BeamCal Hardware tests

R.Dollan, I. Emeliantchik, E. Kouznetsova, W. Lange, W. Lohmann, A. Stahl

BeamCal options

Radiation hard detector + small Moliere radius for an e⁻ detection on the top of the BG...

Testbeam measurements with diamond sensors. Preliminary results

SetUp

Hadronic beam, 3 & 5 GeV Modes:

Slow extraction $\sim 10^{5} \cdot 10^{6}$ / s fast extraction $\sim 10^{5} \cdot 10^{7}$ / ~ 10 ns PA's :

- Amptek A250

shaping time ~50 ns noise ~1000 e⁻ (diamond, area) Diamonds :

- Freiburg, group#2 (cut substrate)
- Freiburg, 4 pads
- Element6 4 pads (CCD ~200 $\mu\text{m})$
- GPI (Moscow)

Slow extraction

ЕСFЯ-2004

Slow extraction

Preliminary results

Wide range of intensities :

"Very Low Intensity" "Low Intensity" "High Intensity" "Very High Intensity"

PM 's estimation: LI : VLI ~ 15 HI : LI ~ 13 VHI : HI ~ 3 ~ 600

VERY Preliminary results

fast_E64p_p5_400Vn_LITURN_NT.root - fastVLI_E64p_400Vn_p5_s

-(pad 1-75.6) (PIPMT 00V-54.1) ((PIPMT00 V-250 && pad 4-50))

-(pad 3-76.0) (FPW7 00V-54.1) ((FPW700 V-250 && pad 4-50.))

 χ^2 / ndf

p0

58,72/13

-0.6829±0.6898

0.1257±0.005822

VERY Preliminary results

To be done

PMT's calibration

Intensity estimation using PMT's and dosimetry methods

Data analysis...

Studies for a Heavy Crystal Option

Longitudinal Segmentation

Crystal cut into segments in depth

Optical isolated fibers

Readout with photodetectors

Material: Radiation hard Dense High lightyield

Main questions :

Lightyield reduction due to fiber readout?

Е*С***FЯ-200**4

WLS fibers

BCF-91A WLS Fibers attched to different samples

Emission-Absorption spectrum of the Fibers

Direct readout vs Fiber readout

ЕСҒЯ-2004

Lightyeld - Results

Plastic Scintillator

Direct readout : $(QE_{PMT} 25 \pm 1 \%)$ Photoelectrons : 390 ± 50 p.e. / μ Lightyield : 1560 ± 260 photons / μ

> Light yield reduced to $14 \pm 4 \%$

Leadglass

Direct readout : $(QE_{PMT} \ 15 \pm 2 \%)$ Photoelectrons : $18.2 \pm 2.2 \text{ p.e.} / \mu$ Lightyield : $120 \pm 30 \text{ photons} / \mu$ Fiber readout : $(QE_{PMT} \ 13 \pm 2 \%)$ Photoelectrons : $2.4 \pm 0.5 \text{ p.e.} / \mu$ Lightyield : $19 \pm 7 \text{ photons} / \mu$

Light yield reduced to $16 \pm 7 \%$

ЕС**F**Я-2004

Crosstalk

GEANT4 simulation of lightyield

ЕСҒЯ-2004

Summary

Fiber readout method was tested with different samples

The lightyield is reduced due to fiber readout to ~15 %

There seems to be no relevant crosstalk between the segments (< 1%)

First simulation results are comparable and can be improved

the technology is promising