \tilde{a}_0 F^{\mu\nu} \tilde{F}_{\mu\nu} \overline{W}_{\alpha} \overline{W}^{\alpha} \right)$$

$$\overline{W}_{\mu} = \left(\overline{W}_{\mu}^1, \overline{W}_{\mu}^2, \overline{W}_{\mu}^3 \right) = \left(\frac{1}{\sqrt{2}} (W^+ + W^-)_{\mu}, \frac{1}{\sqrt{2}} (W^+ - W^-)_{\mu}, \frac{1}{c_w} Z_{\mu} \right)$$

$$\rightarrow \gamma \gamma WW \text{ and } \gamma \gamma ZZ$$

Effective Higgs coupling

In the SM through radiative corrections

 $\gamma \gamma \rightarrow H \rightarrow WW \rightarrow u \bar{d} s \bar{c}$ $g_{\gamma \gamma H}$: SM value incl. photon spectrum

Finite gauge-boson width

fixed width:
$$P_V(p^2) = \frac{1}{p^2 - M^2 + iM\Gamma}$$

step width: $P_V(p^2) = \frac{1}{p^2 - M^2 + iM\Gamma\theta(p^2)}$
running width: $P_V(p^2) = \frac{1}{p^2 - M^2 + iM\Gamma\frac{p^2}{M^2}\theta(p^2)}$
complex mass scheme: $M^2 \to M^2 - iM\Gamma$ (e.g. in $\cos \theta_W = \frac{M_W}{M}$) gauge invariant

 M_Z VV Denner et al. '99

For $\gamma \gamma \rightarrow 4f(\gamma)$ (massless fermions and non-linear gauge) fixed width equivalent to complex mass scheme

$\sigma(\gamma\gamma \to e^- \bar{\nu}_e \nu_\mu \mu^+ \gamma)$						
$\sqrt{s_{\gamma\gamma}} [\mathrm{GeV}]$	500	800	1000	2000	10000	
fixed width	39.230(45)	47.740(73)	49.781(91)	43.98(18)	4.32(23)	
step width	39.253(45)	47.781(73)	49.881(96)	44.01(18)	4.31(24)	
running width	39.251(49)	47.781(74)	49.898(95)	44.48(22)	(10.83(28))	
complex mass	39.221(45)	47.730(73)	49.770(91)	43.97(18)	4.31(23)	

Double-pole approximation

Naive W-pair signal:

only diagrams with two resonant W propagators (not gauge invariant) not sufficient

DPA = signal + "on-shell projection" gauge invariant ambiguity of $\mathcal{O}(\Gamma_W/M_W)$ accuracy of 1–3% breakdown at WW threshold

 \rightarrow promising approach: radiative corrections in DPA

Distributions

Invariant mass and production angle of the W⁺ boson in $\gamma\gamma \rightarrow e^- \bar{\nu}_e u \bar{d}$

Distributions

Energy and production angle of e^- and \bar{d} in $\gamma\gamma\to e^-\bar{\nu}_e u\bar{d}$

Convolution over photon spectrum changes energy and angular distributions due to the effective polarisation of the $\gamma\gamma$ system

Summary

- Relevance of $\gamma\gamma \rightarrow WW$ due to its high cross section
- Calculation of Born amplitudes for $\gamma\gamma \rightarrow 4f$ and $\gamma\gamma \rightarrow 4f\gamma$
- Monte Carlo generator with multi-channel Monte Carlo integration
- Inclusion of a realistic photon spectrum
- Anomalous couplings, Higgs resonance
- Double-pole approximation is a promising approach for radiative corrections (cf. RacoonWW), work in progress